
Role playing learning for socially concomitant
mobile robot navigation

ISSN 2468-2322

Received on 2nd January 2018

Revised on 20th January 2018

Accepted on 9th February 2018

doi: 10.1049/trit.2018.0008

www.ietdl.org

Mingming Li ✉, Rui Jiang, Shuzhi Sam Ge, Tong Heng Lee

Department of Electrical and Computer Engineering, and the Social Robotics Lab, Smart System Institute (SSI), National University of

Singapore, Singapore 117576, Singapore

✉ E-mail: li_mingming@u.nus.edu

Abstract: In this study, the authors present the role playing learning scheme for a mobile robot to navigate socially with its

human companion in populated environments. Neural networks (NNs) are constructed to parameterise a stochastic policy

that directly maps sensory data collected by the robot to its velocity outputs, while respecting a set of social norms. An

efficient simulative learning environment is built with maps and pedestrians trajectories collected from a number

of real-world crowd data sets. In each learning iteration, a robot equipped with the NN policy is created virtually in the

learning environment to play itself as a companied pedestrian and navigate towards a goal in a socially concomitant

manner. Thus, this process is called role playing learning, which is formulated under a reinforcement learning

framework. The NN policy is optimised end-to-end using trust region policy optimisation, with consideration of the

imperfectness of robot’s sensor measurements. Simulative and experimental results are provided to demonstrate the

efficacy and superiority of the proposed method.

1 Introduction

The capability to navigate in densely populated and dynamic
environments is one of the most important features that enable
the deployment of mobile robots in unstructured environment,
such as schools, shopping malls and transportation hubs. The key
difference between the problem of navigating among humans and
the traditional path planning and obstacle avoidance problems
is that humans tend to smoothly evade each other interactively
and cooperatively, rather than remaining static or maintaining
an indifferent trajectory dynamics. In other words, there are social
norms that need to be understood and complied to achieve
maximum comfort of all involved pedestrians during navigation.
We refer to this as the problem of social navigation, which aims to
model such social norms and develop a robotic navigation policy
that is socially acceptable to the pedestrians around.

For social navigation, the traditional approaches based on
dynamic window approach (DWA) [1] or potential fields [2, 3] are
usually of limited efficacy as pedestrians are simply regarded as
uncooperative obstacles. An illustrative example is the freezing
robot problem [4, 5], where a mobile robot will be stuck in a
narrow corridor when facing a crowd of people if it lacks the
ability to predict the joint collision avoidance behaviours of
human pedestrians. To this end, researches have been done to
understand the principles of humans’ joint collision avoidance
strategies and one of the pioneering works are the social force
model (SFM) [6, 7]. Other joint collision avoidance model such
as reciprocal velocity obstacles (RVOs) have been proposed in
[8–10], with an underlying assumption that all involved agents
adopt the same collision avoidance strategies. These ideas are also
applied to visual tracking of pedestrians [11, 12]. More recently,
several attempts are made to learn probabilistic models of
pedestrians’ trajectories during joint collision avoidance, based
on which the robot’s navigation decision is generated such that it
is able to behave naturally and correctly in similar situations
[5, 13–15].

In this paper, we propose to augment the dimensions of
human–robot interaction in social navigation by further endowing
robot with appropriate group behaviours when it is travelling
with a human companion. This capability is highly desirable for

assistive mobile robots [16–18], which serve as assistants and
companions and are expected to travel along with their human
partners in not only home environment but also possibly crowded
public areas. In other words, apart from understanding the
collision avoidance behaviours of pedestrians, the robot also needs
to consider the motion of its companion so as to maintain a sense
of affinity when they are travelling together towards a certain
goal. We call this socially concomitant navigation (SCN) and it is
more challenging than the aforementioned social navigation
problem, where the robot is assumed to travel alone with a simpler
pursuit of reaching a specific goal while being free of collision.

To address the problem of SCN, we develop a new learning
scheme called role playing learning (RPL). Particularly, we
formulate such problem under the framework of partially
observable Markov decision process (POMDP) and reinforcement
learning (RL). A neural network (NN) is used to parameterise the
navigation policy of the robot, which is optimised to give proper
steering commands for the next time instance based on the robot’s
current and previous observations to its surroundings. To facilitate
the RL process, we create a simulative navigation environment
by mirroring collections of real-world pedestrians data sets
and develop an on-policy optimisation method called partially
observable trust region policy optimisation (PO-TRPO). In each
run in an optimisation iteration, the robot will attempt to play itself
as a companion of a randomly chosen pedestrian by executing
the NN navigation policy. The NN policy is then optimised using
PO-TRPO based on a batch of collected trajectories. Compared to
the existing analytically derived or data-driven approaches, our
RPL scheme has the following advantages:

(i) RPL scheme is less restrictive. It does not rely on the
assumption that the robot and other agents (pedestrians) share the
same decision-making models [5, 8–10, 14] or that the navigation
goals of pedestrians are known [5, 14].
(ii) The formulation of RPL scheme is more generalisable
and flexible. Our formulation contains no manually-defined
feature and domain knowledge (e.g. statistics of pedestrians’
behaviours). It is not hardware specific and can be easily modified
to incorporate kinematics of different mobile robot platforms,
sensor specifications and navigation objectives. In addition, unlike

CAAI Transactions on Intelligence Technology

Research Article

CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 1, pp. 49–58

49This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongqing University of Technology under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

[14, 15], the learned navigation policy operates without access to the
global map of the environment. Therefore, it is not environment
specific and is well generalisable to unmet real-world scenarios.
(iii) We explicitly consider the noise and limitation of the robot’s
sensor measurements. Most approaches for social navigation
assume that the robot has full and accurate knowledge of
interested variables, such as positions or distance of pedestrians
and obstacles [8–10, 14]. On the contrary, our RPL scheme is
rooted from the situation where the robot can only perceive those
lie within its sensor’s field of view (FoV), with the existence of
measurement noise.
(iv) As a RL-based approach, RPL is efficient. Although RPL aims
at solving tasks that involve interaction among robot, humans
and physical environment, it does not require participation of
human in both data collection and learning, which is known to be
tedious and time consuming. Instead, the learning process is safely
automated in a simulative yet realistic environment with no human
intervention.

We evaluate the performance of our approach in both simulations
and real-world experiments, by comparing it with a baseline
planner based on RVOs [8] and humans, respectively. We also
show that, with some tricks, the learned navigation policy can
still be effective when the navigation scenario is reduced to the
aforementioned social navigation, which means the robot is
travelling without human companion.

The rest of this paper is organised as follows. Related work is first
reviewed in Section 2. In Section 3, the problem of SCN is
formulated as a POMDP and associated definitions are given. RPL
scheme and PO-TRPO algorithm are described in Section 4.
Sections 5 and 6 provide extensive results of simulation and
experiment, followed by some concluding remarks in Section 7.

2 Related work

The problems of robot navigation in populated and dynamic
environment can be addressed from a number of angles, which can
be largely classified into two groups as in the following subsections.

2.1 Interactive behaviours models

Many researches have been proposed to describe the interactive
navigation behaviours of humans by fitting a computational model
to the observed pedestrians trajectories [19]. In this way, the
robot’s path planner is able to understand pedestrians’ intention
during joint collision avoidance and actively calculate an optimal
route towards its goal.

In the field of robotics, a majority of work in this direction is
done via inverse RL (IRL) [20], which learns a cost function
that explains the observed behaviours. For example, maximum
entropy IRL [21] is adopted in a number of works [22–26]
for discrete human behaviour prediction and route planning.
However, discrete representation is less desirable when modelling
trajectories, which are in nature continuous and has higher order
dynamics, such as velocities and acceleration. Instead, Kim and
Pineau [15] adopt maximum-a-posteriori Bayesian IRL [27]
to learn appropriate navigation behaviour of a specific mobile
robot from a set of demonstration trajectories. Note that, the
demonstration data in [15] is specific to configurations of the
robot and its sensor and has to be collected via human operation,
which could be time consuming. On the other hand, the authors
in [13, 14] learn probabilistic models of composite trajectories of
pedestrians from video data by maximum entropy learning and
IRL. To better capture the characteristics of observed trajectories,
they propose to develop their models based on a set of features
that are hand-crafted according to the domain knowledge from
psychological studies. In addition, those features contain velocities
and accelerations of pedestrians, which, in practice, are hard to
precisely measure. Besides, interacting Gaussian process (IGP) is
derived in [5] to model the joint trajectories of pedestrian

while explicitly considering the effects of observation noise.
Nevertheless, the design of IGP also requires several hand-crafted
kernels that are formulated based on the priori information in a
specific application scenario.

Other than researchers in robotics, the community of computer
vision also possess great interest in pedestrian modelling. One
of the important topics is trajectory prediction in video space.
In [11], linear trajectory avoidance is developed as a dynamic
model for pedestrians in video space for short-term trajectory
prediction and it is integrated into visual tracking system. Gaussian
process is adopted in [28] to learn the motion pattern of
pedestrians. Recently, social long short term memory (LSTM) is
proposed in [29] for human trajectory prediction in crowd space.
Similarly, the feature of social sensitivity is developed in [30] to
analyse trajectories of pedestrians and bicyclists. While the above
methods can effectively predict the navigation intention of
pedestrians in videos, it is still unclear how to apply these models
to navigation of robot in real scenarios.

2.2 Steering models

In contrast to learning behaviour models of pedestrians, a more direct
perspective is to develop a steering model that outputs the immediate
navigation actions given the robot’s current observation to the
environment. One of the pioneering work in this direction is
the SFM [6], which uses energy/potential functions to encode the
social status of pedestrian. Then, the navigation motivation of a
pedestrian can be derived by taking the gradients of these energy
functions. Following this idea, subsequent works [12, 31–33]
propose to infer the optimal parameters of the energy function by
fitting them to video data. However, they are likely to produce
suboptimal results if the demonstration data from humans are
imperfect. In [34], the authors integrate a people tracker and an
iterative A∗ planner, with which the robot actively follows the
pedestrian travelling in a similar direction to navigate through
crowded environment. Mehta et al. [35] follow the same idea and
formulate the choice of a pedestrian to follow as a multi-policy
decision making process. On the other hand, Foka and Trahanias
[36] develop a hierarchical POMDP for predictive navigation
in dynamic environment. The idea is to predict the motion of
pedestrians and generate a environment-specific cost map for path
planning and obstacle avoidance.

Other than navigating in a pedestrian-aware manner, several
reactive collision avoidance techniques have also been developed,
such as DWA [1, 37], velocity obstacles [38] and RVOs [8–10].
The common idea of these methods is to treat pedestrians as
moving obstacles and reactively update the planner every short
periods to achieve collision avoidance. As mentioned in Section 1,
these methods are less effective for social navigation as they lack
predictive abilities and are based on some restrictive assumptions,
such as accurate knowledge of moving agents’ velocities [37] and
that all agents adopt the identical collision avoidance strategy [8–10].

Our proposed navigation policy belongs to the steering models.
It takes an observation vector as input and outputs the navigation
action through a stochastic NNs. During RPL, our policy is
optimised by the PO-TRPO algorithm, which is derived based on
the recent advances in deep RL (DRL) [39, 40]. DRL exploits the
massive representation power of deep NNs (DNNs) [41] to build a
complex yet sophisticated decision model, with which an agent
can directly learn from raw signals instead of carefully crafted
feature and tends to act more intelligently. Recently, there are
several attempts in using DNN and DRL for robot navigation. For
example, an end-to-end motion planner is learned in [42] to map
raw sensor data of a laser range finder onto steering commands
of a mobile robot. In [43], a decentralised multi-agent collision
avoidance policy is learned via DRL, which can be thought as a
DRL version of the original RVO approach [8]. Finally, a
target-driven visual navigation policy for home environment is
learned in [44] via DRL. They create a set of three-dimensional
(3D) virtual home environments for effective and efficient training

CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 1, pp. 49–58

50 This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongqing University of Technology under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

of the agent, which shares a similar idea with our proposed RPL
scheme.

3 Problem formulation

To formulate the problem of SCN, we give the following rules
of SCN:

(i) The robot should reach its goal as fast as possible;
(ii) The robot should not collide with any of the pedestrians or its
companion, or run into any obstacle;
(iii) The robot should not run too far away from its companion.

The above rules serve as a generic description of the
robot’s desired performance during navigation. To give concrete
definitions, consider the navigation process as an infinite-horizon
discounted POMDP in discrete time, defined by the tuple
(S, A, F, O, p0, r, g). S is a finite set of states s reflecting the
navigation status of the robot. A is a finite set of actions a. In this
paper, it is defined as a twosome of the translational and rotational
velocities of a synchro-drive mobile robot, i.e. a = [vT, vR].
F:S ×A � S is state-transition mapping, which is characterised
by the dynamics of the robot, the other humans and the
environment. Without loss of generality, we assume deterministic
state transition, i.e. si+1 = F(si, ai), where si, ai are the state and
action taken at time ti. O is the set of the robot’s observation o to
the state s and b(o|s) denotes the conditional observation
probability distribution. Note that, in practice, the robot’s
observation has only incomplete access to s or is subject to certain
measurement noise, which implies o= s. p0:S � R is the initial
state distribution, i.e. s0≏p0. r:S � R is a scalar reward given to
the robot and g [(0, 1] is the reward discount factor.

Robot motion dynamics: In this paper, synchro-drive
mobile robots are considered, whose motion equation can be
approximated by assuming the robot’s velocities to be constant
within a certain short time period [ti, ti+1] [1] with length Dt =
ti+1 − ti. Particularly, let fr(ti) and rr(ti) = [xr(ti), yr(ti)] denote
the robot’s heading and its positions in a 2D Cartesian space at
time ti, respectively. vT(ti) [[0, v̄T] and vR(ti) [[− v̄R, v̄R]
represent the robot’s translational and rotational velocities. Define
Dxr = xr(ti+1)− xr(ti) and Dyr = yr(ti+1)− yr(ti). When the robot
has non-zero rotational velocity, i.e. vR(ti)= 0, we have

Dxr = −
vT(ti)(sinfr(ti)− sin (fr(ti)+ vR(ti)Dt))

vR(ti)
(1)

Dyr =
vT(ti)(cosfr(ti)− cos (fr(ti)+ vR(ti)Dt))

vR(ti)
(2)

Otherwise, when vR(ti) = 0

Dxr = vT(ti) cosfr(ti) (3)

Dyr = vT(ti) sinfr(ti) (4)

With the above formulations, our goal is optimising a stochastic
navigation policy Pu:O×A � [0, 1] with parameters u in order
to maximise the expected discounted reward

h(Pu) = Et

∑

1

i=0

gir(si, ai)

[]

(5)

where t = (s0, o0, a0, s1, o1, a1, . . .) denotes the whole trajectory
and ai≏Pu(ai|oi). The specific definitions of the above ingredients
for SCN will be elaborated as follows.

State: Given rr and fr, define the distance d and direction f of a
point r = [x, y] to the robot as follows:

d(r) =

����������������������

(x− xr)
2 + (y− yr)

2

√

(6)

f(r) = arctan
y− yr
x− xr

()

− fr (7)

Then, the robot’s distance to the goal located at rg = [xg , yg] are
computed as dg = d(rg) and fg = f(rg) denotes the offset angle
between the robot’s current heading fr and its goal. Similarly, we
can define the twosomes (d

j
ped, f

j
ped), (d

j
com, f

j
com) or (d

j
obs, f

j
obs) to

describe the relative position of a pedestrians rjped, a companion
rjcom or an obstacle rjobs to the robot. With such definitions, the
state s is defined to incorporate the information related to the
robot’s navigation status as follows:

s = [dg , fg , a, pped, pcom, pobs] (8)

where a is the current action vector and

pped = [d1ped, f
1
ped, . . . , d

nped
ped , f

nped
ped] (9)

pcom = [dcom, fcom] (10)

pobs = [dFobs, d
L−

obs, f
L−

obs, d
R−

obs, f
R−

obs, d
L+

obs, f
L+

obs, d
R+

obs, f
R+

obs] (11)

The vector pped includes the distances and directions of nped closest
pedestrians while pcom includes those of the robot’s companion.

The vector pobs is a compact description to the robot’s perception
of the surrounding environment. Particularly, the boundaries of the
occupied space (obstacles) in the environment are represented as a
finite point set Z = {r1obs, r

2
obs, . . . , r

j
obs, . . . }. Then, the nine

variables in pobs are defined based on the following assumption.

Assumption 1: An obstacle robs [Z has no effect on the robot’s
navigation decision if it satisfies d(robs) . d̄obs, where d̄obs is a
predefined finite constant.

By Assumption 1, it is sufficient to consider only obstacles in Z that
are closed enough to the robot, whose distances are less than d̄obs.
In practice, this limit may correspond to the robot’s perception
range. Let

Z̄ = {r|r [Z, dr ≤ d̄obs} (12)

The components in vector pobs are described as follows.
The distance to the nearest obstacle located at heading of the

robot, i.e.

dFobs = min
r[̄Z and |f(r)|≤er

d(r) (13)

where er is a small constant.
For dLobs, f

L
obs, d

R
obs, f

R
obs, they represent the distance and direction

of the closest and farthest obstacles on the robot’s left (rLobs) and right
side (rRobs), respectively, which are defined mathematically as
follows:

rL
−

obs = argmin
r[̄Z andf(r).er

d(r) (14)

rR
−

obs = argmin
r[̄Z andf(r),−er

d(r) (15)

rL
+

obs = argmax
r[̄Z andf(r).er

d(r) (16)

rR
+

obs = argmax
r[̄Z andf(r),−er

d(r) (17)

Then, the variables in pobs can be simply determined as the distance
and directions of the above points according to (6) and (7). Fig. 1

CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 1, pp. 49–58

51This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongqing University of Technology under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

provides a comprehensive illustration of the state variables pped, pcom
and pobs.

Observation: As discussed in the previous sections, sensors
mounted on the robot are always subject to various kinds of
limitation and measurement noise, which must be taken into
account in order to develop a robust and practical navigation
system. To this end, we define o as the robot’s observation to the
true state s as follows:

o = [dg , fg , a, p̂ped, p̂com, p̂obs] (18)

By (18), we assume that the robot has accurate information about
the goal position and its current taken action (i.e. the velocity
commands output to the robot’s motor) while its observations to
pped, pcom, pobs may be imperfect. Particularly, consider the field of
views (FoVs) for the robot’s pedestrian and obstacle detectors
illustrated as in Fig. 2.

Mathematically, let finite point sets Fped and Fobs denote the
current FoVs of pedestrian and obstacle detectors, characterised by
threesomes (f+

ped, f
−
ped, d

+
ped) and (f+

obs, f
−
obs, d

+
obs), respectively.

The robot’s observations to the pedestrians’ relative positions are

obtained as

p̂ped = [d̂1ped, f̂
1
ped, . . . , d̂

nped
ped , f̂

nped
ped] (19)

where

d̂
j
ped =

d
j
ped + d̃ped, if rjped [Fped

d+ped, else

⎧

⎨

⎩

(20)

and

f̂ j
ped =

fj
ped, if rjped [Fped

p, if else

⎧

⎨

⎩

(21)

for j = 1, . . . , nped, with d̃ped being the measurement noise/error.
Similarly, define

p̂obs = [d̂Fobs, d̂
L−

obs, f̂
L−

obs , d̂
R−

obs, f̂
R−

obs , d̂
L+

obs, f̂
L+

obs , d̂
R+

obs, f̂
R+

obs] (22)

Compared to the states in (13) to (17), only the obstacles within Fobs
are observable. Thus, d̂Fobs is formulated as

d̂Fobs = min
r[̄Z>Fobs and |f(r)|≤er

d(r)+ d̃obs (23)

where d̃obs is the measurement noise/error for obstacle detection. The
closest observed obstacles on the robot’s left and right sides are
defined in a similar way as

r̂L−

obs = argmin
r[̄Z>Fobs andf(r).er

d(r)+ d̃obs (24)

r̂R−

obs = argmin
r[̄Z>Fobs andf(r),−er

d(r)+ d̃obs (25)

r̂L+

obs = argmax
r[̄Z>Fobs andf(r).er

d(r)+ d̃obs (26)

r̂R+

obs = argmax
r[̄Z>Fobs andf(r),−er

d(r)+ d̃obs (27)

Then, their distance and directions to the robot are calculated using
(6) and (7). For observation to the robot’s companions, we rely on
the following assumptions.

Assumptions 2: The companions r1com, . . . , r
ncom
com are always

observable to the robot.
Then, p̂com = [d̂com, fcom], where

d̂com = dcom + d̃com (28)

Remark 1: By (20) and (23)–(28), it is implied that the observation/
measurement noises d̃ped, d̃obs and d̃com are additive and independent
in different observations. A typical example of such noise is the
additive Gaussian white noise.

Remark 2: Our general formulations of states (8) and observations
(18) are applicable to various types of onboard sensors, such as
range sensors [45, 46], RGB-D [47], time-of-flight [48] and
omnidirectional cameras [49], as long as the interested positions
can be extracted/estimated from the sensor’s raw measurements.

Remark 3: The mathematical definitions of the variables in
observations p̂ped, p̂com, p̂obs are given for better understanding and
are required only in the simulative RPL process. In practice, it is
clear that these values can be directly measured via the robot’s
onboard sensors without accessing the actual 2D Cartesian
coordinates [x, y] of the considered point sets (e.g. Z, Fped and

Fig. 1 Illustration of the state variables in (8). The blue, yellow and green

circles represent the robot, its companion (Com.) and the pedestrians (Ped.)

respectively. The red dashed circle with a radii d̄obs represents the boundary

of the set Z̄ in (12). The black arrow shows the current heading of the robot.

Considering the robot’s current position as the origin, the polar coordinates

of the pedestrians, the companion, the closest (and the farthest) obstacles in

each direction are compactly represented as vectors pped, pcom, pobs

Fig. 2 FoVs of the pedestrians (green) and obstacles (blue) detectors. The

arrow (f = 0) points towards the current heading of the robot. The constants

f+
ped, f

+
obs and f−

ped, f
−
obs denote the maximum and minimum offset angles in

the corresponding FoVs. Finally, d+ped and d+obs represent the maximum

detection ranges for the pedestrian and obstacle detectors, respectively.

The values of these constants should be determined according to the

specific configurations of the robot’s sensor and the corresponding

detection algorithms. Any pedestrian/obstacle outside the FoVs is not

observable and therefore will be omitted

CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 1, pp. 49–58

52 This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongqing University of Technology under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

Fobs). For example, consider a robot equipped with a laser range
finder. These distances and offset angles can be easily obtained
from the returned ranges array [50].

Reward function: A scalar reward will be given to the robot as an
award of reaching the goal or a penalty of colliding with obstacles/
pedestrians/companions or losing its companions. Particularly, at
time ti, the process of SCN will be terminated if any of the
following three termination conditions are true.

(i) Goal reaching condition

dg(ti) ≤ 0.8 (29)

(ii) Collision conditions

min
j

d
j
ped(ti) ≤ 0.4 (30)

dcom(ti) ≤ 0.4 (31)

min (dFobs(ti), d
L−

obs(ti), d
R−

obs(ti)) ≤ 0.2 (32)

(iii) Stray condition

dcom(ti) ≥ 2 (33)

Based on the above three terminal conditions, a reward r will be
given to the robot as follows:

r =

10000, if (29)

−10000, if (30) or (31) or

((32) or (33)

−10|vR|, else

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(34)

Clearly, a positive reward will be given to the robot if it reaches its
goal and it will receive a large negative reward if it collides with
anything or be stray from its companion. Otherwise, the robot will
receive an intermediate reward −10|vR|, which penalises the robot
for its rotational velocity to encourage a smoother trajectory with
less turning behaviours.

4 Role playing learning

In this section, we described the RPL scheme to learn an effective
navigation policy Pu(a|o) for SCN in an efficient data-driven
manner. The core idea is to transform the crowd trajectories data
collected from real world into a simulative and dynamic
navigation environment, where the robot can play itself as a virtual
pedestrian and iteratively improve the performance of Pu(a|o) via
PO-TRPO.

Consider a set of simulative navigation environment
E = {E1, . . . , Ej, . . . }. Each environment Ej = (Tj, Mj) contains
a set of pedestrian trajectories Tj = {rk0:Tk } and a binary map Mj

that annotates the 2D Cartesian coordinates of obstacles/occupied
space in the environment. With E, the abstract process of RPL is
described by the following pseudo-codes in Algorithm 1 (see Fig. 3).

Companion synthesisation in non-SCN mode: As described
in Algorithm 1 (Fig. 3), RPL actually incorporates two different
navigation scenarios: the SCN proposed in this paper and the
traditional social navigation scenario, where the robot has
no human companion. This helps develop a navigation policy
adaptable to both situations, with no restrictive assumption on
the existence of companion. Particularly, the companion position
vector pcom and its observation p̂com are synthesised, with
dcom = d̂com = 0.8 for every time step while fcom = fg . It is clear

that the synthesised pcom is equivalent to the situation where the
companion is travelling non-distractively along the robot with a
constant distance and guarantee that termination conditions (31)
and (33) are always false.

On the other hand, in SCN mode, the companion is assigned with
a truncated trajectory rkT0:Tk such that the initial robot-companion
distance is sufficiently large.

In this paper, we construct a deep policy NN to parameterise
the navigation policy Pu, whose structure is shown in Fig. 4. The
policy network Pu is to be trained with the trust region policy
optimisation (TRPO) [40] method. However, the original TRPO
method is derived based on fully observable MDP, which cannot

Fig. 3 Algorithm 1: role playing learning

Fig. 4 Structure of the deep policy network Pu. At time ti, the observation

vector oi is input to the feature network, which is a feed-forward multi-layer

perceptron. The output of the feature network is then fed to a LSTM network

[51], a recurrent network for aggregation of the information collected

through the navigation process. The LSTM network’s outputs are assigned

as the mean vector m [R
2 of the diagonal Gaussian unit N (m, S) on the

right. The covariance matrix S = s2
I [R

2×2, however, is independent of

oi and it is designed to be gradually decreasing during training and fixed

during tests and experiments. Finally, the actions ai = [vT , VR] are drawn

according to N (m, S)

CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 1, pp. 49–58

53This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongqing University of Technology under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

be directly applied to our problem due to the imperfect observation
in our formulation and practice. Thus, we proposed to extend the
original TRPO algorithm as PO-TRPO, which will be described in
the following subsections.

4.1 Trusted region policy optimisation

The TRPO [40] algorithm is an effective on-policy optimisation
method for large non-linear policies and tends to give monotonic
improvement during the iterative optimisation process. To be
specific, a fully observable MDP is considered by TRPO and
therefore the policy to be optimised is formulated as P∗

j(a|s),
where j is the parameter vector of the policy P∗. Note that, P∗

j(a|s)
determines the action a directly from the true state s, which differs
from our observation-based policy Pu(a|o). Let us consider the
following standard definitions of the state-action value function
Qj(si, ai), the value function Vj(si) and the advantage function
Aj(si, ai):

Qj(si, ai) = Esi+1 ,ai+1 ,...

∑

1

l=0

glr(si+l)

[]

, (35)

Vj(si) = Eai ,si+1 ,...

∑

1

l=0

glr(si+l)

[]

, (36)

Aj(si, ai) = Qj(si, ai)− Vj(si) (37)

where

ai≏P∗
j(a|s), si+1 = F(si, ai) (38)

In addition, define nj as the discounted visitation frequencies

nj(s) = p(s0 = s)+ gp(s1 = s)+ g2p(s2 = s)+ · · · (39)

where s0≏p0, ai and si≥1 are generated according to P
∗
j and F. Let j

−

denote the old parameters in last iteration. TRPO proposes to
optimise the parameters j iteratively regarding the following
objective function:

maximise Es≏nj− ,a≏q∗

P∗
j (a|s)

q(a|s)
Aj− (a|s)

[]

(40)

subject to Es≏nj−
[DKL(P

∗
j− (· |s)‖P

∗
j(· |s))] ≤ e (41)

where q∗(a|s) is the importance sampling distribution and
DKL(P

∗
j−‖P

∗
j) is the Kullback–Leibler divergence between the old

and current policies.

4.2 Partially observable TRPO

As mentioned, our navigation problem is considered as a POMDP.
The policy Pu(ai|oi) depends on the observation oi instead of the
true state. Therefore, we write the objective function (40) and the
constraint (41) as

maximise Es≏nu− ,a,o≏q

∑

o

b(o|s)Pu(a|o)

q(a, o|s)
Au− (a|s)

⎡

⎣

⎤

⎦ (42)

subject to Es≏nu−
[DKL(Pu− (· |o)‖Pu(· |o))] ≤ e (43)

For PO-TRPO, samples are collected by executing the old
policy Pu− (a|o) to generate a set of trajectories, such as
s0, o0, a0, s1, o1, a1, . . . , sT−1, oT−1, aT−1, sT . Therefore

q(ai, oi|si) = b(oi|si)Pu− (ai|oi) (44)

where i = 0, . . . , T − 1.

Next, for a trajectory s0:T , we use the generalised advantage
estimation (GAE) [39] to construct an empirical estimation Â of
the advantage function Au− (ai|si) as the following:

Âi =
∑

T−i

l=0

(gl)ldVi+l (45)

where

dVi = ri + gV̂z(si+1)− V̂z(si) (46)

and V̂z(si) is the estimation of the value function (36) with
parameters z (and z− being the old parameters). By collecting a
set of K trajectories {sk0:Tk , o

k
0:Tk

, ak0:Tk }
K
k=1, V̂z is obtained by

solving the following constrained regression problem [39]:

minimise J1z =
∑

K

k=1

∑

Tk

i=0

‖V̂z(s
k
i)−

∑

Tk−i

l=0

glrki+l‖
2 (47)

subject to
∑

K

k=1

∑

Tk

i=0

‖Vz(s
k
i)− Vz− (s

k
i)‖

2J1z−
≤ e1 (48)

Finally, as the conditional observation probability distribution b(o|s)
is independent of parameters u and time, we obtain an estimation of
the objective function (42) and the constraints (43) by replacing the
expectations with sample averages as

maximise Ju =
1

∑K
k=1 Tk

∑

K

k=1

∑

Tk

i=0

Pu(a
k
i |o

k
i)

Pu− (a
k
i |o

k
i)
Âk
i (49)

subject to D̄
u−

KL(Pu− , Pu) ≤ e (50)

where

D̄
u−

KL(Pu− , Pu) =
1

∑K
k=1 Tk

∑

K

k=1

∑

Tk

i=0

DKL(Pu− (· |o
k
i)‖Pu(· |o

k
i))] (51)

which has the same form as the one obtained in [39], except that the
policy Pu(a|o) is conditioned on observation o instead.

Finally, the constrained optimisation problem described in (49)
and (50) is solved by conjugate gradient algorithm [52]. To
summarise, the pseudo-code for PO-TRPO update in Algorithm 1
(Fig. 3) is given as below.

Algorithm 2: PO-TRPO
Compute the estimated advantages Âi for all time steps using GAE

with the estimated value function V̂z.
Update u with objective function (49) and constraints (50)
Update z with objective function (47) and constraints (48)

5 Simulation

As a data-driven approach, our DNN policy requires a massive
amount of data to learn the SCN behaviour. In this section, we
describe how to construct a simulative environment according to
the proposed RPL scheme. Particularly, the environments, the
DNN policy and the PO-TRPO algorithm (Algorithm 2) are
developed under the framework of RLLAB [53]. We make use of
trajectories of interacting pedestrians collected from five different
data sets, which includes the ETH and Hotel video clips from the
ETH Walking Pedestrians (EWAP) [11], the motion capture (MC)
data set from [14], as well as the Zara and UCY video clips from
[32]. Note that, the Zara and UCY data sets have multiple subsets:
Zara01, Zara02, Zara03, UCY01 and UCY03. Thus, there are

CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 1, pp. 49–58

54 This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongqing University of Technology under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

totally eight different RPL environments, i.e. E = {E1, . . . , E8}. The
details of these eight environments are summarised in Table 1.

Each trajectory in these environment provides the ID and a
sequences of 2D Cartesian positions of a pedestrian with a
sampling period Dt = 0.1 s. In addition, eight binary grid maps
M1, . . . , M8 representing the occupied space/static obstacles are
given. However, these maps are kept unknown to the robot
throughout training and evaluation. They are only used to simulate
the robot’s perception to the environment as the state pobs and
observation p̂obs. Without loss of generality, we use the ETH data
set as the evaluation environment and all other data sets in Table 1
as training environments. In other words, the learned policy’s
performance will be assessed in an RPL environment that is
excluded during training, which reflects whether it can properly
generalise to uncovered situations.

As some of the trajectories in these environments are of people
who were wandering or remained approximately stationary, they
are excluded from the candidates of the robot’s companion but
will still be considered as pedestrians when the robot is navigating
in the same environment.

We use a feed-forward NN with two hidden layers as the feature
network in our NN policy, containing 256 and 64 Tanh units,
respectively. Its output is then fed to a LSTM network with 64
units. The variance of the Gaussian output unit s is chosen to be
linearly decaying from 0.5 to 0.05 in 100 training iterations, which
effectively encourages exploration during the early stage of
learning and ensures convergence of the navigation policy. For
GAE, a three-layer feed-forward network with 256, 64 and 16
Tanh units are used, with g = 0.995 and l = 0.96. The update
step size for policy network is adaptively chosen as e = 0.01/s.
For GAE update, a fixed step size e1 = 0.1 is used. The update
batch size (Batch_size in Algorithm 1 (Fig. 3)) is 150,000.

In RPL, we consider at most three pedestrians (i.e. np = 3). Thus,
the state pped and observation p̂ped will only describe the three closest
pedestrians and omit the others. For the situation where less than
three pedestrians are perceived, dummy static pedestrians will be
created in the remote corner of the environment so as to maintain
the dimensions of pped and p̂ped.

Considering a Kobuki Turtlebot 2 with a Hokuyo URG-04LX
laser range finder [50] mounted on its top, we specify the sensor
limitation of the robot in simulation as follows:

f+
ped = f+

obs =
2p

3
(52)

f−
ped = f−

obs = −
2p

3
(53)

The measurement noises d̃ped, d̃com and d̃obs are modelled

by zero-mean Gaussian N (0, s2
ped), N (0, s2

com) and N (0, s2
obs)

with their variances specified as follows:

sped = 0.01d
j
ped (54)

scom = 0.01djcom (55)

sobs = 0.01d
j
obs (56)

Finally, the maximum translational and rotational velocities are
assigned as 0.7 m/s and (p/3)rad/s, i.e. 0 ≤ vT ≤ 0.7 and
|vR| ≤ (p/3) and Dt = 0.1. An example of our RPL environment
constructed from the ETH data set is illustrated in Fig. 5.

5.1 Results

The policy network is trained with the data from RPL environments
except for the held-out ETH environment. The policy is trained
for around 300 iterations. To validate benefits and necessity of
using importance sampling in our PO-TRPO algorithm to train
the policy, a policy network with gradients estimated by Monte
Carlo sampling has been trained for comparison. Particularly,
in implementation, the likelihood ratio in (49) is fixed to be
1 through the whole experiment and therefore the original
importance sampling is reduced to a Monte Carlo sampling
method. Other parameters and training configurations are
unchanged and the resulted algorithm is called MC-PO-TRPO. To
compare the performance of these two methods, the average
discounted returns obtained in each iteration are computed as a
measurement of how well the training has progressed. Fig. 6
shows their curves for policies trained by PO-TRPO and
MC-PO-TRPO, respectively.

From Fig. 6, it is clear that the policy network trained by
MC-PO-TRPO algorithm fails to learn an effective SCN policy in
more than 300 iterations. There is little improvement of its average
discounted returns, which tells how often the agent succeeds in an
SCN episode. On the contrary, the average discounted returns of
the policy trained by PO-TRPO quickly rise to a much higher
level in <100 epochs. This observation clearly demonstrates the
advantages of our importance-sampling-based PO-TRPO

Table 1 Details of the 8 RPL environments

Name ETH Hotel MC Zara01

no. of trajectories 365 420 324 148

Fig. 5 Illustrative example of our RPL simulative environment. The black

curve represents the trajectory of the robot navigating towards its goal (the

red dot). The yellow curve denotes the trajectory of the robot’s companion.

Besides, there are a number of blue curves representing the pedestrians

perceived by the robot and the green lines denote the fences around the

entrance of the university (bottom centre). Note that, all trajectories of

pedestrians are not synthesised but captured from the video. Thus, the

robot can be thought as playing a role as an extra person in an realistic

environment
a Real-world environment

b Simulative environment for RPL

Fig. 6 Average discounted returns of policies trained by PO-TRPO and

MC-PO-TRPO

CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 1, pp. 49–58

55This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongqing University of Technology under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

algorithm, which estimates a gradient of parameters u that effectively
improves the policy network’s performance in terms of the SCN
objectives formulated in (34).

A more detailed evaluation of our policy’s performance is
conducted against a planner based on RVO [8], where the robot,
its companion and the surrounding pedestrians are treated agents.
In every time steps, the positions and velocities of all agents are
given to the planner. Note that, for fair comparison, the agents’
positions are subject to noise described in (54) and (55). For
observations to obstacles, the planner is assumed to have full and
perfect knowledge as required in the original RVO algorithm.
With this protocol, the robot’s position is updated according to the
planner’s output and updates the positions of the other agents
according to their own trajectories in the RPL environments. The
same termination conditions in Section 3 are applied to the robot
directed by the RVO-based planner to determine whether the robot
has conducted an successful navigation. For both of our policy
and the RVO-based planner, 300 trials are conducted in the
evaluation environment and compute the rates (in percentages) of
different terminal conditions (RG: the robot reaches the goal
successfully; HC/HP/HO: the robot hits a companion/pedestrian/
obstacle; and LC: the robot loses its companion). The performance
statistics of our policy and the RVO-based planner in SCN
scenarios are listed in Table 2. As for computational efficiency in
simulation, both methods can operate at more than 100 Hz, which
is much faster than the sampling frequency (10 Hz). We keep the
sampling frequency for simulations as low as 10 Hz to maintain
the consistency between settings of simulations and experiments,
which is to be elaborated in the next section.

It can be seen from Table 2 that our policy performs much better
than the RVO-based planner in SCN. The RVO-based planner has a
much lower success rate (29.7%) while its rate of LC is 47%,
suggesting that it frequently losses its companion in SCN. Clearly,
this is due to the fact that RVO is in nature a collision avoidance
algorithm. Thus, it simply takes the robot’s companion as another
normal agent and the robot tends to stay far behind its companion
to avoid collision instead of actively following it. On the contrary,
our policy achieves a much higher success rate (83.6%). This
indicates that it learns to effectively balance the objectives of SCN
so that the robot is able to reach the prescribed goal while
maintaining its distance to its companion and avoiding collision
with other agents in the environment.

In addition to SCN, the scenarios without companion are also
tested, which, as analysed in the previous sections, reduces to the
traditional social navigation scenarios. The comparative results are
shown in Table 3.

For situations without companion, our policy still outperforms the
RVO-based planner with higher success rate (85 versus 80%) and
lower HP rate (14.7 versus 18%).

Finally, it is worth noting that the RVO-based planner requires
velocities of the companion/pedestrians and an accurate global
map of the static obstacles. Conversely, our policy depends only
on position measurements that are directly accessible from the
robot’s onboard sensors, which is therefore much simpler and
more practical.

6 Experiments

In experiments, we assess the performance of our developed
navigation policy by comparing it with humans in the same
scenarios. Particularly, a robot and a human are to repeat each
specific navigation scenario for ten times, respectively. Then, the
following two metrics are calculated:

(i) Average minimum distance to the pedestrians (D̄ped): the
average of the minimum distance between the robot/compared
human to other pedestrians throughout a trajectory.
(ii) Average maximum distance to the companion (D̄com): the
average of the maximum distance between the robot/compared
human to its/his companion throughout a trajectory.

We use the same mobile platform (a synchron-drive Turtlebot 2
with a Kobuki base) and the same laser range finder (Hokuyo
URG-04LX) simulated in last section. For pedestrian detection and
localisation, we adopt the robot operation system (ROS)-
compatible leg tracker in [54]. We use an ultra-wideband (UWB)
indoor positioning system to localise the companion and the
navigation goal, which can then be easily mapped to the
observations p̂com and dg , fg based on the odometry of the robot.
Finally, a laptop is placed onboard as the processing unit and the
policy is operated with a period of 0.1 s. The experiments are
conducted in a narrow corridor with width of 1.56 m as shown in
Fig. 7, which is a typical scenario that requires pedestrians to
navigate cooperatively.

6.1 Scenario 1: traditional social navigation

In this subsection, we examine our method’s performance in
traditional social navigation scenario. Particularly, the robot is
required to pass the corridor with two oncoming pedestrians and
arrive at a goal that is 7 m ahead. In addition, a control experiment
of three humans (one as the compared human and the other two as
pedestrians) is conducted in the same space. The metric D̄ped is
computed. Example trajectories of the robot and the human control
are shown in Fig. 8. In the robotic experiments, the trajectories of
pedestrians are obtained from the robot’s laser range finder while
the robot’s trajectory is based on its own odometry sensor. On the
other hand, all trajectories in the human control experiments are
captured using the UWB localisation system.

From Fig. 8, it is clear that the robot with our policy is able to
understand human’s cooperative behaviour for collision avoidance
and navigate in an appropriate manner such that both itself and the
other two pedestrians can successfully pass through the corridor,
specifically, when observing the two pedestrians (blue and purple)
4 m ahead. The robot started to approach the wall on its left side

Table 2 Rates (in percentages) of different terminal conditions of our
policy and RVO-based planner in SCN scenarios

Terminal condition RG LC HC HP HO

our policy 83.6 3.3 4.3 8.7 0
RVO 29.7 47 0.3 23 0

Table 3 Rates (in percentages) of different terminal conditions of our
policy and RVO-based planner in traditional social navigation scenarios

Terminal condition RG HP HO

our policy 85 14.7 0.3
RVO 80 18 2

Fig. 7 Narrow corridor where experiments are performed

CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 1, pp. 49–58

56 This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongqing University of Technology under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

so as to create free space on the right for the pedestrians to smoothly
walk through. By comparing both figures in Fig. 8, we can see that
the robot is as proactive as human since both black trajectories in
Figs. 8a and b started to make space for the oncoming pedestrians
at the early stage of cooperative avoidance process. As for the
performance metrics, the average minimal distance to pedestrians
for our robot is D̄ped = 0.35 m. Although it is smaller than that of
the human control experiments (D̄ped = 0.56m), this value still
indicates a safe and decent navigation behaviour of our robot as its
radius is only 0.17 m.

6.2 Scenario 2: SCN

In this subsection, the scenario of SCN is studied. A human
companion initially standing in front of the robot will start to walk
through the same corridor while another pedestrian is passing from
the other end. As described in the previous sections, the robot with
our policy should closely navigate with its companion and avoid
the oncoming pedestrian cooperatively. An additional metric D̄com

is used to evaluate the performance of our policy by comparing
with the statistics obtained from another ten human control
experiments. Example trajectories are shown in Fig. 9 and the
performance metrics D̄ped and D̄com are summarised in Table 4.

As shown in Fig. 9 and Table 4, the robot is able to achieve both
objectives of SCN. On one hand, it is effectively engaged into the
joint collision avoidance process. The resulted behaviour is similar
to that observed in the last subsection and the robot even has a
slightly larger D̄ped. On the other hand, the average maximum
distance D̄com is 1.05 m, which is within the limit (2 m) we
specified in the learning process and nearly the same as that of the
compared human, showing that the robot can actively navigate
along with its companion instead of deviating to other areas or
lagging itself behind. This shows that the robot driven by our
policy is able to understand the pace of its companion and achieve
a similar sense of companionship in terms of distance.

In sum, the above results demonstrate the practical efficacy of our
methods for both the traditional social navigation and the more
complicated SCN scenarios. It proves that the policy learned from
our RPL simulative environment is transferable to uncovered
real-world situations.

7 Conclusions

In this paper, the problem of SCN has been investigated and
formulated under a POMDP framework, with explicit
considerations of the limitation and inaccuracy of mobile robots’
onboard sensors. The PO-TRPO algorithm has been proposed for
optimisation of navigation policies. The RPL scheme has been
developed to enable efficient and safe RL of navigation policies by
mirroring a large amount of real-world pedestrian trajectories into
simulative environments. Comparative simulation and experiment
studies have demonstrated the efficacy and superiority of our
policy in both SCN and traditional social navigation scenarios.

8 References

[1] Thrun, D.F.W.B.S., Fox, D., Burgard, W.: ‘The dynamic window approach to

collision avoidance’, IEEE Trans. Robot. Autom., 1997, 4, p. 1

[2] Hwang, Y.K., Ahuja, N.: ‘A potential field approach to path planning’, IEEE

Trans. Robot. Autom., 1992, 8, (1), pp. 23–32

[3] Ge, S.S., Cui, Y.J.: ‘New potential functions for mobile robot path planning’,

IEEE Trans. Robot. Autom., 2000, 16, (5), pp. 615–620

[4] Trautman, P., Krause, A.: ‘Unfreezing the robot: navigation in dense, interacting

crowds’. 2010 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),

Taipei, Taiwan, 2010, pp. 797–803

Table 4 Performance metrics of the robot and human controls in SCN
scenarios

D̄ped, m D̄com, m

robot 0.49 1.05
compared human 0.37 1

Name Zara02 Zara03 UCY01 UCY03

no. of trajectories 204 137 413 434

Fig. 8 Comparison between the robot with our policy and human control

experiment in a social navigation scenario
a Trajectories of the robot (moving from left to right) and other two pedestrians (moving

from right to left)

b Human control experiment in a similar navigation scenario. The black trajectory is

from left to right and the other two are from right to left

Fig. 9 Comparison between the robot with our policy and human control

experiment in a SCN scenario
a Trajectories of the robot and its companion (moving from left to right) and a pedestrian

(moving from right to left)

b Human control experiment in a similar SCN. The black (compared human) and orange

(companion) trajectories are from left to right and the blue (pedestrian) trajectory is from

right to left

CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 1, pp. 49–58

57This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongqing University of Technology under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

[5] Trautman, P., Ma, J., Murray, R.M., et al.: ‘Robot navigation in dense human

crowds: statistical models and experimental studies of human–robot

cooperation’, Int. J. Robot. Res., 2015, 34, (3), pp. 335–356

[6] Helbing, D., Molnar, P.: ‘Social force model for pedestrian dynamics’, Phys. Rev.

E, 1995, 51, (5), p. 4282

[7] Helbing, D., Farkas, I., Vicsek, T.: ‘Simulating dynamical features of escape

panic’, Nature, 2000, 407, (6803), pp. 487–490

[8] Van den Berg, J., Guy, S.J., Lin, M., et al.: ‘Reciprocal n-body collision

avoidance’. Robotics Research, Lucerne, Switzerland, 2011, pp. 3–19

[9] Van den Berg, J., Abbeel, P., Goldberg, K.: ‘Lqg-mp: optimized path planning for

robots with motion uncertainty and imperfect state information’, Int. J. Robot.

Res., 2011, 30, (7), pp. 895–913

[10] Van den Berg, J., Lin, M., Manocha, D.: ‘Reciprocal velocity obstacles for

real-time multi-agent navigation’. IEEE Int. Conf. on Robotics and

Automation, Pasadena, USA, 2008, pp. 1928–1935

[11] Pellegrini, S., Ess, A., Schindler, K., et al.: ‘You’ll never walk alone: modeling

social behavior for multi-target tracking’. 2009 IEEE 12th Int. Conf. on

Computer Vision, Kyoto, Japan, 2009, pp. 261–268

[12] Yamaguchi, K., Berg, A.C., Ortiz, L.E., et al.: ‘Who are you with and where are

you going?’. 2011 IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), Colorado Springs, USA, 2011, pp. 1345–1352

[13] Kuderer, M., Kretzschmar, H., Sprunk, C., et al.: ‘Feature-based prediction of

trajectories for socially compliant navigation’. Robotics: Science and Systems,

Sydney, Australia, 2012

[14] Kretzschmar, H., Spies, M., Sprunk, C., et al.: ‘Socially compliant mobile robot

navigation via inverse reinforcement learning’, Int. J. Robot. Res., 2016, 35, (11),

doi: 10.1177/0278364915619772

[15] Kim, B., Pineau, J.: ‘Socially adaptive path planning in human environments

using inverse reinforcement learning’, Int. J. Soc. Robot., 2016, 8, (1), pp. 51–66

[16] Bicchi, A., Fagiolini, A., Pallottino, L.: ‘Towards a society of robots’, IEEE

Robot. Autom. Mag., 2010, 17, (4), pp. 26–36

[17] Gross, H.-M., Schroeter, C., Mueller, S., et al.: ‘Progress in developing a socially

assistive mobile home robot companion for the elderly with mild cognitive

impairment’. 2011 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), San Francisco, USA, 2011, pp. 2430–2437

[18] Wang, H., Liu, X.P.: ‘Adaptive shared control for a novel mobile assistive robot’,

IEEE/ASME Trans. Mechatronics, 2014, 19, (6), pp. 1725–1736

[19] Argall, B.D., Chernova, S., Veloso, M., et al.: ‘A survey of robot learning from

demonstration’, Robot. Auton. Syst., 2009, 57, (5), pp. 469–483

[20] Abbeel, P., Ng, A.Y.: ‘Apprenticeship learning via inverse reinforcement

learning’. Proc. of the Twenty-first Int. Conf. on Machine Learning, Alberta,

Canada, 2004, p. 1

[21] Ziebart, B.D., Maas, A.L., Bagnell, J.A., et al.: ‘Maximum entropy inverse

reinforcement learning’. Association for the Advancement of Artificial

Intelligence, Palo Alto, USA, 2008, pp. 1433–1438

[22] Ratliff, N.D., Bagnell, J.A., Zinkevich, M.A.: ‘Maximum margin planning’. Proc.

of the 23rd Int. Conf. on Machine Learning, Pittsburgh, USA, 2006, pp. 729–736

[23] Ziebart, B.D., Ratliff, N., Gallagher, G., et al.: ‘Planning-based prediction for

pedestrians’. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, St. Louis,

USA, 2009, pp. 3931–3936

[24] Henry, P., Vollmer, C., Ferris, B., et al.: ‘Learning to navigate through crowded

environments’. 2010 IEEE Int. Conf. on Robotics and Automation (ICRA),

Anchorage, USA, 2010, pp. 981–986

[25] Vernaza, P., Bagnell, D.: ‘Efficient high dimensional maximum entropy

modeling via symmetric partition functions’. Advances in Neural Information

Processing Systems, Lake Tahoe, USA, 2012, pp. 575–583

[26] Kitani, K.M., Ziebart, B.D., Bagnell, J.A., et al.: ‘Activity forecasting’. European

Conf. on Computer Vision, Florence, Italy, 2012, pp. 201–214

[27] Choi, J., Kim, K.-E.: ‘Map inference for Bayesian inverse reinforcement

learning’. Advances in Neural Information Processing Systems, Granada,

Spain, 2011, pp. 1989–1997

[28] Kim, K., Lee, D., Essa, I.: ‘Gaussian process regression flow for analysis of

motion trajectories’. 2011 IEEE Int. Conf. on Computer vision (ICCV),

Barcelona, Spain, 2011, pp. 1164–1171

[29] Alahi, A., Goel, K., Ramanathan, V., et al.: ‘Social lstm: human trajectory

prediction in crowded spaces’. Proc. of the IEEE Conf. on Computer Vision

and Pattern Recognition, Las Vegas, USA, 2016, pp. 961–971

[30] Robicquet, A., Sadeghian, A., Alahi, A., et al.: ‘Learning social etiquette: human

trajectory understanding in crowded scenes’. European Conf. on Computer

Vision, Amsterdam, The Netherlands, 2016, pp. 549–565

[31] Johansson, A., Helbing, D., Shukla, P.K.: ‘Specification of the social force

pedestrian model by evolutionary adjustment to video tracking data’, Adv.

Complex Syst., 2007, 10, (supp02), pp. 271–288

[32] Lerner, A., Chrysanthou, Y., Lischinski, D.: ‘Crowds by example’, Comput.

Graph. Forum, 2007, 26, (3), pp. 655–664

[33] Helbing, D., Johansson, A.: ‘Pedestrian, crowd and evacuation dynamics’.

Encyclopedia of Complexity and Systems Science, 2009, pp. 6476–6495

[34] Müller, J., Stachniss, C., Arras, K., et al.: ‘Socially inspired motion planning for

mobile robots in populated environments’. Proc. of Int. Conf. on Cognitive

Systems, Karlsruhe, Germany, 2008

[35] Mehta, D., Ferrer, G., Olson, E.: ‘Autonomous navigation in dynamic social

environments using multi-policy decision making’. 2016 IEEE/RSJ Int. Conf.

on Intelligent Robots and Systems (IROS), Deajeon, South Korea, 2016,

pp. 1190–1197

[36] Foka, A.F., Trahanias, P.E.: ‘Probabilistic autonomous robot navigation in

dynamic environments with human motion prediction’, Int. J. Soc. Robot.,

2010, 2, (1), pp. 79–94

[37] Seder, M., Petrovic, I.: ‘Dynamic window based approach to mobile robot motion

control in the presence of moving obstacles’. 2007 IEEE Int. Conf. on Robotics

and Automation, Roma, Italy, 2007, pp. 1986–1991

[38] Fiorini, P., Shiller, Z.: ‘Motion planning in dynamic environments using velocity

obstacles’, Int. J. Robot. Res., 1998, 17, (7), pp. 760–772

[39] Schulman, J., Moritz, P., Levine, S., et al.: ‘High-dimensional continuous control

using generalized advantage estimation’, arXiv preprint arXiv:1506.02438, 2015

[40] Schulman, J., Levine, S., Moritz, P., et al.: ‘Trust region policy optimization’,

CoRR, abs/1502.05477, 2015

[41] LeCun, Y., Bengio, Y., Hinton, G.: ‘Deep learning’, Nature, 2015, 521, (7553),

pp. 436–444

[42] Pfeiffer, M., Schaeuble, M., Nieto, J., et al.: ‘From perception to decision: A

data-driven approach to end-to-end motion planning for autonomous ground

robots’, arXiv preprint arXiv:1609.07910, 2016

[43] Chen, Y.F., Liu, M., Everett, M., et al.: ‘Decentralized non-communicating

multiagent collision avoidance with deep reinforcement learning’, arXiv

preprint arXiv:1609.07845, 2016

[44] Zhu, Y., Mottaghi, R., Kolve, E., et al.: ‘Target-driven visual navigation in indoor

scenes using deep reinforcement learning’, arXiv preprint arXiv:1609.05143,

2016

[45] Choi, D.-G., Bok, Y., Kim, J.-S., et al.: ‘Extrinsic calibration of 2-d lidars using

two orthogonal planes’, IEEE Trans. Robot., 2016, 32, (1), pp. 83–98

[46] Miller, L.M., Murphey, T.D.: ‘Optimal planning for target localization and

coverage using range sensing’. 2015 IEEE Int. Conf. on Automation Science

and Engineering (CASE), Gothenburg, Sweden, 2015, pp. 501–508

[47] Endres, F., Hess, J., Sturm, J., et al.: ‘3-d mapping with an rgb-d camera’, IEEE

Trans. Robot., 2014, 30, (1), pp. 177–187

[48] Foix, S., Alenya, G., Andrade-Cetto, J., et al.: ‘Object modeling using a tof

camera under an uncertainty reduction approach’. 2010 IEEE Int. Conf. on

Robotics and Automation (ICRA), Anchorage, USA, 2010, pp. 1306–1312

[49] Liu, M., Siegwart, R.: ‘Topological mapping and scene recognition with

lightweight color descriptors for an omnidirectional camera’, IEEE Trans.

Robot., 2014, 30, (2), pp. 310–324

[50] Kneip, L., Tâche, F., Caprari, G., et al.: ‘Characterization of the compact hokuyo

urg-04lx 2d laser range scanner’. IEEE Int. Conf. on Robotics and Automation,

Kobe, Japan, 2009, pp. 1447–1454

[51] Hochreiter, S., Schmidhuber, J.: ‘Long short-term memory’, Neural Comput.,

1997, 9, (8), pp. 1735–1780

[52] Nocedal, J., Wright, S.J.: ‘Numerical Optimization’ (Springer-Verlag, New York,

1999)

[53] Duan, Y., Chen, X., Houthooft, R., et al.: ‘Benchmarking deep reinforcement

learning for continuous control’, arXiv preprint arXiv:1604.06778, 2016

[54] Leigh, A., Pineau, J., Olmedo, N., et al.: ‘Person tracking and following with 2d

laser scanners’. 2015 IEEE Int. Conf. on Robotics and Automation (ICRA),

Seattle, USA, 2015, pp. 726–733

CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 1, pp. 49–58

58 This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongqing University of Technology under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

	1 Introduction
	2 Related work
	3 Problem formulation
	4 Role playing learning
	5 Simulation
	6 Experiments
	7 Conclusions
	8 References

