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Abstract: Sparse representation has been widely applied to multi-focus image fusion in recent years. As a key step, the
construction of an informative dictionary directly decides the performance of sparsity-based image fusion. To obtain
sufficient bases for dictionary learning, different geometric information of source images is extracted and analysed.
The classified image bases are used to build corresponding subdictionaries by principle component analysis. All built
subdictionaries are merged into one informative dictionary. Based on constructed dictionary, compressive sampling
matched pursuit algorithm is used to extract corresponding sparse coefficients for the representation of source images.
The obtained sparse coefficients are fused by Max-L1 fusion rule first, and then inverted to form the final fused image.
Multiple comparative experiments demonstrate that the proposed method is competitive with other the state-of-the-art

fusion methods.

1 Introduction

Cloud computing provides more powerful computation resources
to process various images [1-4]. Owing to the limited depth-of-focus
of optical lenses, the blurred objects always appear in the captured
images. It is difficult to capture all-in-focus image in one scene
[5, 6]. As the development of image processing techniques, multi-
focus fusion is widely used to combine complementary information
from multiple out-of-focus images.

In this decade, multi-focus image fusion is a hot research topic,
and many related methods have been proposed and implemented
[5-8]. Multi-scale transform (MST)-based methods are widely
used in multi-focus image fusion.

Among image pixel transformation methods, wavelet transform
[9, 10], shearlet [11, 12], curvelet [13], dual tree complex wavelet
transform [14, 15], and non-subsampled controulet transform
(NSCT) [16] are commonly used to represent image features in
MST-based methods. In the transformation process, image features
are resolved into MST bases and coefficients. The fusion process
of MST-based methods consists of two steps. One is the fusion
of coefficients, and the other is the transformation of fused
coefficients. Different methods have their own focuses, thus it is
difficult to represent all features of source images in a single method.

In recent years, sparse representation (SR)-based image fusion has
resolved the limitations of MST-based method. Compared with
MST-based method, the fusion process of SR-based method is
similar. However, SR-based method usually uses trained dictionary
to adaptively represent image features. Thus, SR-based method
can better describe detailed information of images to reinforce the
effect of fused image. As the most commonly used method,
K-means generalised singular value decomposition (KSVD)
algorithm is applied to SR-based image fusion [17-19]. Yin et al.
[17] proposed a KSVD-based dictionary learning method and a
hybrid fusion rule to improve the quality of multi-focus image
fusion. Nejati et al. [18] also proposed a multi-focus image fusion
method based on KSVD. He optimised the learning process of
KSVD to enhance the performance of multi-focus image fusion.
According to image features, Kim et al. [20] proposed a
clustering-based dictionary learning method to train a more
informative dictionary. The trained dictionary can better describe
image features, and improve the fusion performance. Zhang
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introduced a non-negative SR model to improve the detailed
performance in image fusion [21]. Li ef al. [22] proposed a group
dictionary learning method to extract different features from
different image feature groups. This method can improve the
accuracy of SR-based fusion, and obtain better fusion effect.
Ibrahim et al. [23] used robust principal component analysis to
build a compact dictionary for SR-based multi-focus image fusion.
The previously introduced SR-based methods have showed the
state-of-the-art performance in multi-focus image fusion these
years. However, the aforementioned methods do not consider
morphological information of image features in dictionary learning
processes.

This paper analyses morphological information of source images
to do dictionary learning. Based on the morphological similarity, a
different type of image information is processed, respectively, to
increase the accuracy of SR-based dictionary learning. Geometric
information, such as edge and sharp line information, is extracted
from source image blocks, and classified into different
image-block groups to construct the corresponding dictionaries by
sparse coding.

There are two main contributions in this paper as follows:

(i) Morphological information of source images is classified
into different image patch groups to train corresponding
dictionaries, respectively. Each classified image patch
group contains more detailed morphological information of source
images.

(i) It proposes a principle component analysis (PCA)-based
method to construct an informative and compact dictionary.
PCA method is employed to reduce the dimension of each image
patch group and obtain informative image bases. The informative
feature of trained dictionary not only ensures the accurate
description of source images, but also decreases the computation
cost of SR.

The rest sections of this paper are structured as follows: Section 2
proposes the geometric similarity-based dictionary learning method
and SR-based multi-focus image fusion framework; Section 3
compares and analyses the results of comparative experiments; and
Section 4 concludes this paper.
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2 SR-based image fusion framework
2.1 Dictionary learning in image fusion

For dictionary learning, it is important to build an over-complete
dictionary that not only has a relatively small size, but also
contains the key information of source images.

KSVD [19], online dictionary learning [24], and Stochastic
gradient descent [25] are popular dictionary learning methods.
This paper applies PCA to dictionary learning. The learned
dictionary of PCA is compared with corresponding dictionary
of KSVD to show the advantages of PCA-based solution. A good
over-complete dictionary is important for SR-based image
fusion. Unfortunately, it is difficult to obtain such a small and
informative one. In Aharon’s solution [26], KSVD was proposed
to train source image patches and adaptively update corresponding
dictionary by SVD operations for obtaining an over-complete
dictionary. KSVD used extracted image patches from globally and
adaptively trained dictionaries during the dictionary learning
process.

Clustering-based dictionary learning solution was first introduced
to image fusion by Kim er al. [20]. Based on local structure
information, similar patches from different source images were
clustered. The subdictionary was built by analysing a few
components of each cluster. To describe structure information of
source images in an effective way, it combines the learned
subdictionaries to obtain a compact and informative dictionary.

2.2 Construction of geometric similarity-based dictionary

Smooth, stochastic, and dominant orientation patches as three geo-
metric types used in single image super-resolution (SISR) [27-29]
are used to classify source images, and describe structure, texture,
and edge information, respectively. Three subdictionaries are
learned from corresponding image patches. PCA method is used to
extract important information only from each cluster for obtaining
corresponding compact and informative subdictionary. All learned
subdictionaries are combined to form a compact and informative dic-
tionary for image fusion [20, 30, 31].

Fig. 1 shows the proposed two-step geometric solution. First, the
input source images /; to , are split into several small image blocks
Pimi€ (1,2, ...,k),nE(,2, ...,w), where i is the source
image number, n the patch number, and w the total block number
each input image. The obtained image blocks are classified into
smooth, stochastic, and dominant orientation patch group on the
basis of geometric similarity. Then, PCA is applied to each group
to extract corresponding bases for obtaining subdictionary. All
obtained subdictionaries are combined to form a complete
dictionary for instructing the image SR.

PCA

Input Image 1,

2.3 Geometric structure-based image patch classification

According to the classified smooth, stochastic, and dominant
orientation image patches, more detailed image information can be
further analysed. The out-of-focused areas are usually smooth and
contain smooth image patches. The focused areas usually have
sharp edges and contain dominant orientation patches. Besides
that, many stochastic image patches exist in source images. More
detailed information can be obtained, when dictionary learning is
applied to three different types of image patches. As an efficient
way, it enhances the accuracy in describing source images.

In this paper, source images are classified into different
image-patch groups first by proposed geometry-based method.
Then corresponding subdictionaries are obtained from classified
image-patch groups.

The input images are divided into \/w x /w small image blocks

P, =y, py, -..,p,) first. Then each image patch p;, i€
(1,2, ...,n) is converted into 1 x w image vectors v, i €E
(1,2, ..., n). Based on the obtained vectors, the variance C; of

pixels in each image vector can be calculated. The threshold 6 as a
key parameter is used to evaluate whether image block is smooth.
If C; < o, image block p; is smooth, otherwise image block p; is
not smooth [27].

Generally, the classified smooth patches have similar structured
information of source images. Non-smooth patches are usually
different and need to be classified into different groups.

For multi-focus images, the smooth blocks are not only include
the originally smoothed area, but also include the out-of-focus
area of the source images. As shown in Figs. 2a—c, image
regions and blocks in orange rectangle frames and blue rectangle
frames are the original smooth and out-of-focus image regions.
Originally smoothed regions are smooth in both focused and
out-of-focus area. In image blocks of originally smoothed
regions, pixels are with little difference. In the blue frames of
Fig. 2¢, the out-of-focus edge blocks and number blocks are
smoothed. Owing to the variance of the image, patches are small.
In Figs. 2a, b, and d, the focused characters, numbers, and object
edges are framed by the red rectangles. As shown in Fig. 2d, the
focused blocks that with sharp edges and basis are clustered into
the detail cluster of blocks.

Stochastic and dominant orientation patches belong to non-smooth
patches, based on geometric patterns. The proposed solution takes
two steps to separate stochastic and dominant orientation patches
from source images. First, it calculates the gradient of each pixel.
In every image vector v, i € (1,2, ..., n), the gradient of each
pixel k;, j€ (1,2, ...,w),i €(1,2, ..., n) is composed by its x
and y coordinate gradient g;(x) and g;(y). The gradient value of
each pixel k; in image patch v; is g; = (g;(x), g;(»))- The (g;(x),
g;(») can be calculated by g;(x) = dky(x,»)/dx, g,;()=
dky(x, y)/dy. For each image vector v, the gradient G; is
G; = (g1» 8» ---» i) » where G, € R"%. Second, (1) is used to
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Fig. 1 Proposed morphology-based image fusion framework
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Fig. 2 Results of geometric similarity-based clustering

a Source image

b Source image

¢ The smoothed out-of-focus edge blocks and number blocks
d The clustered in-focus blocks with sharp edges and bases

decompose the gradient value of each image patch

=Usy . (1)

where U,S, V[ is the singular value decomposition of G,. As a
diagonal 2 x 2 matrix, .S; represents energy in dominant directions
[32]. Based on the obtained §;, the dominant measure R can be
calculated by the below equation

Sl,l B S2,2

R="b1T022
S+ S,

@

When the R gets smaller, the corresponding image patch is more
stochastic [33]. To distinguish stochastic and dominant orientation
patches, a probability density function (PDF) of R can be
calculated by (3) to get the corresponding threshold R* [34]

1-r)""

x=r) 3
Y aE )

P(R) = 4(w — 1)R

P(R) converges to zero, when the value of R increases. When the
value of P(R) reaches zero for the first time, the corresponding R
is used as the threshold R* that is used to distinguish stochastic
and dominant orientation patches in a PDF significance test [34].
Those image patches that have smaller R than R* are treated as
stochastic patches. The proposed method separates stochastic and
dominant orientation patches. Texture and detailed information is
included in stochastic image patches, and dominant orientation
image patches contain edge information.

According to the direction information, dominant orientation
image patches can be classified into horizontal and vertical patch
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groups furtherly. The gradient field v, shown in (4) is used to
estimate the direction d of dominant orientation image patch

d = arctan (::g;) , “4)

In (4), when d is close to 0 or + 90°, the corresponding image
patch is clustered into horizontal or vertical patch group,
respectively.

2.4 Dictionary construction by PCA

After the geometric similarity-based classification, the principal
components of each group are used to train a compact and
informative dictionary. Since a small number of PCA bases can
represent corresponding image patches in the same geometric
group well, a subdictionary is obtained based on the top m
most informative principal components [35]. All subdictionaries
D,, D,,..., D, are combined to form a full dictionary D by the
below equation

D=I[D,,D,, ...,D,], Q)

2.5 Image fusion scheme

Fig. 3 shows the proposed two-step fusion scheme. First,
compressive sampling matched pursuit (CoSaMP) is employed
for sparse coding. Each input image /; is split into n image
patches with the size of ./w x /w. These image patches are
resized to wxl vectors p, p5, ..., p,. According to the trained
dictionary, CoSaMP sparsely codes the resized vectors to sparse
coefficients  zj, 2, ..., z,. CoSaMP method improves the
orthogonal matched pursuit algorithm. Since CoSaMP only does
matrix—vector multiplication for sparse coding, it is more efficient
in practice.
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Fig. 3 Proposed image fusion scheme

Algorithm 1: Framework of CoSaMP algorithm

Input:
The CS observation y, sampling matrix ®, and sparsity level K;
Output:
A K sparse approximation x of the target;
1: Initialisation: x, = 0 (x;, is the estimate of x) at the Jth iteration
and r=y (the current residual);
2: Iteration until convergence:
3: Compute the current error (note that for Gaussian ®, ®'®
is diagonal):

e=d'r (6)
4: Compute the best 2 K support set of the error () (index set):
O =ex 7

5: Merge the strongest support sets and perform a least-squares
signal estimation:

7 = Q| suppCe,_ )by = @7y, bype =0 ®

6: Prune x; and compute for next round:

x;=by,r=y—Px; )

In Algorithm 1, ®* is the Hermitian transform of ®. ®®
represents the pseudo-inverse of ®. T is the number of elements.
T¢ indicates the complement of set 7.

Second, Max-L1 fusion rule is applied to the fusion of sparse
coefficients [36, 37]. Equation (10) demonstrates Max-L1 fusion

rule to merge two sparse coefficients z;, and zj

) i lfl > i
o[ L T o
zg otherwise

Based on the trained dictionary, the fused image is obtained by the
inversion of corresponding fused coefficients.

3 Comparative experiments and analyses

Ten pairs of grey-level images and 20 pairs of colour images are
used to test the proposed multi-focused image fusion approach in
comparative experiments. Ten pairs of grey-level images, that are
obtained from http:/www.imagefusion.org, consist of three
320 x 240 image pairs and seven 256 x 256 image pairs. Twenty
pairs of colour images are from Lytro data set http:/mansournejati.
ece.iut.ac.ir/content/lytro-multi-focus-dataset and all the colour
images are 520 x 520 size. In this section, six fusion comparison
experiments of grey-level images and colour images are chosen
and presented, respectively. Twelve sample groups of testing
images are shown in Fig. 4, which consists of six grey-level
(Figs. 4a—f") and six colour image groups (Figs. 4g—/). The image
pair samples in Figs. 4a—c are grey-level multi-focus images with
the size of 256 x 256, and the rest grey-level multi-focus image
pairs are with the size of 320 x 240. The colour multi-focus image
pair samples from Figs. 4g—/ are with the size of 520 x 520. The
proposed solution is compared with KSVD [36] and JCPD [20]
that are two important dictionary-learning-based SR fusion
schemes. Comparative experiments are assessed in both subjective
and objective ways. Four objective metrics are used to evaluate the
quality of image fusion quantitatively. All three SR-based methods
use 8 x 8 patch size. Sliding window scheme is used to avoid
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Fig. 4 Sample groups of grey-level and colour multi-focus images

a Selected sample source image pair — 1
b Selected sample source image pair — 2
¢ Selected sample source image pair — 3
d Selected sample source image pair — 4
e Selected sample source image pair — 5
f Selected sample source image pair — 6
g Selected sample source image pair — 7
h Selected sample source image pair — 8
i Selected sample source image pair — 9
J Selected sample source image pair — 10
k Selected sample source image pair — 11
[ Selected sample source image pair — 12

blocking artefacts in all comparative experiments [20, 36].
Four-pixel is set in each horizontal and vertical direction as
overlapped region of sliding window scheme. All experiments are
simulated using a 2.60 GHz single processor of an Intel® Core™
i7-4720HQ CPU Laptop with 12.00 GB RAM. To compare fusion
results in a fair way, all comparative experiments are programmed
by Matlab code in Matlab 2014a environment.

3.1 Objective evaluation metrics

To evaluate the integrated images objectively, four popular objective
evaluations are implemented, which include entropy [38, 39], mutual
information (MI) [40, 41], edge retention O"'®/" [42, 43], and visual
information fidelity (VIF) [44, 45]. These performance metrics are
defined as follows.

3.1.1 Entropy: Entropy of an image is about the information
content of image. Higher entropy value means the image is more
informative. The entropy of one image is defined as

L-1
E=—3 PlogP , (11
=0

where L is the number of grey-level and P, the ratio between the
number of pixels with grey values / and total number of pixels.
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3.1.2 Mutual information: The metric of MI measure the MI
of the source images and fused image. MI for images can be
formalised as

Lol (i)
ML= YY" hy (i, )log,

T s 12
i=1 j=1 hy(Dhpg, (12)

where L is the number of grey-level, &, (i, /) the grey histogram of
image 4 and F. h,(i) and A (j) are edge histogram of image 4 and F.
Equation (13) calculates MI of fused image

MI(4, B, F) = MI(4, F) + MI(B, F) , (13)

where MI(4, F) represents the MI value of input image A4 and fused
image F; MI(B, F) the MI value of input image B and fused image F.

3.1.3 Q"BF:; O/ metric, as a gradient-based quality index,
measures the performance of edge information in fused image
[42], and can be calculated by

o > @G WG ) + O i WP, )
> WG, ) +wh(i, ) '

wl}ere QAF = Qgp QA.F R Qgp and Q‘gF are the.ed.ge strgngth and
orientation preservation values at location (i, j). Q" can be

(14)
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Fig. 5 Multi-focus image fusion of ‘two clocks’

a Source image

b Source image

¢ Fused image of KSVD

d Fused image of JCPD

e Fused image of the proposed method

/f Difference images between a and fused image ¢
g Difference images between a and fused image d
h Difference images between a and fused image e
i Difference images between b and fused image ¢
J Difference images between b and fused image d
k Difference images between b and fused image e

computed similarly to £ oW (@, j) and wg(i, j) are the importance
weights of 0 and , respectively.

3.1.4 Visual information fidelity: VIF is the novel full
reference image quality metric. VIF quantifies the MI between the
reference and test images based on natural scene statistics theory
and human visual system (HVS) model. It can be expressed as the

ratio between the distorted test image information and the
reference image information, the calculation equation of VIF is
shown in the following equation

VIF = ZiEsubbands I( i F )

NG N (1)
ZiEsubbandsI(C ’l;E ’l)
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Fig. 6 Multi-focus image fusion of ‘clock and book’

a Source image

b Source image

¢ Fused image of KSVD

d Fused image of JCPD

e Fused image of the proposed method

f Difference images between a and fused image ¢
g Difference images between a and fused image d
h Difference images between a and fused image e
i Difference images between b and fused image ¢
J Difference images between b and fused image d
k Difference images between b and fused image e

where I(CY'; F¥') and I(CY; EN') represent the MI, which are
extracted from a particular subband in the reference and the test

—
images, respectively. CV denotes N elements from a random field,
— —

EY and F" are visual signals at the output of HVS model from
the reference and the test images, respectively.

To evaluate the VIF of fused image, an average of VIF values of
each input image and the integrated image is proposed [45].
Equation (16) shows the evaluation function of VIF for image fusion

VIF(4, F) + VIE(B, F) 16)

VIF(4, B, F) = 5

where VIF(4, F) is the VIF value between input image 4 and fused
image F; VIF(B, F) the VIF value between input image B and fused
image F.

3.2 Grey-level image fusion

In order to test the efficiency of the proposed method, the most
commonly used ten multi-focus grey-level images are implemented

CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 2, pp. 83-94

for testing. Two sample groups of fused grey-level images with the
size of 256 x 256 and 320 x 240 are picked for demonstration,
which are shown in Figs. 5 and 6. The difference images of each
fused image are also shown in Figs. 5 and 6. The difference
images demonstrate the difference between the fused images and
source images. In multi-focus image fusion, if the focused area of
difference images is more clear, it means the fusion performance
is better. The difference image can be obtained by

Iy=1, -1, am

where /; represents the difference image, /- is the fused image, and /
a source multi-focus image.

Figs. 5 and 6 show the fused images of similar comparison
experiments, respectively. It only chooses Fig. 5 for analysis. The
source multi-focus images of ‘two clocks’ are shown in Figs. Sa
and b, respectively. To show the details of fused image, two
specified image blocks, that show the number in clock, are
highlighted and magnified in red and blue squares, respectively. In
Fig. 5a, the highlighted image block in red square is focused, and
another highlighted part in blue square is out of focus. In Fig. 55,
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Table 1 Average quantitative comparison of ten grey-level multi-focus the corresponding image block in red square is out of focus, and the

image fusions

corresponding image block in blue square is focused. Figs. Sc—e are

the fused image of KSVD, JCPD, and proposed method,

Entropy Q*8IF Ml VIF : : : t
respectively. Figs. 5/~h are the difference images between source
KSVD 5.0651 0.8190 4.8180 0.8340 image (Fig. 5a) and fused image of KSVD, JCPD, and proposed
JCPD 5.0739 0.8178 4.6943 0.8241 method, respectively. Similarly, Figs. 5i—k show the corresponding
proposed 5.0739 0.8374 51113 0.8367 difference images between source image (Fig. 5b) and three fused

i

Fig. 7 Multi-focus image fusion of ‘castle and lock’

a Source image

b Source image

¢ Fused image of KSVD

d Fused image of JCPD

e Fused image of the proposed method

/f Difference images between a and fused image ¢
g Difference images between a and fused image d
h Difference images between a and fused image e
i Difference images between b and fused image ¢
J Difference images between b and fused image d
k Difference images between b and fused image e

CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 2, pp. 83-94

90 This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongging University of Technology under the Creative Commons Attribution License
(http:/creativecommons.org/licenses/by/3.0/)



i

Fig. 8 Multi-focus image fusion of ‘love card and Hong-Kong’

a Source image

b Source image

¢ Fused image of KSVD

d Fused image of JCPD

e Fused image of the proposed method

f Difference images between a and fused image ¢
g Difference images between a and fused image d
h Difference images between a and fused image e
i Difference images between b and fused image ¢
J Difference images between b and fused image d
k Difference images between b and fused image e

images, respectively. Two specified image blocks are focused in all
three fused images. However, it is different to differentiate the slight
differences among each fused image and evaluate the corresponding
fusion performance of each method.

To objectively evaluate the fusion performances of input
multi-focus images, entropy, O"®/", MI, and VIF are used as
image fusion quality measures. Table 1 shows the average

CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 2, pp. 83-94

Table 2 Average quantitative

image fusions

comparison of 20 colour multi-focus

Entropy Q*8/F M VIF
KSVD 5.1712 0.7593 4.7266 0.7780
JCPD 5.1701 0.7684 4.5912 0.7535
proposed 5.2016 0.8050 5.0736 0.7893
91
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a Processing time comparisons of 320 x 240 and 256 x 256 images
b Processing time comparison of 520 x 520 images

objective evaluation results of ten grey-level multi-focus images
using three different methods. The best metric results in Table 1
are highlighted by bold faces. The proposed method achieves the
best performance in all four objective evaluations. JCPD method
only has the same performance as the proposed method in entropy.

3.3 Colour multi-focus image fusion

To compare the proposed method with KSVD and JCPD, 20 colour
image pairs from Lytro data set are used to test fusion results. For
visual evaluation, two sample groups of fused colour images
obtained by three different methods are chosen to demonstrate in
Figs. 7 and 8. Figs. 7 and 8 not only include the details of fused
images, but also show the difference images of between source
images and fused images.

Similar to grey-level image fusion experiment, it only picks Fig. 7
for analysis. Figs. 7a and b are the source multi-focus images. Two
image blocks of red lock and castle are highlighted and magnified to
show the details of fused image, which are squared by red and blue
squares, respectively. Red lock in the centre of the image, that is
marked in red, is focused in Fig. 7a, and castle in the left-top, that
is marked in blue, is totally focused in Fig. 7b. The corresponding
castle and red lock in Figs. 7a and b are out of focus, respectively.
Figs. 7c—e show the fused images of KSVD, JCPD, and proposed
method, respectively. Figs. 7f and i show the difference images
between two source images (Figs. 7a and b) and fused image
(Fig. 7c), respectively. Similarly, Figs. 7g, j, h, and k show the
difference image of fused image (Figs. 7d and e), respectively.

It is difficult to figure out the differences in fused images by three
different methods visually. Similarly, entropy, 0%/", MI, and VIF
are also used as image fusion quality measures to evaluate the
fusion performance objectively. The average quantitative fusion
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Proposed

results of 20 colour multi-focus images using three different
methods are shown in Table 2. The best results of each evaluation
metric are highlighted by bold faces in Table 2. The proposed
method reaches the best performance in all four types of
evaluation metrics. Particularly, the proposed method higher result
in 0*8/" than other two methods. As a gradient-based quality
metric, measures the performance of edge information in
fused image. It confirms the proposed method can obtain fused
images with better edge information.

3.4 Processing time comparison

Fig. 9 compares the average fusion time of 20 colour image pairs in
details. The total processing time consists of two parts. One is image
clustering and dictionary construction, the other one is sparse coding
and coefficients fusion. Comparing with KSVD and JCDP, the
proposed method has much better performance of image clustering
and dictionary construction. KSVD spends the longest time on
image clustering and dictionary construction. JCDP and the
proposed solution take almost same time to do sparse coding
and coefficients fusion. Similarly, KSVD uses longer time to finish
sparse coding and coefficients fusion. Generally, the proposed

Table 3 Processing time comparison

320 x 240, s 256 x 256, s 520 x 520, s
KSVD 57.71 50.57 1309.64
JCPD 41.38 34.59 821.64
proposed solution 26.88 21.51 486.29

The best results are marked in bold.
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Table 4 Relative increasing rate comparison

Entropy, % Q*5/F 9, M, % VIF, %

proposed solution 0.3 3.4 4.2 0.8
Kim’s solution [20] — 0 1.9 1.2
Nejati’s solution [18] — 4.3 — 0.1
Yin’s solution [17] 0 — —

o |
\

Zhang’s solution [46] — —

The best results are marked in bold.

method has the best overall performance of processing time among
three methods. JCDP has better performance than KSVD.

Fig. 10a shows the time comparison of 320 x 240 and 256 x 256
grey-level image fusion. Fig. 105 shows the time comparison of
520 x 520 colour image fusion. In Figs. 10a and b, it can easily
figure out the proposed method has lower computation costs than
the compared two methods.

Table 3 compares the processing time of 320 x 240 and
256 x 256 grey-level image fusion and 520 x 520 colour image
fusion. The proposed solution has lower computation costs than
KSVD and JCPD in image fusion process. When the size of
source image increases, the processing time verifies that the
proposed solution has much better performance than the compared
two methods. Comparing with KSVD, the dictionary construction
of the proposed solution is more efficient, that does not use any
iterative way to extract the underlying information of images.
Although JCPD and the proposed solution both cluster image
pixels or patches based on geometric similarity, the proposed
solution does not use steering Kernel regression in dictionary
construction as JCPD, which is an iterative method, but
time-consuming.

Additionally, as the proposed method shows great image fusion
performance on both grey-level and colour multi-focus images
with different size, it can infer that the proposed method is robust
to the image size and colour spatial.

3.5 Effectiveness discussion

The obtained dictionary of the proposed approach is more compact
than existing methods. The proposed solution takes less fusion
time than existing methods. Although the proposed method is just
slightly better than the compared approaches in objective
evaluations, the results of comparison experiments verify that the
proposed solution obtains high-quality fused image and performs
high efficiency in image fusion.

According to each objective evaluation, this paper compares
each increasing rate of proposed solution with four SR-based
methods published in mainstream journals in 2015-2016. The experi-
mentation environment of each compared method is different and
not all compared methods publish their source codes, so it is difficult
to compare each objective evaluation using the same standard. This
paper can only compare the relative increasing rate among all
approaches. The relative increasing rate is the difference between
each proposed solution and the second best solution in the same paper.

Table 4 shows the comparison results. The analysis of each
objective evaluation is shown as follows:

(i) Entropy: The proposed solution increases 0.3% and Yin’s
solution did not improve entropy. The other three solutions did not
compare entropy.

(ii) O*®/": The proposed solution increases 3.4%. The increasing
rate of proposed solution is greater than Kim’s solution, but is less
than Nejati’s solution.

(iii) MI: The proposed solution has the best increasing rate 4.2%.
(iv) VIF: The increasing rate of proposed solution is 0.8%, that is,
greater than Nejati’s solution, but is less than Kim’s solution.

Comparing with the other four existing solutions, the relative

increasing rate of the proposed solution is convincing. The
increasing rate varies from 0 to 4.3% in all compared solution. It

CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 2, pp. 83-94

is normal and reasonable that most of proposed solutions only
slightly improve existing solutions in image fusion.

4 Conclusion

Based on the geometric information of image, an SR-based
image fusion framework is proposed in this paper. The geometric
similarities of source images, such as smooth, stochastic, and dom-
inant orientation image patches, are analysed, and corresponding
image patches are classified into different image patch groups.
PCA is applied to each image patch group to extract the key
image patches for constructing the corresponding compact and
informative subdictionary. All obtained subdictionaries are com-
bined into a fully trained dictionary. Based on the trained dictionary,
source image patches are sparsely coded into coefficients. During
the image processing, image block size is adaptively chosen and
optimal coefficients are selected. More edge and corner details can
be retained in the fused image. Max-L1 rule is applied to fuse the
sparsely coded coefficients. After that, the fused coefficients are
inverted to obtain the final fused image. Two existing mainstream
SR-based methods, KSVD and JCPD, are compared with the
proposed solution in comparative experiments. According to sub-
jective and objective assessments, the fused images of proposed
solution have better quality than existing solutions in edge, corner,
structure, and detailed information.
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