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Abstract: The measurement matrix which plays an important role in compressed sensing has got a lot of attention.

However, the existing measurement matrices ignore the energy concentration characteristic of the natural images in

the sparse domain, which can help to improve the sensing efficiency and the construction efficiency. Here, the authors

propose a simple but efficient measurement matrix based on the Hadamard matrix, named Hadamard-diagonal matrix

(HDM). In HDM, the energy conservation in the sparse domain is maximised. In addition, considering the

reconstruction performance can be further improved by decreasing the mutual coherence of the measurement matrix,

an effective optimisation strategy is adopted in order to reducing the mutual coherence for better reconstruction

quality. The authors conduct several experiments to evaluate the performance of HDM and the effectiveness of

optimisation algorithm. The experimental results show that HDM performs better than other popular measurement

matrices, and the optimisation algorithm can improve the performance of not only the HDM but also the other popular

measurement matrices.

1 Introduction

Compressed sensing (CS), a theory which was proposed by Candès
[1] and Dohono [2], seeks to reconstruct a sparse signal from a small
number of linear measurements efficiently. In CS, the sparsity is an
essential requirement for the signals; however, it is not sufficient for
a signal to be reconstructed successfully. Choosing a suitable
measurement matrix is especially important in CS which ensures
an exact recovery of the signal from the linear measurements with
high probability. Over the past few years, a great deal of
measurement matrices have been proposed. From the perspective
of construction, these matrices can be divided into two categories:
the random matrix and the deterministic matrix. Gaussian random
matrix [3] and Bernoulli matrix [4] are typical random matrices,
which are proved to be satisfied with the restricted isometry
property (RIP) at the earliest and have a good performance during
the simulation process. The performance of dense matrix is limited
by the high computation cost and the huge storage space. To
alleviate the problem, the sparse random matrix [5] was proposed
where most elements are ‘0’ just few ‘1’, which makes the
computation cost lower and the space storage fewer. However, the
random structure is hard to be implemented in hardware. Hence,
the sparse binary but deterministic matrix is proposed. The sparse
binary but deterministic matrix is the ideal measurement matrix for
the hardware implementation. After Dimakis and Vontobel [6]
indicated the tight connection between the channel coding and the
CS, various channel coding matrices are applied in CS as the
measurement matrix, such as the low-density parity check (LDPC)
code [7], the Toeplitz circulant code [8], the BCH code [9], and
the Hadamard code [10] and so on. These coding matrices are
binary and structured, so that it is easy to design them in hardware
implementation. However, these matrices still need a lot storage
space and all the aforementioned matrices are independent of the
signals. What is more, they do not consider of keeping the main
information of the signals more to improve the sensing efficiency
of the measurement matrix. Hence, how to select a simple but
efficient measurement matrix still be an open problem in CS.

In addition, the measurement matrix should have specific
properties to ensure a stable reconstruction of the signals in the CS
framework. Candès and Tao [11] proposed that the measurement
matrix in CS should be satisfied with RIP in order to ensure the
accurate reconstruction. Actually, to verify a measurement matrix
whether satisfies the RIP or not is an extremely complex and hard
problem. Moreover, the RIP is not the necessary condition of
the reconstruction problem, just a sufficient condition. Hence, the
Donoho [12] proposed that the mutual coherence coefficient of the
measurement matrix and the sparse basis can be feasible to
measure the reconstruction condition. The smaller the mutual
coherence coefficient is, the weaker the correlation of the
measurement matrix and the sparse basis is. In addition, Elad [13]
proposed the Spark to describe the correlation of the measurement
matrix and the sparse basis. Then, Baraniuk [14] claimed that if
the measurement matrix is incoherent enough with the sparse
basis, the sensing matrix can satisfy the RIP most likely. Hence,
reducing the coherence between the measurement matrix and the
sparse basis becoming the key of the optimisation for the
measurement matrix. Recently, some works are reported to
improve the quality of reconstruction by decreasing the mutual
coherence. Elad [15] proposed an optimisation algorithm to
iteratively decrease the average mutual coherence, which used a
shrinkage operation followed by a singular value decomposition
(SVD) step. Abolghasemi et al. [16] suggested to segment the
input signal and take random samples with different rates from
each segment to realise a kind of non-uniform sampling.
Duarte-Carvajalino and Sapiro proposed an optimised algorithm
with the aim of decreasing mutual coherence based on the SVD.
Wang and Arce [17] proposed a variable density sampling strategy
by exploiting the prior information about the statistical
distributions of natural images in the wavelet domain, which is
computationally efficient and can be applied to several transform
domains. In another work [18], Wang et al. proposed to generate
coloured random projections using an adaptive scheme. Also,
Duarte-Carvajalino et al. [19] took the advantage of an eigenvalue
decomposition process followed by a KSVD-based algorithm to
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optimise the measurement matrix and learn dictionary, respectively.
Li et al. [20] proposed a gradient descent-based algorithm derived
for solving the optimal sensing matrix problem. Cleju [21]
proposed a novel formulation in the form of a rank-constrained
nearest correlation matrix problem. The results of all previous
methods reveal the improved performance which is an evidence of
the benefits that optimal sampling can provide for this framework.

Motivated by the above concerns, in this paper, we propose a
simple but efficient measurement matrix which is named
Hadamard-diagonal matrix (HDM) for CS. Different from
Hadamard matrix, in HDM, the elements of ‘−1’ are replaced by
‘0’ because {0, 1} coding is more reasonable than the {1, −1}
coding during the hardware implementation. What is more, to
further enhance the sparsity, the main sensing rows and columns
in HDM is fixed by ‘1’, and the others are fixed by ‘0’.
Furthermore, adding the energy distribution limitation of the
natural images in the sparse domain (the discrete cosine transform
(DCT) considered in this paper) can keep more main energy
information of the signals after the sampling, which is extremely
different from the other constructions for the measurement
matrix. Hence, HDM is much sparser than the other sparse binary
matrix.

Another contribution in this paper is to apply a novel approach for
optimising the measurement matrix. According to the properties of
matrix SVD, the smaller the maximum singular value is, the better
the matrix incoherent is. Based on which, we improve the
incoherence of the HDM in this paper. What is more, our
experimental results confirm the robustness of the optimisation
method and show that applying this optimisation method helps in

reducing the reconstruction error and hence both orthogonal
matching pursuit (OMP) and basis pursuit (BP) benefit from this
matrix.

The remainder of the paper is organised as follows: Section 2
introduces the basis theory of CS and the Hadamard matrix. In
Section 3, the energy characteristic of the signals in the DCT
domain and the HDM are presented. In Section 4, an optimisation
strategy for the measurement matrix is presented. In Section 5,
comparative experiments are conducted to evaluate the proposed
matrix. Section 6 gives the final conclusion.

2 Related works

In the rest of this paper, we reserve normal symbols to scalar
variables and boldface symbols to variables for clarity. Table 1
specifies the frequently used variables in this paper.

2.1 Theory of CS

Assume that a signal X [ R
n have a k-sparse representation in some

domain C [ R
n×n. It means X = Cx, and x has only k(k ≤ n)

non-zero entries. The sampling process of CS can be expressed as
a linear projection

y = FX = FCx (1)

where F [ R
m×n(m ≤ n) is the measurement matrix, and A = FC

the sensing matrix. The CS focuses on reconstructing the signal X
with a small number of measurements, it means finding the
sparsest representation of X , namely

min
x

‖x‖0 subject to Ax = y (2)

where ·‖ ‖0 is ℓ0-norm and means the number of non-zero entries
of x (Table 2).

However, the ℓ0-norm problem is an NP hard optimisation.
Hence, a lot of greedy algorithms are proposed, such as matching
pursuit (MP) [22], OMP [23], regularised orthogonal matching
pursuit (ROMP) [24], compressive sampling matching pursuit
(CoSaMP) [25], and sparse adaptive matching pursuit (SAMP)
[26]. Generally, the optimisation problem (2) can also be relaxed
as solving the ℓ1 minimisation [27] as follows:

min
x

x‖ ‖1 subject to Ax = y (3)

where ·‖ ‖1 is ℓ1-norm and means the absolute sum of all entries of x.
We can solve the optimisation problem (3) with the BP [11],

gradient projection for sparse reconstruction algorithm, least angle
regression algorithm, interior point method, and iterative threshold
algorithm. In addition, the matrix A should satisfy RIP [14] to

Table 1 Abbreviation table

Summary of abbreviations and model parameters

X the original signal
x the sparse representation of signal X
F the measurement matrix
y the CS measurements of the signal X
C the sparsifying basis
A the sensing matrix
k the sparsity
m, n the dimensions of the matrices
m the mutual coherence
dk the k-restricted isometry constant
H the Hadamard matrix
I the identity matrix
fi the ith row of the matrix F
cj the jth column of the matrix C
F(i , j) the value of the ith row and the jth column of the matrix F
F(:, i :j) the ith–jth columns of the matrix
U the left singular matrix
L the diagonal singular value matrix
V the right singular matrix
gi , li the ith singular value
G the Gram matrix

Table 2 PSNR, SSIM, and time of the reconstruction images with different measurement matrices in different sampling rates

Method Sampling rate 50% Sampling rate 60% Sampling rate 70%

PSNR, dB SSIM Time, s PSNR, dB SSIM Time, s PSNR, dB SSIM Time, s

HDM 41.45 0.98 0.01 41.75 0.98 0.008 41.49 0.98 0.008
optimised HDM 45.54 0.99 0.33 45.62 0.99 0.41 45.98 0.99 0.81
SpaRan 34.40 0.87 0.03 36.92 0.91 0.04 39.28 0.95 0.04
optimised SpaRan 34.40 0.88 0.45 37.08 0.92 0.54 39.42 0.96 0.90
LDPC 34.61 0.87 12.41 37.06 0.92 15.09 39.33 0.95 17.67
optimised LDPC 34.88 0.89 13.02 37.16 0.92 15.96 39.42 0.95 18.18
BCH 34.07 0.87 2.44 36.69 0.91 2.26 39.50 0.95 2.26
optimised BCH 34.57 0.87 2.72 37.16 0.92 2.76 39.68 0.95 2.89
Hadamard 33.17 0.88 6.96 34.89 0.91 6.65 36.59 0.94 6.68
optimised Hadamard 34.72 0.89 6.91 37.63 0.92 7.01 40.85 0.96 7.29
ToeCir 34.69 0.87 0.02 37.41 0.92 0.02 40.02 0.95 0.02
optimised ToeCir 35.64 0.90 0.39 38.61 0.94 0.52 41.02 0.97 0.83
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guarantee the accurate recovery of the k-sparse signal x from the
measurements y

(1− dk ) x‖ ‖22≤ Ax‖ ‖22≤ (1+ dk ) x‖ ‖22 (4)

where the parameter dk [ (0, 1).
The coherency measured the measurement matrix and the sparse

basis is called ‘mutual coherency’ [28]:

m(F, C) =
��

n
√

max
i≥1,j≤n

kfi, cjl
∣

∣

∣

∣

∣

∣ (5)

where 1 ≤ m ≤
��

n
√

.
The coherence between rows of the measurement matrix, and

columns of representing matrix should be as small as possible. In
other words, the correlation between any distinct pair of columns
in sensing matrix A should be very small, and that means to have
an early orthogonal matrix A. It is shown that random matrices
with Gaussian [3] or Bernoulli [4] distributions are appropriate
choices, as they satisfy this property with high probability and can
be generated non-adaptively.

2.2 Hadamard matrix

Hadamard matrix [2] Hn is an n-dimensional square matrix
consisting of {1, −1}, where n = 2l(l = 1, 2, 3, . . . ). Any two
rows or columns of the Hadamard matrix are orthogonal, namely

HnHn = nIn (6)

H1 = 1, and the 2l-dimensional Hadamard matrix is constructed as
follows:

H2l =
H2l−1 H2l−1

H2l−1 −H2l−1

[ ]

(7)

where l = 1, 2, 3, . . ., and a sample of l = 3 is shown as

1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (8)

3 Hadamard-diagonal matrix

The DCT as a mapping for converting a signal into the frequency
domain is widely used for CS as the sparse basis. The
two-dimensional (2D) version of the DCT for the m× n signal S
is given as follows:

S(u, v) =
2
����

mn
√ C(u)C(v)

∑

n−1

y=0

∑

m−1

x=0

s(x, y)f (x, m)f (y, n) (9)

where

C(u) =
2−(1/2) for u = 0

1 otherwise

{

,

f (x, m) = cos
(2x+ 1)up

2m
and f (y, n) = cos

(2y+ 1)up

2n
.

The DCT has a good energy concentration characteristic which
means the energy of the signal in the DCT domain concentrated in

the upper left of the signal showing as Fig. 1. Fig. 1a is the
natural image Peppers and we can hardly observe its energy
distribution. Fig. 1b shows us the energy distribution of the
Peppers in the DCT domain. The distribution of the energy is
measured by the colour bar with the scale from −8 to 10. With the
increasing of the scale value, the more energy is contained of
the area covered by the colour of which. We can see the energy of
the image concentrates in the upper left corner and is divergent
shaped from Fig. 1b. Generally, the measurements which are
sampled in the sparse domain for CS need reserve the energy as
much as possible to improve the sensing efficiency and even the
reconstruction accuracy.

The Hadamard matrix preforms well in the CS when
reconstructing the signals. However, it is dense as the Gauss
matrix or the Bernoulli matrix, which requires a lot of storage
space and makes the time cost high. What is more, the Hadamard
matrix is not conductive to the hardware implementation and
promotion. Then the block diagonal Hadamard matrix (BDHM)
[10] was proposed by Gan et al., which is sparser to reduce
the storage space and the time cost and which is easier for
the hardware implementation. However, it is restricted by the
dimension of the matrix, which must be the square of 2. So, the
performance of the BDHM is limited. The measurement matrices
above-mentioned never consider the energy concentration
characteristic in the sparse domain. Hence, we propose a novel
measurement matrix, which is called HDM. The HDM considers

Fig. 1 Example natural image

a Peppers

b Its energy distribution image in DCT domain

Fig. 2 Algorithm 1: The optimisation algorithm for HDM F [ R
m×n
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the energy analysis of the DCT domain which is helpful to improve
the sensing efficiency and even the accuracy of reconstruction.
Specifically, we construct the HDM based on the Hadamard
matrix which only keeps the main sensing rows and columns such
as the first row and the first column of the matrix with ‘1’ and the
others with ‘0’. From Fig. 1, we can see the energy of the natural
image in the DCT domain is mainly concentrated in the upper left
corner with the divergence to the centre sometimes. Then, the

elements in diagonal line are set as ‘1’. The construction of HDM
is shown as (10). Compared with the BDHM, there is no
limitation of dimension in HDM. On the other hand, HDM
considers the energy distribution of image. Compared with the
Hadamard matrix, HDM is sparser and easier for the hardware

Fig. 3 Experimental natural images

a Lena

b Boat

c Baboon

d Peppers

Fig. 5 Reconstruction of Lena with the 20% sampling rate and the PSNRs

of different measurement matrices

a BCH, PSNR= 25.02

b Optimised BCH, PSNR= 25.63

c Hadamard, PSNR= 24.74

d Optimised Hadamard, PSNR= 25.77

Fig. 6 Reconstruction of Lena with the 20% sampling rate and the PSNRs

of different measurement matrices

a ToeCir, PSNR= 25.65

b Optimised ToeCir, PSNR= 25.70

c HDM, PSNR= 35.06

d Optimised HDM, PSNR= 35.07

Fig. 4 Reconstruction of Lena with the 20% sampling rate and the PSNRs

of different measurement matrices

a SpaRan, PSNR= 25.52

b Optimised SpaRan, PSNR= 25.61

c LDPC, PSNR= 25.47

d Optimised LDPC, PSNR= 25.77
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implementation

F(i, j) =
1 for i = 1 or j = 1 or i = j,

0 otherwise,

{

(10)

where F [ R
m×n, i [ (1, m), j [ (1, n).

4 Optimisation of the measurement matrix

In general, the non-zero coefficients of the sparse signal are
concentrated in the low-frequency band, while the coefficients
of zero or near zero are concentrated in the high-frequency band.
Therefore, increasing the measurement coefficient in the
low-frequency band of the measurement matrix can obtain more

signal information with the same number of samples, so as to
reconstruct the original signal more accurately. The measurement
matrix retains the most of the coefficients in the low-frequency
band to improve the sensing efficiency. However, the incoherence
of the measurement matrix is reduced inevitably with the
increasing of the coefficients in the low-frequency band of the
measurement matrix. According to the properties of matrix SVD,
the smaller the maximum singular value is, the better the matrix
incoherent is. Based on which, we improve the incoherence of the
measurement matrix in this paper. The complete algorithm is
summarised as Algorithm 1 (see Fig. 2).

We consider the mutual coherence of the measurement matrix F
as follows:

m(F) =
max

1≤i=j≤n
kfi, fjl
∣

∣

∣

∣

∣

∣

fi

∣

∣

∣

∣ fj

∣

∣

∣

∣

∣

∣

. (11)

In general, the smaller the mutual coherence of the matrix is, the
more incoherent the matrix is. We aim to reduce the mutual
coherence of the measurement matrix. Another way to describe the
mutual coherence of the measurement matrix is computing the
Gram matrix G = FTF after normalising each of its columns. The
off-diagonal entries in G are the inner products that appear in (11).
Then the largest magnitude of the off-diagonal entry Gij is the
mutual coherence.

Now, consider the eigen decomposition of F which is

F = ULV
T, (12)

where

UU
T = U

T
U = I , (13)

VV
T = V

T
V = I , (14)

L = L1 0

0 0

[ ]

, L1 = diag(g1, g2, . . . , gq). (15)

The g1, g2, . . . , gq are the singular values of the L and the
t-averaged singular value tg of the L defined as follows:

tg(L1) =
∑

1≤i≤q (gi . t) · gi
∑

1≤i≤q (gi . t)
. (16)

Then the Gram matrix can become

G = FTF = VLT
U

T
ULV

T = VLTLV
T, (17)

which is equivalent to

G = V 1 V 2

[ ] LT
1 0

0 0

[ ]

L1 0

0 0

[ ]

V
T
1 V

T
2

[ ]

= V 1 V 2

[ ] L2
1 0

0 0

[ ]

V
T
1 V

T
2

[ ]

(18)

Fig. 8 Comparison of reconstruction performance (SSIM) from different

optimised measurement matrices versus different sampling rates

Fig. 7 Comparison of reconstruction performance (PSNR) from different

optimised measurement matrices versus different sampling rates

Table 3 PSNR (dB) of the reconstruction of Boat, Baboon, and Peppers images

Method Boat Baboon Peppers

0.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.5 0.6

SpaRan 23.14 26.80 30.70 34.31 37.55 16.83 18.11 19.53 21.26 23.45 25.71 30.26 33.38 35.67 37.79
LDPC 23.11 26.85 30.70 34.36 37.53 17.05 18.35 19.85 21.49 23.60 25.65 30.18 33.41 35.84 37.92
BCH 23.02 26.50 30.76 34.33 37.69 16.54 17.50 19.57 20.91 23.24 25.89 30.05 33.07 35.76 37.42
Hadamard 22.81 26.63 29.80 32.97 35.96 16.33 17.78 19.44 21.09 22.41 25.57 29.05 32.43 34.56 35.14
ToeCir 23.13 27.16 31.22 34.89 38.38 16.62 18.08 19.67 21.51 23.82 20.71 30.64 33.62 35.85 38.15
HDM 34.20 38.04 37.35 40.48 37.38 24.22 27.09 28.84 33.17 34.68 33.18 35.80 36.57 40.12 40.43
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When L1 ≃ I and q ≃ n, (17) can be simplified as follows:

G ≃ V 1V
T
1 ≃ VV

T = I . (19)

The matrix G is infinitely close to the identity matrix, which means
the largest magnitude of the off-diagonal entry Gij is close to 0.

Moreover, the optimisation method reduces the mutual coherence
of the measurement matrix significantly but also keeps high
sensing efficiency. In addition, the experimental results show that
the measurement matrix with modified singular value has better
RIP properties and the reconstruction effect is obviously improved.

5 Experiments

In this section, we conduct several experiments on some 2D natural
images to evaluate the performance of HDM and the optimisation
method. The natural images are shown in Fig. 3. Those images all
are 1024× 1024 pixels. In order to illustrate the performance of
the HDM, we compare HDM with the SpaRan matrix [5], the
LDPC matrix [7], the BCH matrix [9], the Hadamard matrix [10],
and the ToeCir matrix [8]. Moreover, we compare the
reconstruction results with different measurement matrices before
and after optimisation to illustrate the performance of the
optimisation method. There are two parameters (tg, a) considered
in the optimisation method. The tg is set to the mean of the
singular values and the a is set to 6 based on the experiments. In
our experiments, the image in the sparse domain is sampled by
these measurement matrices and the OMP algorithm is set as the
reconstruction algorithm. The reconstruction results of different
measurement matrices are evaluated by the peak signal-to-noise
ratio (PSNR) and the structural similarity index (SSIM). The value
of the SSIM is always between [0, 1]. The greater the value of
both the PSNR and the SSIM, the less the image distortion. All
the experiments are performed on the personal computer with a
3.50 GHz Intel CPU and 4 GB of memory. The computer runs on
windows 10, with MATLAB 2012b.

In the first experiment, we reconstruct Fig. 3a Lena image versus
the SpaRan matrix, the LDPC matrix, the BCH matrix, the
Hadamard matrix, the ToeCir matrix, the HDM, and their
optimised matrices. The sample rate is 20%. Figs. 4–6 show the
reconstructed images via different measurement matrices.
Obviously, the HDM gets a better performance than the other
measurement matrices both before and after the optimisation. In
addition, all the measurement matrices perform better after
optimised. Further, the PSNR of the reconstruction images via the
HDM are the highest in every image under different sampling
rates. Furthermore, Figs. 7 and 8 show the outstanding
performance of the optimisation strategy more vividly.

In the second experiment, we reconstruct all the four experimental
images versus the SpaRan matrix, the LDPC matrix, the BCH
matrix, the Hadamard matrix, the ToeCir matrix, and the HDM
with different sampling rates. The different PSNRs of the
reconstructed images (Boat, Baboon, Peppers) under different
sampling rates are shown in Table 3. We can see the PSNR
improved with the increasing in the sampling rate for all the
matrices from Table 3. Further, the PSNR of the reconstruction
images via the HDM are the highest in every image under
different sampling rates. Furthermore, Figs. 9 and 10 show the
outstanding performance of the HDM more vividly.

Fig. 10 Comparison of reconstruction performance (SSIM) from different

original measurement matrices versus different sampling rates

Table 4 PSNR (dB) of the reconstruction Peppers image

Method LDPC BCH Hadamard ToeCir HDM

DWT 27.35 25.80 35.80 27.75 38.21
DCT 23.54 23.32 22.58 23.70 38.58

Fig. 9 Comparison of reconstruction performance (PSNR) from different

original measurement matrices versus different sampling rates

Table 5 PSNR, SSIM, and time of the reconstruction images with different measurement matrices in different sampling rates

Method Sampling rate 20% Sampling rate 30% Sampling rate 40%

PSNR, dB SSIM Time, s PSNR, dB SSIM Time, s PSNR, dB SSIM Time, s

HDM 35.06 0.93 0.01 38.18 0.96 0.001 39.69 0.97 0.005
optimised HDM 35.07 0.93 0.14 39.32 0.96 0.16 39.61 0.97 0.26
SpaRan 25.52 0.59 0.02 28.99 0.72 0.02 31.85 0.80 0.02
optimised SpaRan 26.44 0.68 0.18 29.29 0.75 0.23 32.27 0.81 0.31
LDPC 25.43 0.59 10.64 28.99 0.72 9.13 31.98 0.81 9.71
optimised LDPC 25.58 0.59 11.28 29.07 0.72 9.66 32.05 0.81 10.89
BCH 25.06 0.59 2.04 28.38 0.72 2.43 31.76 0.80 2.45
optimised BCH 25.63 0.59 2.42 29.06 0.73 2.51 31.96 0.81 2.60
Hadamard 24.62 0.59 6.81 28.47 0.72 6.91 30.22 0.79 6.94
optimised Hadamard 25.77 0.60 6.78 29.18 0.73 6.67 32.36 0.82 6.94
ToeCir 25.58 0.58 0.02 29.18 0.72 0.02 32.08 0.80 0.02
optimised ToeCir 26.30 0.61 0.17 29.65 0.76 0.19 32.66 0.83 0.28
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In the third experiment, we reconstruct all the four natural images
versus the SpaRan matrix, the LDPC matrix, the BCH matrix, the
Hadamard matrix, the ToeCir matrix, and the HDM with different
sparse basis (DCT, DWT). Table 4 shows PSNR of the
reconstructed images where the sampling rate is 25%. Obviously,
the HDM keeps a good performance with different sparse basis
which means the HDM can keep incoherent with these sparse
basis well.

In the fourth experiment, we reconstruct the experimental image
Fig. 1a with all the measurement matrix (the SpaRan matrix, the
LDPC matrix, the BCH matrix, the Hadamard matrix, the ToeCir
matrix, and the HDM) and whose optimised matrix with different
sampling rates. From Tables 1 and 5, we can see the optimised
HDM performs better than the HDM. In addition, the other
optimised matrices also get better reconstruction results than the
original measurement matrices. Which means the optimisation
strategy has a good general applicability. From the time
comparison of the measurement matrices before and after the
optimisation in Tables 1 and 5, we can find the increased time is
very little.

6 Conclusion

In this paper, we propose a simple but efficient measurement matrix
based on the Hadamard matrix for CS. With considering maximising
the energy conservation of the natural images in the sparse domain,
the main sensing rows and columns are fixed in the Hadamard matrix
with ‘1’ and the others with ‘0’ to obtain more energy after the
sampling in the sparse domain, which is helpful to improve the
sensing efficiency even the accuracy of reconstruction. Hence,
HDM is binary and sparse, which will help to be implemented in
hardware. In addition, an effective optimisation algorithm is
adopted, which further improves the quality of reconstruction. The
experiment results show that HDM performs better than other
existing measurement matrices and the optimisation algorithm is
effective for not only the HDM but also the other popular
measurement matrices.
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