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Abstract: Here, the authors propose a novel two-phase clustering algorithm with a density exploring distance (DED)

measure. In the first phase, the fast global K-means clustering algorithm is used to obtain the cluster number and the

prototypes. Then, the prototypes of all these clusters and representatives of points belonging to these clusters are

regarded as the input data set of the second phase. Afterwards, all the prototypes are clustered according to a DED

measure which makes data points locating in the same structure to possess high similarity with each other. In

experimental studies, the authors test the proposed algorithm on seven artificial as well as seven UCI data sets. The

results demonstrate that the proposed algorithm is flexible to different data distributions and has a stronger ability in

clustering data sets with complex non-convex distribution when compared with the comparison algorithms.

1 Introduction

When data available are unlabelled, the classification problems
are usually referred to as the unsupervised classification, or
clustering. In clustering, a set of patterns, usually vectors in a
multi-dimensional space, are grouped into clusters in such a way
that patterns in the same cluster are similar in some sense and
patterns in different clusters are dissimilar [1]. Many clustering
approaches, such as the K-means algorithm (KM) [2], partition
a data set into a specified number of clusters by minimising certain
criteria. Therefore, they can be treated as one optimisation problem.
Since various successful algorithms such as K-means [2], STING
[3], CLIQUE [4], and CURE [5] have been proposed in recent
years, clustering has become a common and important technique
for statistical data analysis, which is widely used in many fields
including machine learning, data mining [6], pattern recognition
[7, 8], and image analysis [9].

Choosing proper dissimilarity measures is one of the key
points in designing of clustering algorithm [10–13]. Euclidean
distance is a traditional one which is widely applied. Clustering
methods such as the KM with the Euclidean distance are able
to achieve satisfactory performance on data sets with compact
spherical distributions, but tend to fail on data sets organised in
other complex shapes [14, 15]. Therefore, it is necessary for
researchers to design more flexible measurement [16, 17]. Su and
Chou [18] proposed a non-metric measure based on the concept
of point symmetry. According to this measure, a symmetry-based
version of the KM has been given. This algorithm assigns data
samples to the same cluster centre as if they present a symmetrical
structure with respect to that centre. Recently, Charalampidis
[19] developed a dissimilarity measure for directional patterns
represented by rotation-variant vectors and further introduced a
circular KM to cluster vectors containing directional information.

In [20, 21], we designed a density-sensitive dissimilarity measure
for the KM and the evolutionary clustering algorithm, respectively.
This measure, termed density exploring distance (DED), makes
data sets with complex structural features of distribution to be better
reflected. As introduced in [20, 21], the algorithms perform well on
data sets with a complex distribution. However, this measure has a
major disadvantage that it costs too much time in searching for the
shortest path between any two data samples. When the size of data
set increases, this drawback becomes extremely obvious that it will

not be suitable for large-scale clustering problems any longer.
To solve this problem, in this study, we distinguish our proposed
method in two phases. In the first phase, the fast global K-means
clustering algorithm [22] is utilised to acquire some subsets of
data with spherical distributions whose centres can precisely
represent the property of the distribution of the input data set.
Regarding the centres of these subsets as the input data set, the
complexity for calculating DED of any two samples can be reduced
significantly. In the second phase, we adopt the K-means clustering
with DED measure. The proposed method can perform well on
data sets organised in any shapes without taking too much time.
Experimental studies on seven artificial data sets as well as
seven UCI data sets show that this novel algorithm is suitable for
identifying data with complex non-convex distributions compared
with the fast global K-means algorithm (FGKM) [22], the genetic
algorithm-based clustering (GAC) algorithm [23], the DED-based
K-means algorithm [20], the density-sensitive evolutionary
clustering (DSEC) [21], and the KM [2].

In the following sections, we start with a brief description on the
main steps of the proposed method and our motivation in Section 2.
The proposed approach is introduced in detail in Section 3. Section 4
provides experimental results and comparisons. Finally, concluding
remarks are summarised in Section 5.

2 Motivation

Clustering is a process that divides a data set into clusters where
points are similar in the same cluster. Dissimilarity measure plays
an important role in promoting high performance of a clustering
method [24–26]. Also, the computational complexity is also
concerned to evaluate the effectiveness of a clustering approach.
Taking into account the issues mentioned above, the proposed
method is made up of two main phases: (i) obtaining initial
clusters with FGKM; (ii) embedding DED measure into KM for
precise clustering.

2.1 Motivation of adopting the DED measure

As aforementioned in Section 1, traditional KM with Euclidean
distance works well on data sets with compact spherical
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distribution, but fails on data sets with other complex distribution. To
solve this problem, we introduce the DED measure below.

This measure was firstly described in work [20]. Through a large
amount of observations, two consistency characters of data
clustering have been found, which are coincident with the prior
assumption of consistency in semi-supervised learning [27–31].
The so-called local consistency refers to that data samples close in
location possess high affinity with each other, while global
consistency refers to that data samples locating in the same
structure possess high affinity with each other.

For many real-world problems, the distribution of data samples
generally takes different complex structures in Euclidian feature
space. However, the classical Euclidian distance metric can only
reflects the local consistency, while fails to describe the global
consistency. Fig. 1 gives an illustration on this problem. The
affinity between point a and point e is expected to be higher than
that between point a and point f. In other words, we are looking
for a distance measure which is able to identify that point a is
closer to point e than to point f. However, point a is much closer
to point f than point e in terms of Euclidian distance metric.
Hence, Euclidean distance metric is not suitable for many
complicated real-world problems.

Based on many observations, we can find that the density
distribution of a data set reflects both the local and global
consistency well in many conditions. As shown in Fig. 1, data
points in the same cluster tend to lie in a region of high density.
Therefore, we design a data-dependent distance measure in
terms of the character of data density which can reflect both
the local and the global consistency. That is to say the proposed
method elongates the distance between points in different density
parts and shortens that in the same part.

2.2 Motivation of adopting two phases

As mentioned above, another problem arises followed by
a satisfactory performance when DED measure is introduced.
Since calculating the shortest path between any two points is a
time-consuming procedure, it is not suitable for large-scale data
sets to utilise DED measure.

If only using the information of some points from the entire data
set can acquire the correct clustering result, the computational
complexity must reduce greatly. Based on many observations, we
can find that it is not essential for every point to reflect the
distribution of the data set. As shown in Fig. 2, we can ignore
some redundant information of part of the data set, and construct a
smaller data set (as shown in Fig. 2a) to represent the distribution
of the original data set (as shown in Fig. 2b). That is to say,
dealing with these data points can also obtain better clustering
result. Meanwhile, we discover that a data set, whether it is with
compact spherical distribution or complex distribution, can be
divided into several subclusters with spherical distribution. This
process can be easily achieved by selecting an appropriate number
of clusters and using K-means method for clustering. The
subcluster centres of the data set are good representatives of the

distribution character of the entire data set. Then dealing with
these representative set of points by DED-based method cannot
only achieve satisfactory result but also greatly reduce
computational complexity. Based on these ideas above, the
proposed method is divided into two phases, which will be
described in detail in the following section.

3 Methodology

In this section, we describe the proposed two-phase clustering
algorithm with density exploring distance measure (TPCDED) in
detail. Its framework is summarised as follows.

Algorithm 1: Two-phase clustering algorithm with density
exploring distance measure

Input: Data set {xi}
n
i=1; cluster number K; maximum iteration

number tmax; stop threshold e.
Output: Partition of the data set C1, C2, . . . , Ck .

Step 1 Cluster the data set {xi}
n
i=1 and adaptively determine the

number of clusters K ′ by using the FGKM (as described
in Section 3.1), and set m = {m1, m2, . . . , mK ′}.

Step 2 For any two points mi, mj, compute the DED between them
(as described in Section 3.2). Store them for further use.
Random select K points from m as the initial prototypes of
the section-phase clustering.

Step 3 Each point is assigned to the cluster with the minimum DED
from its prototype to the point.

Step 4 Recalculate the prototype of each cluster.
Step 5 If no point changes its category or the number of iterations

reaches the maximum number tmax, stop; otherwise, go to
step 3.

Step 2 is designed for speeding up the whole procedure. The most
time-consuming part in our algorithm is the calculation of DED,
so we try to avoid this computation during the update procedure.
All the distances between any two points are calculated and stored
firstly. We abandon the original K-means method which calculates
the mean value vectors as cluster representatives in step 4. This is
because mean values cannot represent density judged areas
properly. Instead, for each point in current cluster, we calculate the
sum of its DEDs to all the other points in the same cluster, and
then choose the point which maximises the sum of DEDs as the
new prototype of this cluster. In this way, all the prototypes are
chosen from m in step 1, and we only need to call the distances
stored in step 2.

3.1 Selecting initial prototypes

We apply the FGKM [22] for the first-phase clustering. This method
increases the number of clusters iteratively until an appropriate value
which can be determined adaptively by selecting a certain inflection
point of the error curve.

Fig. 1 Illustration on why Euclidian distance metric cannot reflect the

global consistency

Fig. 2 Illustration on representative set of points after the first phase

a Original data set

b Simplified representatives of the original data set
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To solve a clustering problem with k clusters, the method works as
follows. It starts with one cluster (k = 1) and finds its optimal centre
which minimises the clustering error. Then, it solves the problem
with two clusters (k = 2) by computing an upper bound
En ≤ E − bn on the resulting error En for all possible allocation
positions xn, where E is the clustering error in the one-cluster
problem and bn is defined as

bn =
∑

N

i=1

max dik−1 − xn − xi
∥

∥

∥

∥

2
, 0

( )

(1)

where dik−1 is the squared distance between xi and the closest centre
among the k − 1 cluster centres obtained so far (i.e. centre of the
cluster where xi belongs). The quantity bn measures the guaranteed
reduction obtained by inserting a new cluster centre at position
xn. Then, the new cluster centre is initialised at point xj , (j =
argmaxn {bn}) which minimises En (or equivalently maximises
bn). Suppose the solution of the (k − 1)-cluster problem is
(m∗

1(k − 1), (m∗
2(k − 1), . . . , (m∗

k−1(k − 1)) and a new cluster
centre is inserted at location xn. Then the new centre will allocate
all points xi whose squared distance from xn is smaller than dik−1.
Therefore, the clustering error for each xi will decrease
by dik−1 − xn − xi

∥

∥

∥

∥

2
. The summation over all xi provides the

quantity bn for a specific insert location xn. By minimising the
clustering error step by step, k initial centres can be obtained for
the k-cluster problem.

There is a key problem that how many clusters should be divided
into the first phase. Too many clusters will burden extra
computational complexity on the proposed algorithm, but when
the number of clusters is too small, the representative set of
points cannot reflect the distribution of original data set well. The
FGKM select cluster centres increasingly according to a strict
criterion, so that these cluster centres can approximate the results
of hierarchical clustering algorithm. This character helps us select
appropriate number of clusters by selecting the inflection point
of the error curve, which is very flexible and embodied in how to
select the error curve and find the inflection point. The inflection
point is generalised to a special point satisfying certain conditions.
In this paper, we choose the within-cluster sum of squares of
all clusters to be the error curve with an increasing number of
clusters, and the first point satisfying the criterion that the
difference between each of three successive points on the error
curve is below a certain threshold is selected to be the knee point.
The number of clusters corresponding to the knee point is the
number needed to be determined in the first phase.

3.2 Density exploring distance

In the second phase, we adopt DED measure as dissimilarity
measure in the modified K-means method. A detailed description
of DED measure is given as below.

In our method, the whole data set is modelled as a weighted
undirected graph G = (V , E). Data points are taken as the nodes
V. Edges E = Wi,j are weighted by the distance between points xi
and xj. We expect the distance measure assigns a high affinity
between two points if they can be linked by a path running within
a region of high density, and a low affinity otherwise. In other
words, this measure should elongate the paths that cross
low-density regions, and simultaneously shorten those only cross
high-density regions. In the illustration example in Fig. 1, that is,
we look for a measure of distance, according to which point a is
closer to point e than to point f as mentioned above.

To formalise this intuitive notion of dissimilarity, we firstly define
a so-called sensitised distance. Different from traditional point of
view, a distance measure describing the global consistency does
not always satisfy the triangle inequality under the Euclidean
metric. In other words, a direct connected path between two points
should not always be the shortest one. As shown in Fig. 1, global
consistency requires that the solid line path is shorter than the
straight dashed path, i.e. āb+ b̄c+ c̄d + d̄e , āe. Enlightened by
this property, we define the sensitised distance as follows.

Definition 1: The sensitised distance SD(xi, xj) is defined as

SD(xi, xj) = r
dist(xi ,xj ) − 1 (2)

where dist(xi, xj) is the Euclidean distance between xi and xj , and
r . 1 the flexing factor.

The distance sensitivity between two points can be adjusted by the
flexing factor r. In virtue of the sensitised distance, we further
introduce the new distance dissimilarity measure DED, which
calculates the distance between a pair of points by searching for
the shortest path in the graph.

Definition 2: Let data points be the nodes of graph G = (V , E) and
p [ V l be a path of length l = |p| − 1 connecting the nodes p1
and p|p|, in which (pk , pk+1) [ E, 1 ≤ k ≤ |p| − 1. Let Pij denote
the set of all paths connecting nodes xi and xj. The DED between
xi and xj is defined as

D xi, xj

( )

= min
p[Pij

∑

p| |−1

k=1

L pk , pk+1

( )

(3)

We can observe that this measure tries to search data distribution and
satisfies the four conditions for a distance metric, i.e. D(xi, xj) =
D(xj, xi); D(xi, xj) ≥ 0; D(xi, xj) ≤ D(xi, xk )+ D(xk , xj) for all
xi, xj , xk ; and D(xi, xj) = 0 if and only if xi = xj.

This distance measure judges any two points in the same dense area,
which are connected by a number of short edges within this
area, while the linkage between any two points in different dense
areas contains much longer edges between these dense areas.
Therefore, the distances between data points in different dense
areas are elongated and that in the same dense area are shortened
simultaneously. As a result, the property of data sets with complex
distribution can be effectively described.

4 Experimental results

In order to validate the performance of TPCDED, we design
experiments on seven artificial data sets and seven UCI data sets
[32]. The information of these artificial and UCI data sets are
given in Table 1. The results are compared with a modified KM
using the density-sensitive dissimilarity measure (DSKM) [20], the
FGKM [22], the GAC technique [23], the DSEC algorithm [21],
and the KM [2].

The main drawback of DSKM is that the centre of each cluster
is the geometrical centre in each iteration, which discounts its
ability of reflecting the global consistency. TPCDED overcomes
this drawback by updating the cluster representatives within data
set (by selecting the point which maximises the sum of DEDs in
each cluster as the cluster representative). Although DSEC can

Table 1 Data sets used for experiments

Data set Number of
samples

Number of
features

Number of
clusters

Square1 1000 2 4
Square4 1000 2 4
Long1 1000 2 2
Spiral 1000 2 2
Sizes5 1000 2 4
Line-blobs 266 2 3
Sticks 512 2 4
Iris 150 4 4
Wine 178 13 3
Breast 277 9 2
Zoo 101 16 7
German 1000 20 2
Pimaindians 768 8 2
Musk 6598 166 2
Page 5473 10 5
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perform well on non-convex data sets, it is a time-consuming
method. Finally, FGKM and GAC belong to Euclidean distance
measure-based approaches.

In all the artificial and UCI problems, the desired clusters’ number
is set in advance. For TPCDED, DSKM, and KM, tmax is set as 500,
and the stop threshold is set as 10−4. The parameter settings for GAC
and DSEC are given in Table 2. The sensitivity test of parameter
based on the above 14 data sets shows that the results of TPCDED
only vary slightly when the flexing factor r is set within (1, e18].

4.1 Experimental results on artificial data sets

In this section, we evaluate the performance of TPCDED on seven
artificial data sets, i.e. Square1, Square4, Long1, Spiral, Size5,
Line-blobs, and Sticks. To show the performance visually, the
typical clustering results obtained by TPCDED, FGKM, DSKM,
GAC, and KM are shown in Figs. 3 and 4.

Clustering quality is evaluated by percentage of accuracy. We
perform 30 independent runs on each problem in order to test
TPCDED when compared with DSKM, FGKM, GAC, and KM.
The average results of clustering accuracy are shown in Table 3.
From Table 3, we can find clearly that TPCDED achieves the best
performance in clustering all the seven data sets. DSKM also
performs well on Long1 and Spiral data sets, FGKM and KM do
the best on Square1 and Square4 data set, too. FGKM, GAC, and
KM only obtain satisfactory results for the three spheroid data
sets, i.e. Square1, Square4, and Size5. The structures of the other
four data sets do not satisfy convex distribution. DSKM can
recognise two of the four complex distributions successfully, this

Table 2 Parameter settings for GAC and DSEC

Parameter Value

population size 20
number of generation 500
probability of crossover 0.8
probability of mutation 0.1

Fig. 3 Experimental results on typical artificial data sets. The first column to the fifth column are the results obtained by TPCDED, DSKM, FGKM, GAC, and

KM, respectively. The top row to the bottom row are the results on Square1, Square4, Long1, Spiral, Sizes5, respectively

CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 1, pp. 59–64

62 This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongqing University of Technology under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



indicates that the manifold distance metric is suitable to measure
complicated data distribution. When comparisons are made
between TPCDED and DSKM, both of them can obtain the true
distribution of Long1 and Spiral data sets in all the 30 runs, but
DSKM cannot do it on the Line-blobs and Sticks data sets.
Furthermore, the proposed TPCDED performs better than DSKM
for clustering Square1, Square4, and Size5 data sets.

4.2 Experimental results on UCI data sets

We also choose seven real-world data sets from the UCI machine
learning repository, i.e. Iris, Breast, Zoo, German, Pimaindians,
Musk, and Page, to evaluate the performance of TPCDED.
Compared with DSKM, FGKM, GAC, and KM, the average
clustering accuracy of 30 independent runs of TPCDED on each
data set is shown in Table 4.

From Table 4, we can find clearly that TPCDED achieves the best
performance on all of the seven clustering problems. For Iris and Zoo
data sets, FGKM and GAC achieve better results than DSKM and
KM. For Breast data set, only TPCDED can obtain satisfactory
result. On the rest data sets, our proposed TPCDED and DSKM
perform more effectively than other method.

4.3 Comparisons of computational time

Both DSKM and DSEC have a drawback that they cost too much
time when the scale of data set is large. We perform 30
independent runs on each problem to test the time efficiency of

DSEC and TPCDED. The average results of clustering accuracy
and computational time are shown in Table 5.

From Table 5, we can see that TPCDED maintains high clustering
accuracy and greatly improves the computational efficiency
simultaneously. Its computational time is much less than that of
DSEC. For Musk and Page, DSEC cannot obtain results within
24 h because of its high computational complexity, while
TPCDED achieves satisfactory results within limited time.

Fig. 4 Experimental results on typical artificial data sets. The first column to the fifth column are the results obtained by TPCDED, DSKM, FGKM, GAC, and

KM, respectively. The top row to the bottom row are the results on Line-blobs and Sticks, respectively

Table 3 Accuracy results of TPCDED, DSKM, GAC, and KM on artificial
data sets

Data sets Percentage of accuracy

TPCDED DSKM FGKM GAC KM

Square 0.9872 0.8550 0.9900 0.9899 0.9900
Square4 0.9285 0.8547 0.9350 0.9341 0.9350
Long1 1.0000 1.0000 0.5140 0.5620 0.5464
Spiral 1.0000 1.0000 0.5920 0.5960 0.5927
Sizes5 0.9838 0.8657 0.9760 0.9755 0.7744
Line-blobs 1.0000 0.9038 0.7444 0.7368 0.7425
Sticks 1.0000 0.7628 0.7207 0.7312 0.6895

The bold in this table represents the best results achieved among these
algorithms.

Table 4 Accuracy results of TPCDED, DSKM, FGKM, GAC, and KM on
UCI data sets

Data sets Percentage of accuracy

TPCDED DSKM FGKM GAC KM

Iris 0.9077 0.7929 0.8867 0.8996 0.7938
Breast 0.7076 0.5386 0.6065 0.4188 0.4897
Zoo 0.8614 0.6455 0.7921 0.7619 0.7007
German 0.7000 0.6779 0.5970 0.5864 0.5970
Pimaindians 0.6510 0.5635 0.5482 0.5287 0.5482
Musk 0.8459 0.8457 0.5132 0.5040 0.5150
Page 0.8771 0.8276 0.8012 0.8030 0.7312

The bold in this table represents the best results achieved among these
algorithms.

Table 5 Time efficiency results of TPCDED and DSEC

Data set Percentage of accuracy Time, s

TPCDED DSEC TPCDED DSEC

Square1 0.9872 0.9895 7.1883 14.7406
Square4 0.9285 0.9336 7.3906 14.9531
Long1 1.0000 1.0000 6.6599 14.1313
Spiral 1.0000 1.0000 6.7021 13.5844
Sizes5 0.9838 0.9885 7.1906 15.0156
Line-blobs 1.0000 1.0000 1.1339 2.2719
Sticks 1.0000 1.0000 1.8844 4.9063
Iris 0.9077 0.9013 0.8036 1.5562
Breast 0.7076 0.7076 1.5984 2.6809
Zoo 0.8614 0.7921 1.2039 1.6438
German 0.7000 0.7000 6.9781 14.1156
Pimaindians 0.6510 0.6510 5.3156 11.7094
Musk 0.8457 — 807.1906 —

Page 0.8771 — 501.3687 —

The ‘—’ in the table means that the result does not come out within 24 h.
The bold in this table represents the best results achieved among these
algorithms.
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5 Concluding remarks

In this paper, we propose a two-phase clustering algorithm with a
DED measure. Since the DED measure can identify non-convex
clustering structures, the proposed algorithm can achieve
satisfactory performances on data sets with complex distributions.
A fast global prototype selection strategy is applied to find
global optimum clustering solutions and make original data sets
to be represented by some centres of clusters. The number of
representatives is determined adaptively. This procedure greatly
speeds up the whole algorithm. This method maintains the
accuracy of clustering and saves a lot of time simultaneously.

Experimental results on seven artificial as well as seven UCI data
sets show that the proposed algorithm is flexible to different
data distributions and has stronger ability to identify complex
non-convex clusters than the compared algorithms in terms of
cluster quality and computational time.
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