
Fast genre classification of web images using
global and local features

ISSN 2468-2322

Received on 7th August 2018

Accepted on 8th August 2018

doi: 10.1049/trit.2018.1018

www.ietdl.org

Guo-Shuai Liu1, Rui-Qi Wang1,2, Fei Yin1,2, Jean-Marc Ogier3, Cheng-Lin Liu1,2,4 ✉

1National Laboratory of Pattern Recognition, Institute of Automation of Chinese Academy of Sciences, 95 Zhongguancun East Road,

Beijing 100190, People’s Republic of China
2School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
3L3i Laboratory, Faculty of Science and Technology, University of La Rochelle, 17042 La Rochelle Cedex 1, France
4Center for Excellence of Brain Science and Intelligence Technology, Beijing 100190, People’s Republic of China

✉ E-mail: liucl@nlpr.ia.ac.cn

Abstract: To effectively mine the contents embedded in web images, it is useful to classify the images into different

types so that they can be fed to different procedures for detailed analysis. The authors herein propose a hierarchical

algorithm for efficiently classifying web images into four classes. Their algorithm consists of two stages: the

first stage extracts global features reflecting the distributions of color, edge and gradient, and uses a support

vector machine (SVM) classifier for preliminary classification. Images assigned low confidence by the

first stage classifier are processed by the second stage, which further extracts local texture features represented in

the bag-of-words framework and uses another SVM classifier for final classification. In addition, they design two

fusion strategies to train the second-stage classifier and generate the final prediction depending on the usage of

local features in the second stage. To validate the effectiveness of proposed method, they built a database

containing more than 55,000 images from various sources. On their test image set, they obtained an overall

classification accuracy of 98.4% and the processing speed is over 27 fps on an Intel(R) Xeon(R) central processing unit

(2.90 GHz).

1 Introduction

On the Internet and mobile network, the explosive growth of
multimedia data including texts, images and videos brings us rich
information and also the difficulty of efficiently mining relevant
information. While the texts are explored by most web mining
tools, to mine the contexts in images is also important. Particularly,
the texts embedded in images provide easy understandable
semantics and such images occupy a considerable proportion on
web pages. A study [1] showed that 17% of the words visible on
the web pages are in image form and a large proportion (76%) of
text information embedded in images cannot be found anywhere
in the web pages. The texts in images, however, are hard to extract
by computers, though easily read by humans. For text detection and
reading methods to process efficiently in the Internet environment,
we need to quickly classify the images into different types of
sources such that each type of images undertakes detailed analysis
by a special procedure. Also, for accurate processing, different types
of text images (document images) such as natural scene text images,
born-digital images (BDIs), scanned and camera-captured paper
documents (CPDs) are better analysed in different procedures.

In this paper, we propose a fast classification algorithm for
classifying web images into four major types, namely natural
scene images (NSIs), BDIs, scanned paper documents (SPDs) and
CPDs. NSIs (photographs) are captured by surveillance cameras or
mobile cameras and are most popular on the web. Whether they
contain texts or need not to be judged using the more detailed
procedure but the fast identification of this image type is helpful
for the overall process of web image analysis. The other three
types: BDIs, SPDs and CPDs usually contain rich texts. They also
show different characteristics of image quality, e.g. BDIs usually
have large areas of constant colour, and SPDs are more uniform
in intensity and less distortion than CPDs. For a good tradeoff
between classification accuracy and processing speed, our
algorithm consists of two stages. The first stage uses global

features capturing the difference of appearance between four types
of images for preliminary classification with a support vector
machine (SVM) classifier. Images assigned low confidence by the
first-stage classifier are then processed by the second stage, which
extracts local texture features encoded in the bag-of-words (BoW)
framework and uses another SVM classifier for final classification.
Compared to global features, local texture features are able to
represent different patterns of colour transitions and properties of
edges between four types of images in a more detailed way and
yield higher classification accuracy. To validate the effectiveness
of our proposed method, we built a large image database by
collecting images from various sources such as web crawling, the
camera capturing and other standard public databases. On our test
image set, we obtained an overall classification accuracy of 98.4%
and the processing speed is over 27 fps on a central processing
unit (CPU) (2.90 GHz).

The rest of this paper is organised as follows. Section 2 briefly
reviews related works; Section 3 describes the proposed method;
Section 4 introduces the image database; Section 5 presents
experimental results; and Section 6 makes a conclusion.

2 Related work

A large variety of feature extraction and classification methods
have been proposed in the context of image classification and
content-based image retrieval [2] but these existing methods
are not directly applicable for our purpose of image genre
classification. In the following, we outline some works related to
our purpose.

Hammoud et al. [3] distinguished art paintings from scene
photographs using colour texture signatures derived from the human
visual system. The receptive field profiles and composite visual
features they presented are helpful to solve our problem. Motivated
by the physical image generation process, Ng et al. [4] proposed a

CAAI Transactions on Intelligence Technology

Special Issue: Selected Papers from The 4th Asian
Conference on Pattern Recognition (ACPR 2017)

CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 3, pp. 161–168

161This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongqing University of Technology under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

novel geometry-based model for classifying photographic images
and computer graphics in the context of image forgery detection.
They exploited global geometry information at different scales as
well as local patch statistics to discover the distinctive physical
characteristics of images such as the gamma correction of
photographs and the sharp structures in graphics. Despite that the
method was shown effective, the feature extraction there is very
time-consuming, e.g. only global fractal geometry feature extraction
takes 128.1 s on a 1280× 1024 image. Athitsos et al. [5] presented
a method for separating photographs and graphics on web pages.
The graphics they considered such as corporate logos, maps
and navigation buttons, are very simple even compared with
our BDIs which contain both texts and graphics. Lienhart and
Hartmann [6] also tried to solve this problem, and the metrics they
designed depend mostly on statistics of global visual cues such as
colour and edge orientation histogram. Lee et al. [7] tried to
categorise images into art, photograph and cartoon using a neural
network model. Five standard MPEG-7 visual descriptors [8] in
their work were employed for extracting features such as Colour
Layout, Colour Structure, Homogeneous Texture, Region Shape and
Edge Histogram, which are not only redundant but also
time-consuming. Pourashraf et al. [9] adopted an ensemble model
for classifying images embedded in commercial real estate flyers
into one of five genres: aerial photograph, map, inside building,
outside the building and schematic drawing. However, the model
was only evaluated with a small database and the processing speed
was not reported.

In recent years, deep neural networks, especially the convolutional
neural network (CNN) [10–15] has achieved a great success in image
recognition tasks including image categorisation, object detection,
scene text detection and recognition [16]. The superiority of CNN
is partly attributed to its ability of automatic feature exaction by
learning from the large training dataset. However, the CNN
suffers from the heavy computation in both training and testing,
and so, is usually implemented using graphics PU (GPU) for
parallel computation. This hinders its application in processing
huge amount of images on the web.

Our proposed method for fast genre classification of images uses
both global visual features and local texture features which consume
low computation complexity and is of moderate dimensionality. The
local texture features, extracted from different types of image patches
and represented in the BoW framework [17, 18] are shown to be
effective in differentiating photographs versus non-photograph and
scanned versus CPD.

3 Proposed method

3.1 System overview

Fig. 1 shows a schematic diagram of our hierarchical classification
system. The first stage extracts global features and uses an SVM
for preliminary classification. In this stage, images with high

confidence (over a threshold Tc) are made a decision of class
directly. While the images with lower confidence are fed into
the second stage, which extracts local texture features represented
in BoW framework and uses another SVM for final classification.
In the second stage, different types of texture descriptors are
extracted from local patches and each of them is represented into
a BoW histogram. In particular, we carefully design four types
of local patches such as edge patch, key point patch, smooth
region patch and random patch. This design is aimed to balance
the computational complexity and classification accuracy for the
second classifier, as the extraction of local features is much
more computationally demanding than that of global features.
Given a set of local features of a certain type, a two-step clustering
method is adopted to generate a discriminative codebook,
which is used in the following BoW framework. Finally, we
concatenate four BoW histograms into the local feature vector.
Depending on the usage of local features, two fusion strategies
are proposed to train the second classifier and generate final
prediction result.

3.1.1 Training the second classifier with global and local
features: The first fusion strategy uses global and local features
together to train the second classifier. Considering that global
visual features alone are still not very discriminative for those
‘difficult’ images, which are assigned low confidence by the first
classifier, we train the second classifier using both global and local
features. Since the local texture features are more suitable for
representing image details such as patterns of colour transitions
and properties of edges, they can effectively compensate for the
deficiency of their global counterparts. In particular, for each
image sample, we concatenate its global visual feature calculated
previously in the first stage and the new BoW features into a final
feature vector and use it to train the second SVM classifier. In
testing, the second classifier gives the final classification.

3.1.2 Training the second classifier with local features
only: In the second fusion strategy, we take advantage of
ensemble learning. Ensemble methods use multiple learning
algorithms (classifiers) to obtain better predictive performance than
the constituent classifiers alone. For our problem, we can train our
two SVM models in different feature spaces, namely global and
local features, respectively, and improve final classification
performance by combining the predictions of two classifiers.
Herein, we use the global features to train the first classifier, and
the local features to train the second classifier. In testing, for those
images that cannot be labelled with high confidence by the first
classifier, local features are extracted and fed into the second
classifier. After that, we fuse the predictions of two classifiers by a
weighted combination of posterior probabilities to make the final
decision of image class.

Fig. 1 Flowchart depicting the proposed hierarchical classification framework. If the max posterior probability from SVM #1 is higher than a given threshold

Tc, the image is considered ‘simple’ and can be made a decision with high confidence. Otherwise, fusion strategies will be introduced in the second stage to find

out the final result

CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 3, pp. 161–168

162 This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongqing University of Technology under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

3.2 Global features

For our first-stage classification, the global features are extracted
based on the different appearances between four types of images.
Compared to NSIs, BDIs tend to have fewer colours, shaper edges,
larger constant colour regions and more highly saturated pixels.
As for the other two types, SPDs are clearly more uniform in
intensity and less distortion than CPDs. We carefully designed
our global features so that the differences mentioned above could
be easily captured. Meanwhile, it is also necessary to consider
the computational complexity of each type of global feature.
Computationally intensive feature extraction methods such as scale
invariant feature transform (SIFT) or wavelet transform may be
more discriminant and give higher classification performance but
they also consume more CPU time and memory. By contrast, our
procedures of feature extraction only involve the first-order
gradient computation and some basic image processing techniques
such as thresholding, colour space conversion [from red, green and
blue (RGB) to hue, saturation and value (HSV)] and binary erosion.

3.2.1 Coherence of highly saturated pixels f1: This feature is
aimed to measure different patterns of colour transitions from pixel
to pixel appearing in four types of images. NSIs often depict
objects of the real world and have rarely regions of uniform colour
or coherent pixels of highly saturated because of the natural
texture of objects, noise and diversity of illumination conditions.
On the other hand, BDIs tend to have larger regions of constant
colour and more blocks consisting of highly saturated pixels.
Let Irgb, Ihsv and Is denote a 3-channel RGB image, its HSV
version and saturation channel, respectively. A binary image Imask1

is obtained by thresholding Is with a given threshold Ts. A
morphological erosion operation is then performed on Imask1 with a
3 × 3 square structuring element to generate a new Imask2. The
number of non-zero pixels in Imask1 and Imask2 are calculated and
denoted as N1 and N2. Finally, we define f1 = N2/N1. To
demonstrate the effectiveness of this measure visually, we
randomly selected 3000 images from NSI, BDI and CPD
categories in our database: 1000 samples per class, and calculated
the normalised histogram of three types of images over f1. From
Fig. 2a, we can observe that BDIs which have more coherent and
highly saturated regions tend to have higher scores than NSIs.

3.2.2 Average contrast of edge pixels f2: The second global
feature focuses on the intensity transition between edge pixels in
images, which also reflects different patterns between NSIs, BDIs,
CPDs and SPDs. For example, edges in NSIs and CPDs are
usually generated by occlusion, illumination and changing of
surface property, while BDIs tend to have more ‘colour edges’ [3]
resulting from adjacent uniform regions. Accordingly, sharp
transitions occur more frequently in BDIs than others. Let Ig and
Mc denote a grey-scale image and its Canny edge [19] map,
respectively. We define the max sharpness map Mms

Mms(x, y) =
max {|Ig(x, y)− Ig(x

′, y′)|} if Mc(x, y) . 0,

0 otherwise,

{

(1)

where current pixel (x, y) and its neighbour (x′, y′) satisfy
max {|x− x′|, |y− y′|} = D. In our experiments, D is set to 2.
Then, f2 can be obtained by calculating the average value of Mms

with Mc as the mask. We also calculated the normalised histogram
of three types of images over f2. As expected, we can observe that
BDIs tend to have sharper edges than others, as shown in Fig. 2b.

3.2.3 Coherence of smooth region f3: This feature measures
the spatial correlation of pixels of uniform regions in images. The
large flat regions in BDIs and SPDs often have high coherence
and low gradient magnitude. At first, we generate horizontal and
vertical gradient maps Mgx and Mgy with the kernel [− 1 0 1] and

[− 1 0 1]T, respectively, then an approximate gradient magnitude
image Mg is obtained: Mg = |Mgx| + |Mgy|. Given Mg, a binary

mask Imask3 indicating smooth regions and its eroded version Imask4

is generated with a threshold Tg in the same way described in

Section 3.2.1. Finally, we define f3 = {N4/N3, N3/Np}, where N3

and N4 denote the number of non-zero pixels in Imask3 and Imask4,
respectively, and Np is the total number of image pixels.

3.2.4 Colour histogram f4: This feature is designed based on the
assumption that certain colours occur more frequently in a certain
type of images. For example, BDIs come from business websites
as ad images tend to be filled with highly saturated red or yellow
blocks to grab people’s attention. By contrast, most SPDs and
CPDs are relatively monochrome and their colour boxes mainly
consist of colours of papers and notes, which have very limited
fashions. The colour histogram should be effective to represent
this special characteristic. Instead of directly calculating the
histogram in original RGB colour space, we here choose hue
channel Ih for speed in practise. The dimensionality of the
histogram vector in our implementation is 180 and the histograms
are normalised to 0–1 range. We also provide a scatter plot in
Fig. 3a to visualise the discriminability of this feature. Similarly,
100 images per class are selected randomly and grouped together
as a small visualisation dataset. Considering the high
dimensionality of this feature, we adopt a dimensionality reduction
algorithm, the t-stochastic neighbor embedding (SNE) algorithm
[20], to map the feature vectors from 180-dimensional (180D) to
2D. From Fig. 3a, we can see that most of the SPDs and CPDs
points are clustered and form two very distinguishable curves on
the reduced map. However, it is also worth noting that there are
large overlaps between the BDIs and NSIs points, which means
that the colour histogram feature alone cannot differentiate
between BDIs and NSIs. Fortunately, features f1 and f2 calculated
above complement very well. For the large overlaps, one
reasonable explanation is that the BDIs samples contain certain
small NSI patches, which we will discuss in Section 4.

3.2.5 Gradient magnitude histogram f5: The distribution of
gradient magnitude values also reflects the style of images. We
calculated an equal interval histogram of Mg as f5. The gradient
value, in a range of [0, 510], is quantised into 200 bins. We also
show a scatter plot of gradient magnitude histogram by
dimensionality reduction in 2D in Fig. 3b.

Fig. 2 Distribution of normalised histograms of different types of images

over global features.

a and

b represent coherence of highly saturated pixels f1 and average contrast of edge pixels f2,

respectively

CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 3, pp. 161–168

163This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongqing University of Technology under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

3.3 Local features and BoW coding

Although capturing the different characteristics of appearance
in common Web images successfully, global features proposed in
the above section are not sufficient to discriminate ‘difficult’
images. While global features are aimed to quickly classify
relatively ‘easy’ images, local features are aimed to discriminate
the difficult images at costs of higher computation. We introduce
local texture features based on the observation that different types
of images show distinct local texture patterns, e.g. BDIs and SPDs
often have large constant regions, and CPDs show different texture
patterns from SPDs due to the non-uniform illumination in
photographing. In addition, some objects possessing certain typical
texture patterns such as sky, trees or walls occur frequently
in NSIs. To extract local texture features, we adopt local feature
aggregation methods [21, 22], which have been widely used for
image classification or retrieval in recent years. We exploit four
types of local patches and organise their corresponding descriptors
in BoW framework [17, 18], which represents an image as a
histogram of certain key descriptors and has been demonstrated
very effective in image categorisation tasks. For computational
simplicity and efficiency, the local patch types we adopt in this
paper are edge patch, key point patch, smooth region patch and
random patch. The details of different types of patches and feature
vectors construction are as follows.

3.3.1 Local patches and descriptors: Four types of local
patches are designed in this paper, i.e. edge patch, key point patch,
smooth region patch and random patch. The local binary pattern
[23] descriptors are used for the first three types of patches, and
reduced colour index histogram for the last. The number of each
type of patch we sampled from each test image is Nlp and all
patches have the same size: Slp × Slp.

Edge patch: Inspired by the concept of ‘intensity edge’ and
‘colour edge’ [3], we randomly select Nlp local patches whose
centres are exactly located at Canny edge point and then build an
edge patch collection for each image. Combined with the BoW

framework, the differences of texture in the vicinity of an edge
between four types of images are reflected in the local features.

Key point patch: Key point detectors and descriptors have been
widely used in image analysis and categorisation. Considering that
certain specific objects occur frequently in particular types of
images, extracting key pointers can be useful for image genre
classification. We adopt the features from accelerated segment
test (FAST) corner detection algorithm [24] to locate key points
for speeded processing. Moreover similarly, Nlp key points are
randomly selected as the centres of corresponding patches.

Smooth region patch: Another distinctive texture comes from
smooth regions, e.g. sky, lawn and water surface in NSIs, constant
colour regions in BDIs and SPDs. Pixels coming from these
regions usually have a low gradient magnitude in images.
Therefore, we randomly select patches that have high overlap area
with Imask3. To make sure smooth pixels are able to occupy sufficient
areas in the patches, the overlap ratio threshold is set as 0.7.

Random patch: As the name suggests, patches of this type are
cropped randomly from the image and mostly play a complementary
role to other types of patches. We use the histogram of reduced
colour index map of the raw image to describe these types of
local regions for speed. Given the original 2563 colour space, a
uniform quantisation is performed and generates a 64-level (43)
one: each axis is divided into four equal-sized segments. We then
convert the quantised 3-channel image to a 1-channel colour
index map by replacing the original triple value (r, g, b) with
r × 42 + g × 41 + b× 40 pixel by pixel. Finally, a 64D histogram
based on the reduced colour index map is calculated and used as
random patches’ descriptors. The reduced colour index histogram
proposed in this paper, despite its simplicity, is efficient for image
patch representation, in respect of the relatively lower cost and com-
plexity of applying the reduced colour index histograms as local
descriptors.

3.3.2 Concatenated BoW representation: After local feature
extraction, each image is abstracted by several local descriptor
vectors. Since the traditional ‘hard’ coding methods in BoW frame-
work fails in capturing spatial layout of descriptors of local patches,
we herein adopt the locality-constrained linear coding (LLC) [18]
algorithm to organise local descriptors. An approximate version is
used for speed to incorporate locality constraint by reconstructing
each descriptor with a few closest K entries in the codebook. All
the reconstructing vectors are then averaged to generate a final histo-
gram vector. To achieve a more discriminative codebook, we also
adopt a two-step clustering method: at first, for each image in training
set, Nc1 sub-centres are selected with the K-means clustering
algorithm, and all the sub-centres are gathered and then clustered
again to generate a codebook containing Nc2 entries. Finally, we
build codebooks for each type of patches, generate corresponding
histogram vectors with LLC coding and concatenate them into a
4Nc2D vector as the final local feature representation.

4 Database

To validate the effectiveness of the proposed method, we have built
a large database of four types of images, i.e. NSI, BDI, CPD and
SPD. Depending on the degree of difficulty of labelling images,
we divide our database into two sets: the single-label (SL) and
the double-label (DL). The first set consists of such images that
are easily classified by their appearances and tagged with only one
label. Roughly more than 90% images in our database belong to
the SL. However, there are a small fraction of ‘complex’ samples
such as photorealistic images produced by cutting edge computer
graphics effects, images spliced or embedded by other different
types of smaller ones, computer graphics that are displayed on
liquid-crystal display monitors and then recaptured by a camera,
and so on. With such confusing appearances, they cannot be
classified clearly into one type. Hence, for these images, we
carefully selected two proper labels as their ground truth labels in
order to describe them as accurately as possible. Given the
complexity and variety of images on the web, the DL of 3693

Fig. 3 Scatter plots of four types of images in the reduced space based on

different global features.

a,b Colour histogram f4 and gradient magnitude histogram f5, respectively

CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 3, pp. 161–168

164 This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongqing University of Technology under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

images is a salutary supplement to the SL database and makes it
more proper and scalable. Totally, we collected 55,185 images
from various sources such as web crawling, manually camera
capturing and other public databases including SUN397 [25] and
the multilingual hand written (HW) dataset [26]. More details
regarding the distribution of different types of images are listed in
Table 1 and some samples are shown in Figs. 4 and 5. In addition,
we also calculate the distributions of image square size for each
type of images, as shown in Fig. 6.

5 Experimental results and discussion

In this section, we first describe the experimental setting and
implementation details including the selection of classification
models and feature parameters. Then we present our experimental
results for the proposed method with global and local features and
compared the proposed method with the popular CNN models.

5.1 Experimental setup

In our experiments, we adopt the radial basis function (RBF) kernel
SVM as our learning algorithm, and all the classification
experiments were implemented with the library for SVM [27]
package. Note that for the first-stage classification, though using a
linear SVM can largely improve the classification speed, its
accuracy is evidently lower than an RBF-kernel SVM. So, we use
RBF-kernel SVM in both stages. Since the global feature vector in
the first stage has low dimensionality, the speed of non-linear
SVM is still acceptable. As for CNN models, we implemented all
the models using the Pytorch [28] platform, which is a popular
Python package and widely used by researchers in the field of
deep learning in recent years. The maximum image size allowed
by the system is 1000 × 1000 for processing speed. If the original
image is larger than that, a 1000 × 1000 sub-region will be
randomly cropped and then alternatively tested. About 70%
images from each class are selected randomly for training
classifiers, and the rest is used for testing. Although our
hierarchical classification algorithm involves several parameters,
the ranges of their values are relatively broad. For convenience,
we divide all key parameters into two parts: feature parameters
and system parameters. The first set contains parameters related to
feature extraction such as Ts, Tg, Nlp, Slp, Nc1 and Nc2. Moreover,
the second consists of the confidence threshold Tc (default 0.95)
and weighting coefficient w (default 0.80) of local feature classifier
in the second fusion strategy. We observed in experiments that the
feature parameters influence the final results only slightly. Thus,
we only present herein their ranges: Ts [[150, 230],
Tg [[0.2, 2.5], Nlp [[100, 300], Slp [[5, 30], Nc1 [[5, 20]
and Nc2 [[50, 200]. As for the two system parameters, we will
give a detailed analysis in the following section.

Table 1 Details of our image database

SL DL Remarks

NSI BDI CPD SPD

NSI 26,410 — — — — SUN397:5175
BDI 12,153 1792 — — — —

CPD 6805 1484 282 — — —

SPD 6124 12 72 51 — MHW:6036
total 51,492 3,693 55,185

There are 5175 NSIs in our database coming from the public database
SUN397, and most of the SPDs (6036) used here come from the
multilingual HW dataset.

Fig. 4 Some SL images in the SL dataset

Fig. 5 Some DL images in DL dataset

Fig. 6 Stacked histograms of square sizes of four types of images in our

database

CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 3, pp. 161–168

165This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongqing University of Technology under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

5.2 Experimental results and discussion

5.2.1 Effectiveness of proposed features: We first extract
global and local features from images of SL and use an SVM to
train and test them directly. Results are reported in Table 2. As we
expected, both global and local features are discriminative for differ-
ent types of web images. Our ad hoc global features can achieve
93.97% classification accuracy at the speed of 28 fps. Furthermore,
compared to using global features alone, introducing local texture fea-
tures evidently increases the final classification accuracy by around
5% but at the sacrifice of processing speed. Such results also justify
the rationality of our hierarchical classification algorithm, which
quickly filters most ‘simple’ images using global features and extracts
time-consuming local features only for those small number of
‘difficult’ images (DL) to achieve further fine classification.

5.2.2 Performance of the proposed hierarchical
classification method: As we know, deep learning models,
especially deep CNNs have achieved a huge success in many
computer vision tasks. To further validate the effectiveness of our
classification method, we also compared our method with several
most popular CNN models such as AlexNet [11], VGGNet [12],
ResNet [13], DenseNet [14] and SqueezeNet [15] on both SL and
DL datasets. We briefly introduce the key part of each network
model and preserve their original structures provided in Pytorch by
following the default configuration. All the models we used are
pre-trained using the ImageNet [29] database, and we then use a
transfer learning strategy to fine-tune the models (number of
output nodes changed) on our training dataset.

As mentioned above, there are five types of CNN models adopted
in our comparison experiments. The first is AlexNet [11], which is one
of the classic CNN architectures for image classification. It first
demonstrated superior performance on the large-scale ImageNet
task [29].Typical AlexNet consists of five convolutional layers,
five max-pooling layers and three fully connected layers. Some regu-
larisation techniques such as dropout and batch normalisation are also
used for reducing overfitting and accelerating model training. The
second network model is VGGNet [12], which is a family of neural
networks sharing the same three-layer fully connected classifier. We
perform experiments on VGG-11, VGG-13, VGG-16 and VGG-19,
which differ from each other only on the numbers of maps of convo-
lutional feature extractor. The third model is ResNet [13], which has
shortcut connections between different layers so as to better fit the dif-
ference between input and expected output (residual) other than fitting
the output directly. The submodule that fits the residual between
expected output and input is named block. Configurations of blocks
are either two convolutional layers with size 3× 3, stride = 1 and
padding= 1 followed by batch normalisation or three convolutional
layers with stride = 1 and padding = 1. All ResNets start with a convo-
lutional layer with filter size 7× 7, stride = 2 and padding= 3 followed
by a batch normalisation layer, and the last layer is always a softmax
classifier. The DenseNet [14] has direction connections between each
layer with all the layers before it. This makes it able to alleviate the
vanishing-gradient problem, strengthen feature propagation, encour-
age feature reuse and substantially reduce the number of parameters.
We experiment its four variants named DenseNet-x, x here denotes
the depth of the models. The last one we chose is a small and
energy-efficient deep neural network (DNN) named SqueezeNet
[15]. With fewer parameters, SqueezeNet can more easily fit into com-
puter memory and can more easily be transmitted over a computer
network.

Table 3 shows the experimental results of different models on the
SL dataset. We give the classification accuracy, speed, number of

parameters and GPU memory usage for each classifier. Compared
to direct classification (Table 1), our hierarchical algorithm with
two fusion strategies can achieve a comparable accuracy but at
much faster speed (comparable to the speed of global feature
only). This is because most ‘simple’ samples have been
confidently classified and filtered by the first-stage classifier using
global features. As to the comparison with CNN models, it is
shown that our proposed method yields comparable accuracy with
some typical CNN models such as AlexNet, VGG-11, VGG-13,
ResNet-18, ResNet-34 and two SqueezeNet models. Some deeper
architectures such as ResNet-152 and DenseNet-201 obtain higher
(over 99%) accuracy but their classification speed has fallen
to 0.2 fps on CPU, much slower than the proposed method. It is
also worth noting that deeper models have to learn much more
parameters and occupy much more memory during the training
and validation phases. By contrast, our hierarchical classification
algorithm achieves a good tradeoff between classification accuracy
and processing speed. Although CNN can run very fast on GPUs,
this limits its application in occasions that GPU is not available,
and GPUs are also much more energy consuming. On the other
hand, implementing our proposed global + local feature-based
classification on GPU can also obtain a hundred times of speedup.

5.2.3 Performance on DL dataset: In testing the images in the
DL dataset, when the classification decision is identical to one of the
ground truth labels, it is considered as correct. In training, the label of
the DL image is randomly selected from the label set. The results are
listed in Table 4. In the setting ‘SL+DL’, the test performance of the
proposed method is inferior to those of CNN models ResNet-152
and DenseNet-201 but is comparable with those of other CNN
models. While in the setting ‘DL→DL’, the proposed method
performs comparably well with the CNN models. The proposed

Table 2 Results of proposed features on SL dataset (fps: abbreviation
of ‘frames per second’)

Features ACC,% Speed, fps

global 93.97 28–30
global + local 98.56 16–18

Table 3 Performance of different models on SL dataset

Methods ACC,% Speed,
fps (C)/(G)

Number of
Paras (106)

GPU
memory, MB

AlexNet 98.39 2.46/157.0 43.02 796
VGG-11 98.19 0.15/328.9 128.78 1073
VGG-13 98.24 0.14/306.9 128.86 1073
VGG-16 98.76 0.12/280.68 134.27 1173
VGG-19 98.84 0.08/297.67 139.58 1633
ResNet-18 97.62 1.03/104.63 11.19 507
ResNet-34 97.89 0.56/85.89 21.32 669
ResNet-50 98.90 0.45/84.09 23.58 1485
ResNet-101 98.94 0.29/83.25 42.63 1571
ResNet-152 99.17 0.17/80.13 58.33 1641
DenseNet-121 98.86 0.27/344.94 7.07 1335
DenseNet-161 99.24 0.10/270.93 26.73 2007
DenseNet-169 99.05 0.15/339.73 12.69 2045
DenseNet-201 99.20 0.12/308.12 18.38 2131
SqueezeNet-10 98.10 1.96/287.94 0.77 589
SqueezeNet-11 97.05 2.15/239.37 0.72 957
our (strategy 1) 98.43 27.2/— 5.58 —

our (strategy 2) 98.21 28.0/— 3.89 —

Paras number of SVM mostly depends on the number of support vectors
[CPU (C): Intel(r) Xeon(r) 2.90 GHz; GPU (G) (batch size: 64): NVIDIA Titan,
12G].

Table 4 Results on DL dataset

Methods ACC (SL+DL),% ACC (SL→DL),%

AlexNet 95.11 94.20
VGG-19 97.85 96.01
ResNet-152 99.01 95.02
DenseNet-201 98.59 96.17
SqueezeNet-10 95.54 92.15
our (strategy 1) 96.41 96.11
our (strategy 2) 96.01 95.33

‘SL+DL’ indicates the training set contains both SL images and DL
images: ‘SL->DL’ means that the classifier is trained on SL dataset but
tested on DL dataset.

CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 3, pp. 161–168

166 This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongqing University of Technology under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

method has little loss of performance when training without DL
images. In contrast, the loss of performance for CNN models from
‘SL+DL’ to ‘SL→DL’ is considerable. This is because deep
neural networks largely rely on the training set to guarantee the
generalisation performance.

5.2.4 Effects of parameters Tc and w on classification
performance: Fig. 7 shows the effects of two major hyper-
parameters in testing on the SL dataset. In particular, the parameter -
Tc controls the number of images sent into the second-stage
classifier. When it increases, more images are selected for sending
to the second-stage classifier, thus the classification accuracy
increases but the speed slows down. As the weighting coefficient
of the local feature classifier in the second fusion strategy w is influ-
ential to the accuracy of fused classification. It is seen that when w
increases from a small value, the accuracy increases gradually and
gets saturated at a larger value of w (from 0.5 to 0.95) because the
local feature information has played a sufficient role.

5.2.5 Analysis of misclassified images: Fig. 8 shows some
images misclassified by our method. We can see there are many
confusions between NSIs and BDIs. Specifically, we show
examples of three cases: NSIs misclassified into BDI, BDIs
misclassified into NSI and CPDs misclassified into NSI. As we
can see, most misclassified NSIs in Fig. 8a have large flat regions
and highly saturated pixels, which violate the previous
assumptions we proposed above, thus are categorised into BDI.
The BDIs and CPDs containing a large proportion of scene
photographs in Figs. 8b and c are more likely to be classified as
NSI. In the future work, we will try to introduce more elaborated
features to fix them.

6 Conclusion

In this paper, we proposed a fast two-stage classification method
for categorising web images into one of four categories, i.e. NSIs,
BDIs, CPDs and SPDs. The first-stage classifier uses global
features which have low dimensionality and low computation for
guaranteeing high speed. The second-stage classifier extracts local
texture features and represents them in BoW framework. Our
experimental results show that the proposed method yields high
classification accuracy and high speed. Even comparing with the
popular CNNs (convolutional networks), the proposed method still
provides competitive and its computational speed on CPU is much
higher than CNN models. For practical application, a next work is
to further differentiate between NSIs with text and NSIs without
texts or to detect texts in NSIs.

7 Acknowledgments

This work has been supported by the National Natural Science
Foundation of China (NSFC) Grant nos. 61721004 and
61411136002.

8 References

[1] Antonacopoulos, A., Karatzas, D., Lopez, J.O.: ‘Accessing textual information

embedded in Internet images’. Proc. SPIE Internet Imaging II, San Jose, USA,

2001, pp. 24–26

[2] Liu, Y., Zhang, D., Lu, G., et al.: ‘A survey of content-based image retrieval with

high-level semantics’, Pattern Recognit., 2007, 40, (1), pp. 262–282

[3] Hammoud, R.: ‘Color texture signatures for art-paintings vs. scene-photographs

based on human visual system’. Proc. 17th ICPR, Cambridge, UK, 2004,

vol. 2, pp. 525–528

[4] Ng, T.-T., Chang, S.-F., Hsu, J., et al.: ‘Physics-motivated features for

distinguishing photographic images and computer graphics’. Proc. 13th ACM

Multimedia, New York, NY, USA, 2005, pp. 239–248

[5] Athitsos, V., Swain, M.J., Frankel, C.: ‘Distinguishing photographs and graphics

on the world wide web’. Proc. IEEE Workshop on Content-Based Access of

Image and Video Libraries, San Juan, Puerto Rico, 1997, pp. 10–17

[6] Lienhart, R., Hartmann, A.: ‘Classifying images on the web automatically’,

J. Electron. Imaging, 2002, 11, (4), pp. 445–454

Fig. 7 Effects of hyperparameters

a Threshold Tc on classification performance

b Fusion weight w on classification performance

Fig. 8 Some images misclassified by our classification method

a NSIs misclassified into BDI

b BDIs misclassified into NSI

c CPDs misclassified into NSI

CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 3, pp. 161–168

167This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongqing University of Technology under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

[7] Lee, J.H., Baik, S.W., Kim, K., et al.: ‘IGC: an image genre classification

system’. Proc. Third Artificial Intelligence and Computational Intelligence,

Taiyuan, China, 2011, pp. 360–367

[8] Sikora, T.: ‘The MPEG-7 visual standard for content description – an overview’,

IEEE Trans. Circuits Syst. Video Technol., 2001, 11, (6), pp. 696–702

[9] Pourashraf, P., Tomuro, N., Apostolova, E.: ‘Genre-based image classification

using ensemble learning for online flyers’. Proc. Seventh ICDIP SPIE,

Los Angeles, CA, USA, 2015, p. 96310Z

[10] LeCun, Y., Bottou, L., Bengio, Y., et al.: ‘Gradient-based learning

applied to document recognition’, Intell. Signal Process., 1998, 86, (11),

pp. 2278–2324

[11] Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘ImageNet classification with

deep convolutional neural networks’. Proc. 25th NIPS, USA, 2012,

pp. 1097–1105

[12] Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale

image recognition’, CoRR, 2014, abs/1409.1556

[13] He, K., Zhang, X., Ren, S., et al.: ‘Deep residual learning for image recognition’.

Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, USA,

2016, pp. 770–778

[14] Huang, G., Liu, Z., van der Maaten, L., et al.: ‘Densely connected convolutional

networks’. Proc. IEEE Conf. Computer Vision and Pattern Recognition,

Honolulu, HI, USA, 2017

[15] Iandola, F.N., Moskewicz, M.W., Ashraf, K., et al.: ‘SqueezeNet: AlexNet-level

accuracy with 50 × fewer parameters and <1MB model size’, CoRR, 2016, abs/

1602.07360

[16] Jaderberg, M., Vedaldi, A., Zisserman, A.: ‘Deep features for text spotting’. Proc.

13th ECCV, Zurich, Switzerland, 2014, pp. 512–528

[17] Csurka, G., Dance, C., Fan, L., et al.: ‘Visual categorization with bags of key

points’. Proc. ECCV Workshop on Statistical Learning in Computer Vision,

Czech Republic, 2004, vol. 1, pp. 1–22

[18] Wang, J., Yang, J., Yu, K., et al.: ‘Locality-constrained linear coding for image

classification’. IEEE Proc. CVPR 2010, San Francisco, CA, USA, 2010,

pp. 3360–3367

[19] Canny, J.: ‘A computational approach to edge detection’, IEEE Trans. Pattern

Anal. Mach. Intell., 1986, 8, (6), pp. 679–698

[20] van der Maaten, L., Hinton, G.: ‘Visualizing high-dimensional data using t-SNE’,

J. Mach. Learn. Res., 2008, 9, pp. 2579–2605

[21] Jurie, F., Triggs, B.: ‘Creating efficient codebooks for visual recognition’. Proc.

Tenth Int. Conf. Computer Vision (ICCV’05), Washington, DC, USA, 2005,

pp. 604–610

[22] Nowak, E., Jurie, F., Triggs, B.: ‘Sampling strategies for bag-of-features image

classification’. Proc. Ninth European Conf. Computer Vision, Berlin,

Heidelberg, 2006, pp. 490–503

[23] Ojala, T., Pietikainen, M., Maenpaa, T.: ‘Multiresolution gray-scale and rotation

invariant texture classification with local binary patterns’, IEEE Trans. Pattern

Anal. Mach. Intell., 2002, 24, (7), pp. 971–987

[24] Rosten, E., Drummond, T.: ‘Machine learning for high-speed corner detection’.

Proc. Ninth ECCV, Berlin, Heidelberg, 2006, pp. 430–443

[25] Xiao, J., Hays, J., Ehinger, K.A., et al.: ‘Sun database: large scale scene

recognition from abbey to zoo’. IEEE Proc. CVPR 2010, San Francisco, CA,

USA, 2010, pp. 3485–3492

[26] ‘Handwritten language and writer id dataset’, University of Maryland, Laboratory

for Language and Media Processing (LAMP), 2016. Available at http://lamp.cfar.

umd.edu, accessed 2016

[27] Chang, C.-C., Lin, C.-J.: ‘LIBSVM: a library for support vector machines’,

ACM Trans. Intell. Syst. Technol., 2011, 2, (3), p. 27

[28] Paszke, A., Gross, S., Chintala, S., et al.: ‘Automatic differentiation in Pytorch’,

2017

[29] Deng, J., Dong, W., Socher, R., et al.: ‘ImageNet: a large-scale hierarchical image

database’. IEEE Conf. Computer Vision and Pattern Recognition (CVPR’09),

Miami, FL, USA, 2009

CAAI Trans. Intell. Technol., 2018, Vol. 3, Iss. 3, pp. 161–168

168 This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongqing University of Technology under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

http://lamp.cfar.umd.edu
http://lamp.cfar.umd.edu
http://lamp.cfar.umd.edu
http://lamp.cfar.umd.edu
http://lamp.cfar.umd.edu
http://lamp.cfar.umd.edu
http://lamp.cfar.umd.edu

	1 Introduction
	2 Related work
	3 Proposed method
	4 Database
	5 Experimental results and discussion
	6 Conclusion
	7 Acknowledgments
	8 References

