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Abstract: This study presents a straightforward method to teach robots to use tools. Teaching robots is crucial in quickly

deploying and reconfiguring robots in next-generation factories. Conventional methods require third-party systems like

wearable devices or complicated vision system to capture, analyse, and map human grasps, motion, and tool poses to

robots. These systems assume lots of experience from their users. Unlike the conventional methods, this study does

not involve learning human motion and skills. Instead, it only learns the object goal poses from the human user whilst

employs regrasp planning to generate robot motion. The method is most suitable for a robot to learn the usage of

electric tools that can be operated by simply switching on and off. The proposed method is validated using a dual-arm

robot with hand-mounted cameras and several tools. Experimental results show that the proposed method is robust,

feasible, and simple to teach robots. It can find a collision-free and kino-dynamic feasible grasp sequences and motion

trajectories when the goal pose is reachable. The method allows the robot to automatically choose placements or

handover considering the surrounding environment as intermediate states to change the pose of the tool and use tools

following human demonstrations.

1 Introduction

Modularised manufacturing cells provide a promising way for the
improvement of productivity in the manufacturing process.
Various tools and workpieces are prepared in a manufacturing cell
for a human worker to perform picking and assembly tasks. The
transition to manufacturing cells proves to be efficient for reasons
such as reducing the time required for transporting materials,
preventing overproduction, as well as simplifying the production
flow. In order for robots to take the place of human workers
(Fig. 1) in manufacturing cells, several challenges have to be
overcome such as teaching the robots which workpieces and tools
to use for a given process, how to pick up workpieces and operate
tools, and when to take advantages of the surrounding fixtures,
and so on.

This research presents a method to handle one of the stated
problems in replacing human workers in a manufacturing cell,
namely teaching a dual-arm robot to use electric tools using
regrasp planning and visual recognition. The advantage of this
method is that it does not require any third-party assisting systems
like wearable devices or complicated visual tracking technology to
capture, analyse, and map human grasps, motion, and tool poses to
robots. Instead, the robot learns the starting pose and goal poses of
an electric tool from human demonstration and automatically
generates manipulation motion using a regrasp planner [1].

Multiple approaches have been developed to simplify the teaching
of robots, such as learning from demonstration (LfD) [2],
reinforcement learning (RL) [2, 3], and end-to-end learning [4, 5].
These approaches usually require some experience with third-party
devices for a human to lead the teaching process. Each of the
approaches has its own limitations. In detail, LfD uses the
mapping from a human teacher to the robot learner to make use of
the teaching data. Most LfD systems use third-party devices such
as head mounted devices and other forms of motion capture tools
to collect the demonstrated task data and employ intricate
algorithms to collect sensory data and shadowing it. RL enables a
robot to discover the near-optimal policy of doing tasks through

trial and error with its environment. It desires much effort to
experiment with real-world robotic systems and requires the
definition of a cost function that can drive the system to converge
and succeed [6]. Inverse RL, as a side method of RL, aims at
solving for the reward function by assuming the knowledge of the
policy for doing a task, which requires collecting all the states and
actions pairs from human demonstrators. End-to-end learning
directly predicts motor commands using sensor input. It requires
large amounts of sensor data to train deep neural networks.

Unlike the conventional approaches, this paper proposes a
straightforward method to teach robots to use tools by
demonstration. The method is most suitable for a robot to learn the
usage of electric tools that can be operated by simply switching on
and off without complicated skills. During teaching, a human user
poses the electric tools to the goal to show how to use it. The
robot learns the object’s goal poses (position and orientation) from
the human user and employs regrasp planning to generate robot
motion considering environmental constraints. The robot is not
instructed to follow any human motion or task requirements.
Robot motion sequences and trajectories are determined and
generated by automatic motion planning.

The proposed method is validated by teaching a dual-arm robot to
use multiple electric tools commonly seen in manufacturing cells.
The tools include an electric screwdriver, an electric plug, an
electric saw, an electric vacuum cleaner, and a mechanical
workpiece (as an example to simulate the components used in
assembly tasks). For teaching the goal poses of the tools, a human
user is asked to demonstrate their usage by placing the tooltips
against the targets (Fig. 2a). The dual-arm robot uses one of its
hand cameras to recognise the tools and the goal poses. After
teaching, the tools are placed on a work table in front of the robot
at arbitrary poses, the robot detects the poses and uses them as the
starting poses of regrasp planning. Both the start and the goal
poses are visualised to the user through a graphical user interface
for easy supervision (Fig. 2b). During the planning process, the
regrasp planner generates a series of motion sequences and
trajectories to reorient the tools to the goal poses taught by the
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human user (Figs. 2c and d ). The results of the various teaching
show that the proposed system enables users with no related
experience to intuitively teach the robot how to use different tools.

The rest of this paper is organised as follows. Section 2 reviews
the work related to our study. Section 4 discusses the regrasp
planning used for the object reorientation, and explains the system
integration. Section 5 details the methods of marker-based visual
recognition. Section 6 presents the experiments and shows their

performance. Section 6.3 carries out a further discussion about the
proposed system performance and highlights its promising points
and challenges. Section 7 concludes our study.

2 Related work

2.1 Online and offline programming

This work studies teaching robots to use tools. Conventional
methods can be divided into two categories, namely online and
offline programming.

Online programming means collecting the required robot poses for
a specific task by following an operator’s instructions. The
consecutive poses are recorded by a controller and are used to
trace the same path repeatedly for the task. Recent studies in
online programming showed an online humanoid robot motion
generation application [7], the use of human motions for
programming a robot [8], an online continuous human action
recognition algorithm [9], and so on. Despite the advantages,
online programming is limited to the operator’s experience, and
cannot adapt automatically to the changes in the robot’s
environment.

Offline programming depends on the full knowledge of the work
cell and is more suitable to program the robots for complex tasks.
Recent works related to offline programming include the
implementation of interfaces for industrial robot’s offline
programming [10], the use of universal kriging to calibrate
offline-programming industrial robots [11], a CAD-based offline
solution for robot programming [12], and the applications of
process planning and offline programming for robotic remote laser
welding systems [13]. Offline programming can adapt in a better
way to the changes of the grasped objects and can be enhanced for
a more robust performance by using different sensory and vision
systems [14, 15].

More specifically, several popular implementations of online and
offline programming are available. They include LfD, RL, automatic
motion planning, and so on. These implementations could be carried
out both online and offline.

2.1.1 Learning from demonstration: LfD is an approach to
generate robot motion by learning from demonstrated data. There
are various approaches to collect the demonstration data from a
teacher, who might be a human, another robot, or the robot itself.
Third-party devices like motion capture systems or sensor data
recording algorithms are widely used in LfD systems [2].

2.1.2 Reinforcement learning: RL, on the other hand, lets the
robot autonomously discover the optimal behaviour for a task by
interacting with the surrounding environment through trial and
error. It has recently been applied to many areas including learning
in robotics. Some limitations of RL include the difficulty in
properly defining the reward functions and the high cost of trial
and error in the real world or using dynamic simulations. Inverse
RL goes the other way by assuming a known optimum behaviour
and solves for the reward function by assuming the knowledge of
the policy for doing a task [6].

2.1.3 Automatic motion planning: Automatic motion
planning finds a collision-free trajectory for a robot to move
objects from starting positions to goal positions. The popular
motion planning algorithms include the optimisation-based
methods like [16, 17] and probabilistic sampling-based method
like [18, 19].

The goal of this study is to teach a robot without much human
interference. Instead of learning human motion, we use motion
planning to automatically generate robot motion. Thus, we are
more interested in the literature related to automatic motion
planning. Especially, we are interested in automatically planning
motion sequences to reorient the pose of target objects (or tools).
The research related to this topic is further reviewed below.

Fig. 2 Teaching a robot to use a tool with regrasp planning

a Human user teaches the robot the goal poses by demonstrating the usage of a tool

b After teaching, the tool is placed arbitrarily on the work table in front of the robot

c Arbitrary starting pose and the taught goal poses are used to plan regrasp motion

sequences and trajectories to manipulate the tool

d Execution: the robot uses the tool following the planned motion

Fig. 1 Replacing human workers in a manufacturing cell with dual-arm

robots
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2.2 Reorientation planning

Industrial manipulators are usually equipped with simple grippers
that are robust, easy to control, and cost-effective [20]. Those
grippers are not dexterous enough for the manipulation tasks.
Therefore, some techniques like task and context-sensitive
optimisation for gripper design [21], vision-based grasping [22]
and regrasping [23] have been studied and implemented. We are
specially interested in regrasp planning which consists in finding a
series of stable placements in order to reach the goal pose of an
object. The object is moved between those placements by the
means of shared grasps. This approach has three main steps: grasp
planning in which the possible grasps are collected, placement
planning in which the stable placements of the object are explored,
and manipulation planning that usually builds a graph of those
placements and their grasps. The task is done by specifying a path
through this graph by selecting robot poses, and grasping
configurations required to reach the final goal of the object
[24, 25]. Another approach [26] presents the idea that the gripper
dexterity does not have to be dependent only on the intrinsic
resources of the gripper itself, but it can also be enhanced by the
environment if used in a determined way, namely extrinsic
manipulation. Some recent studies explore the idea of separation
between the hands made to mimic the human hand and dexterous
hands [27, 28]. Twelve reorientation actions were presented in
[29]. A method of planning extrinsic manipulation based on
motion-cones was presented in [30]. A visually controlled
methodology to control the pivoting motion of extrinsic
manipulation was presented in [31].

The robot motion sequences and trajectories in this paper are
planned using regrasp planning. The basic algorithm is based on
our previous work in [1, 24, 32]. The starting and goal
configurations used by the regrasp planner are obtained using
visual detection.

2.3 Visual detection

A method for recognising and tracking the pose of grasped objects is
crucial to robotic manipulation. Various visual recognition and
tracking techniques have been developed and applied to robotics
such as detecting the line features [33], corners [34], or using
scale-invariant features [35] using RGB images, 3D matching
[36–38] using point clouds obtained from stereo cameras [39] and
structured light patterns [40], and so on. Augmented reality (AR)
markers, particularly, are used to assign digital information to
items in the real world [41]. They are widely used in different
fields [42–44] to provide pose information [45, 46]. The merits of
using AR markers over the features extracted from the appearance
are that they are easier to detect, and they can provide more
precisely estimated poses [47].

In this research, we attach AR markers to electric tools to facilitate
their detection and tracking. Attaching AR markers to the tools is a
reasonable solution since the tools are deployed repeatedly in
manufacturing cells. The advantages of the markers help the robot
quickly and precisely find the tool in a manufacturing cell as well
as learn its operation from demonstrators.

By integrating regrasp planning and AR markers, we implement a
straightforward method to teach robots to use tools by
demonstration. Compared with previous online and offline
programming studies, our method does not require third-party
systems like wearable devices nor complicated visual tracking
technology, and does not assume professional experience from the
demonstrators. Our method only involves learning goal poses from
a human demonstrator and refers to regrasp planning to generate
robot motions to reach the goal poses whilst considering
environmental constraints. The method is particularly promising
for a robot to learn the usage of electric tools that can be
controlled by logic relays.

3 Overview of the system

Fig. 3 shows the workflow of the proposed direct teaching system.
The workflow includes a teaching phase and a planning phase. In
the teaching phase, a human demonstrator is asked to demonstrate
where to move an electric tool to and in what pose should a robot
use it. The human may move the tool to different positions and the
system will record both the times and sequence of usage. In the
planning phase, the planner plans a robot motion to move the tool
from the start to the goal. The planner uses regrasp and handover
to make the robot be able to reorient the pose of the tools.

The left green box in Fig. 3 indicates the starting pose learned
from a human demonstrator. Here, the AR markers attached to the
tool are detected in order to determine the tool’s pose. A grasp
database is used to retrieve candidate grasps to pick up the tool
from the starting pose. This green box corresponds to the human
teaching action in Fig. 2a. The robot uses a camera mounted on its
waist to do pose detection. The demonstrator moves the tool to
two poses. They are recognised by the robot and visualised as blue
goals in Fig. 2c. The operation sequence is encoded by the
different colour intensity – the darker blue indicates an early
operation. The lighter blue indicates a later operation.

The right green box in Fig. 3 indicates the regrasp planning used
to plan the motion sequences and motion trajectories. The input to
the planner includes the observed starting pose and the taught goal
poses. The planner will divide the planning into sub-tasks and
plan the motion between them (e.g. the planner will plan the
motion between the starting pose and the first goal pose, the first
goal pose and the second goal pose etc., sequentially). At the end
of each sub-task, the tool is moved to a goal pose and the robot
will switch it on to do the jobs. The regrasp planner uses the
grasps, the placements, and the handover configurations saved in
the database to build regrasp graphs and compute the solutions.
The planned results will be sent to real robots for execution.

Below we present in detail the implementations of the two
components related to the two green boxes, namely the regrasp
planning component and the vision component.

4 Regrasp planning component

Our regrasp planner was initially developed in [24]. It uses relational
database [48] and regrasp graph [49] to save and plan different levels

Fig. 3 Framework of the work flow of the proposed direct teaching system. The work flow includes a teaching phase and a planning phase. In the teaching phase,

a human user is asked to demonstrate where to move an electric tool to and in what pose should a robot use it. The human may move the tool to different positions

and the system will record both the times and sequence of usage. In the planning phase, the planner plans a robot motion to move the tool from the start to the goal.

The planner uses regrasp and handover to make the robot be able to reorient the pose of the tools
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of regrasp sequences for object reorientation. The regrasp planner
accepts a starting pose and a goal pose as input parameters and
returns a series of robot key poses and grasp configurations. The
key poses are further used as the starting configuration and goal
configuration of a motion planner to generate collision-free and
IK-feasible robot motion.

4.1 Regrasp planning

The regrasp planning problem is a multi-modal searching problem
through a bunch of high-dimensional configuration spaces
connected by low-dimensional manifolds. The starting pose and
goal pose of a regrasp planning problem are usually located in two
different high-dimensional configuration spaces. The planned path
has to pass through several low-dimensional manifolds to reach
the goal. Fig. 4 shows an example of multi-modal planning.
Formally, the search space of a regrasp planning problem is
defined as follows:

S = {C0, M01, C1, M12, C2, . . . }, MijCi ^MijCj (1)

Here, C0, C1, . . . denote the high-dimensional configuration
spaces. M01, M12, . . . denote the low-dimensional manifolds
connecting the high-dimensional configuration space pairs (C0, C1),
(C1, C2), …, Mij is a manifold that is embedded simultaneously in
Ci and Cj. The starting pose and goal pose are usually represented by

qs [ Ci, qg [ Cj, i= j (2)

The first step of the regrasp planning problem is to find a sequence of
key poses p{0:K}, where

p0 � qs, pK � qg

pi [ Cj, pi+1 [M j(j+1), pi+2 [ C j+1, i = 0, 3, . . .

(3)

Then, adjacent key poses are sent to motion planners to find a
smooth trajectory q{0:T}, where

q0 � pi, qT � qi+1, qk [ Cj, k = 0, 1, 2, . . . (4)

The finally planned motion will be

traj = q{0:T0},{T0 :T1},...,{Tx:K} (5)

where each section q{Ti :Ti+1}
is a trajectory. All sections imply a

motion sequence.

4.2 Regrasp planning using a 6-DoF robot with a 2-f
gripper

In the regrasp planning of a 6-DoF robot with a parallel gripper, Ci is
an SE(3) space. Each of the joint angles will be treated as a
dimension of Ci. Mij is an SE(2) × S1 space, where the three
dimensions before the × symbol correspond to the contact
position (R2) and the rotation of the gripper (S1). The additional
dimension after the S1 symbol corresponds to the rotation of a
grasp around the axis connecting the two contact points on the
two finger pads of the 2-f gripper. The opening distance of the
gripper in Mij is determined by the configurations in its host
spaces Ci and Cj. It is not a changeable parameter and is therefore
not treated as a dimension.

In the implementation, the Ci and Mij are further modularised by
grasps. Ci is identified by the opening distance of a gripper. A
configuration in Ci denotes a pose of a robot with the 2-f gripper
installed at its tool centre point (TCP) opened to a specific
distance. Mij is discretised into a set of hand configurations which
are described by the position and rotation the hand. The
discretisation makes the planned trajectory section in Mij discrete.
A robot is able to release and regrasp an object to do reorientation.
On the other hand, if Mij was not discretised, the planned
trajectory section in Mij will be continuous and a robot will use
techniques like in-hand manipulation [30, 50] or extrinsic
manipulation [51, 52] to change object poses.

The implementation includes a grasp planning module, an
intermediate state planning module, and a regrasp graph module.
The grasp planning module plans the grasps by analysing the
geometric meshes and contact of the object and the hand. The
placement planning plans stable placements (intermediate state 1)
of the object on a fixture in the environment (e.g. a table) and the
handover poses (intermediate state 2) for transferring the object
from one robot hand to another. The regrasp graph module uses
the planned grasps and intermediate states to build a graph. The
regrasp planner will search the graph to find the sequence of key
poses. gi is used to represent the grasp that modularises Ci.
A configuration q in Ci could be represented by q

gi . The motion

trajectory in Ci is therefore traji = q
gi
{Ti :Ti+1}

. The configurations that

connect Ci and Cj in Mij are represented by q
gi and q

gj . gi and gj
are connected to each other considering whether they modularise
adjacent configuration spaces and manifolds. The regrasp graph
holds the connections. The grasps are planned by the grasp
planning module. The manifolds Mij s are identified using the
intermediate states.

Some details are as follows. For planning the grasps, the planner
uses 3D mesh models of the tool and the gripper to generate a set of
grasps which are free from the collision between the gripper and
the object. The planner also computes the stable placements of the
object on a horizontal surface to find the stable intermediate states
on a table. The stability of the placement is computed using the
distance between the projection of the centre of mass and the
object convex hull. If this distance is smaller than a given
threshold, the placement is considered unstable and discarded.
Collisions between the object and the placement surface are also

Fig. 4 Regrasp planning problem is a multi-modal searching problem through a bunch of high-dimensional configuration spaces C0, C1, . . . connected by

low-dimensional manifolds M01, M12, . . .
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checked. Then, the set of grasps is refined by eliminating the grasps
that collide with the horizontal placement surface. The other
intermediate states, namely the handover and their associated
grasps, are computed in the same way except that the stability is
computed using the quality of grasp force closure [53]. The
inverse kinematics for the robot are solved for stable placements
and object handover, and the planner builds a graph of the states
and their corresponding grasps. The graph is the aforementioned
regrasp graph. The green net in Fig. 5a shows an example. During
the regrasp task, the planner searches the regrasp graph to find a
path of feasible placements and handover between the initial pose
and the goal pose. The path is converted to the sequence of
keyposes. The black segments in Fig. 5a shows the path. Fig. 5b
shows the converted keyposes.

4.2.1 Motion planning: The adjacent configurations in the
keypose sequence (e.g. Fig. 5b) are then sent to a motion planner
to find a motion trajectory following (5). The planning also has
two modules. One is the path planning module, the other one is
the trajectory optimisation module. The path planning could be
done using widely seen planners like PRM [54], RRT [55], or
their variations (RRT-connect [19], Dynamic Domain RRT [56],
RRT star [57] etc.). Each planner has its advantages. For example,
the PRM method reuse pre-evaluated nodes and is considerably
fast. The RRT and RRT-connect methods easily integrate with
various constraints and output smooth motion. The transition-RRT

method [58] and bridging methods [59] are good at navigating
through narrow configuration passages. In our implementation, we
do not fix the planner to a specific candidate. Instead, the path
planning algorithms are designed to be replaceable. Users may
determine their path planners following the requirements of their
tasks. The path found by the path planner is smoothed by a
random cut algorithm [60] and optimised using five-order
polynomial to avoid jerk [61]. The final output will be a smooth
robot trajectory with reasonable timestamps. A comparison of the
planned path, the smoothed path, and the optimised trajectory is
shown in Fig. 6.

5 Vision component

The pose detection of the manufacturing cell tools is done through
AR markers attached to the tool surface. A hand-mounted RGB
camera captures the pose of the tool in the camera’s local
coordinate system. The local pose is then transformed to obtain the
position and orientation of the tool in the world coordinate system.
A visual interface is used to illustrate the position of the robot, its
environment, and the tool positions, making the system intuitive
and easy to use for human users. Using AR markers with the tools
in the manufacturing cell can be a typical application in which the
markers do not impose a limitation as the same work cell tools
are to be used repeatedly. This section described the calibration of
the hand-mounted cameras and how the object pose is obtained in
the world frame at any arm pose.

5.1 Calibration of the hand-mounted cameras

Fig. 7 shows the problem definition. The relative pose of the
marker in the camera’s local coordinate system is defined as
SCTSM

, where SM indicates the pose of the marker (represented by
a local coordinate system), SC indicates the local coordinate
system of the camera. For simplicity, we remove the S symbol
in the transformation matrix and use C

TM to represent SCTSM
in

the following text. Likewise, the relative pose of the camera to the
world, namely the homogeneous transformation from the camera’s
local coordinate system to the world coordinate system, is defined
as W

TC . The homogeneous transformation from the marker to the
tool local coordinate system is defined as O

TM . The goal of
calibration is to find the homogeneous transformation from the
robot’s TCP, say, the local coordinate system of the end effector,
SEE to SC .

Using AR markers, we can find the poses of the AR markers in the
camera coordinate system. The transformation from the marker to the
world frame W

TM is equivalent to the composed transformations
from the marker to the camera C

TM (detected using vision), and
the transformation from the camera to the world coordinate system

Fig. 5 The regrasp graph and the planned robot key poses

a A planner searches a regrasp graph built considering the intermediate states to get a

path of feasible placements and handover between the initial pose and the goal pose

b the path of states are converted to a sequence of keyposes for motion planning

Fig. 6 Comparison among different planning results

a Planned path

b Smoothed path

c Optimised trajectory

When computing the smoothed path, the iteration times were set to 30. The maximum speed and control interval used to compute the optimised trajectory are 0.1 m/s and 0.008 s. The

length of the grids in the figure is 0.1 m. The black regions are obstacles. The curves in (c) are slightly deviated from (b) due to dynamic constraints
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W
TC . Thus, the transformation from the camera to the world

coordinate system can be computed according to (7)

W
TM =

W
T
C
CTM (6)

W
TC =

W
T
C
MT

−1
M (7)

On the other hand, the transformation from the end effector to the
world coordinate system W

TEE can be precisely obtained using
the kinematics of the robot. The transformation from the camera to
the world coordinate system WTC can be computed as follows:

W
TC =

W
T
EE
EETC (8)

The transformation from the camera to the end-effector coordinate
system is therefore

EE
TC =

W
T
−1W
EE TC (9)

By substituting the W
TC in (9) using (7), EETC is expressed as

EE
TC =

W
T
−1W
EE T

C
MT

−1
M (10)

As mentioned before, W
TEE can be precisely obtained using the

kinematics of the robot. C
TM is the output of visual detection.

EE
TC can be computed by properly setting markers to some

known positions in the world (to let W
TM to be known).

The way we set the markers is using another robot manipulator.
A marker is attached to the end-effector of the second
manipulator. The coordinate system of the marker is manually set
to be the same as the coordinate system of the end effector.
The configuration is shown in Fig. 8. In this case, (11) is
converted to

EE
TC =

W
T
−1W
EE T

C
EE2

T
−1
M (11)

where W
TEE2

denotes the transformation from the second end
effector to the world coordinate system. It can be precisely
obtained using the kinematics of the second robot. Up to this

point, all values in the right part of (11) are known, and the EE
TC

can be solved. In practice, we further move the end effector of the
second manipulator to different positions to get several W

TEE2
,

and employ mean square error optimisation to get an optimal EETC .

5.2 Detecting the pose of a tool

Next, the transformation of an object’s local coordinate system to
the world coordinate system, W

TO, could be decomposed into the
multiplication of the following transformations:

W
TO =

W
T
EE
EET

C
CT

M
MTO (12)

The equation exactly follows the arrows in Fig. 7. W
TO is

decomposed to the transformation from the tool to the marker

Fig. 7 Various coordinate systems used to calibrate a hand-mounted

camera. The camera is drawn as blue blocks in figure

Fig. 8 Using another robot manipulator to hold the AR marker for

calibration. The coordinate system of the marker is manually set to be the

same as the coordinate system of the end effector

Fig. 9 Experimental setup and the different components of the system. The

setup simulates a manufacturing cell with dual UR3 robots. Each arm has a

Robotiq F85 two finger grip. Cameras for marker detection are mounted at

the palm of the gripper

Fig. 11 Teaching the robot to use an electric driver

a1, b1 Taught goal poses

a2, b2 Starting poses

a3, b3 Recorded starting poses (red) and goal poses (blue) (best viewed in colour online)

Fig. 10 Tools used in the experiments

a Electric screwdriver

b Electric plug

c L-shaped object from belt-drive unit

d Electric saw

e Mini vacuum cleaner
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MTO, multiplied by the transformation from the marker to the camera
C
TM , multiplied by the transformation from the camera to the end

effector EE
TC , and finally multiplied by the transformation from

the end effector to the world W
TEE .

These matrices are also known. MTO is determined when the
marker is attached to the tool. C

TM is the output of visual
detection. EE

TC is calibrated using (11). W
TEE be precisely

obtained using the kinematics of the robot. The pose of a tool can
be computed accordingly.

6 Experiments and analysis

6.1 Experimental setup

We use a dual UR3 [Universal Robots: https://www.universal-robots
.com/products/ur3-robot/.] robot to validate the developed teaching
system. The robot setup (the manufacturing cell) is shown in
Fig. 9. Two UR3 arms are hanged with 45° on a support frame.
Each arm has six DoFs. A Robotiq F85 two finger gripper
[Robotiq: https://robotiq.com/products/adaptive-grippers.] and a
Robotiq FT300 [Robotiq: https://robotiq.com/products/ft-300-force-
torque-sensor.] force-and-torque sensor are installed to the end of
the last link as the end effector. An ELP-USBFHD06H-L36
skewless HD camera [ELP: http://www.webcamerausb.com.] is
mounted to one side of the Robotiq F85’s palm for visual
detection. The cameras have a resolution up to 1920 × 1080 pixels
with 30 fps. The camera-gripper setup is zoomed up in the
bottom-right corner of Fig. 9. The environment of the robot is set
to simulate a manufacturing cell with a work table and some
assembly parts in the work space. All the parts are considered for
collision detection while planning the motion of the robot. The
system is controlled using PyManipulator [PyManipulator: https
://github.com/wanweiwei07/pymanipulator.].

6.2 Tasks and performance

In the experiments, the robot learns visually from a human how to
use five tools shown in Fig. 10. The tools include an electric
driver, a plug, and an L-shaped object from a belt-drive unit to
represent a general assembly part, an electric saw, and a mini
vacuum cleaner. Both teaching and automatic planning are
performed for these tools.

6.2.1 Electric driver: In the first task, during the teaching,
a human holds the electric screw driver in its desired goal pose.
The robot learns how to pose the tool into the goal shown by the
human. The goal pose is saved for the planner to use in the task

mode. Figs. 11a1 and b1 show two teaching examples. The
recorded goal poses are shown in blue in Figs. 11a3 and b3.

During planning and execution, the tool is put at a random starting
pose on the work table. Figs. 11a2 and b2 show two examples.
The starting pose is detected by the camera, and is used as the
input of the regrasp planner together with the taught goal pose.
The planner plans the required regrasps along with their
corresponding robot poses and end effector configurations to
reorient the tool from this start pose to the goal pose. The detected
poses corresponding to Figs. 11a1 and b1 are shown in red in
Figs. 11a3 and b3.

Figs. 12a1–a8 show the results of the regrasp planner. The robot
employs two handover (Figs. 12a2, a3 and a6, a7) and one time of
placement (Figs. 12a4 and a5) to reorient the tool. The real-world
execution is shown in Figs. 12b1–b8.

6.2.2 Plug: In the second task, the robot learns about the goal pose
of a plug from the human demonstrator. Similarly, Fig. 13 shows
the two examples carried out with the electric plug. The starting
and goal poses of the tool in each example are detected and saved.
They are drawn in red blue in the simulation environment.
A snapshot sequence of one of the real-world execution is
illustrated in Figs. 14a–h. Two times of handover (Figs. 14d–g)
are used to regrasp the plug and make the goal reachable.

6.2.3 Other tools: In the third task, the robot learns how to pose
an L-shaped mechanical part to simulate an assembly process in the

Fig. 12 Results of learning to use the electric driver

a1–a8 Planned motion

b1–b8 Real-world execution

Fig. 13 Teaching the robot to insert the power plug

a1, b1Taught goal poses

a2, b2 Starting poses

a3, b3 Recorded starting poses (red) and goal poses (blue) (best viewed in colour online)
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work cell. The start pose, the taught goal pose, and their visualisation
are shown in Figs. 15a–c. In the fourth and fifth tasks, the robot
learns how to pose an electric saw, and a mini vacuum cleaner to
goal poses that can be further used for completing another task
using those tools. The starting poses and the taught goal poses of
the saw and the vacuum cleaner as well as their visualisations in
the simulation environment are shown in Figs. 16 and 17. The
sequences of completing those two tasks in simulation and in
reality are shown in Figs. 18 and 19, respectively. The robot is
doing simple pick-and-place without using regrasp.

6.2.4 Performance: All executions of these tools at the given
poses are performed successfully during the experiments. The
system can find a collision-free and kino-dynamic feasible grasp
sequences and motion trajectories when the goal pose is reachable.
The robot automatically chooses placements or handover as
intermediate states to change the pose of the tool. The most costly
result is the one shown in Fig. 12 where the robot employed two
handover and one placement to regrasp and reorient the tool. The
electric draw and the vacuum cleaner tasks are less expensive.
They only require simple pick-and-place motion.

The regrasp planner does not necessarily find a successful motion.
There are cases that the robot cannot reach the given goal, and the
system reports failure. This usually happens to the electric draw

Fig. 14 Executing the planned results to insert the power plug

a–h Real-world execution of grasping the power plug from the detected start pose and posing it into the taught goal pose

Fig. 15 Teaching the robot to pose an L-shaped mechanical part

a Taught goal poses

b Starting poses

c Recorded starting poses (red) and goal poses (blue) (best viewed in colour online)

Fig. 16 Teaching the robot to pose an electric saw

a Taught goal poses

b Starting poses

c Recorded starting poses (red) and goal poses (blue) (best viewed in colour online)

Fig. 18 Executing the planned results to pose the saw

a1–a4 Planned motion of grasping the saw from the detected starting pose (red) and

posing it in the taught goal pose (blue) (best viewed in colour online)

b1–b4 Real-world executions

Fig. 17 Teaching the robot to pose a mini vacuum cleaner

a Taught goal poses

b Starting poses

c Recorded starting poses (red) and goal poses (blue) (best viewed in colour online)

Fig. 19 Executing the planned results to pose the vacuum cleaner

a1–a4 Planned motion of grasping the vacuum cleaner from the detected starting pose

(red) and posing it in the taught goal pose (blue) (best viewed in colour online)

b1–b4 Real-world executions
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and the vacuum cleaner. These two tools have large bodies with few
graspable features. They are difficult to manipulate using 2-finger
grippers. The difficulty is two-fold. For one thing, the regrasp
graph has low connectivity due to the small number of available
grasps. For the other, the motion planning may not be able to find
a feasible motion due to the obstacles in the configuration space.
The obstacles are formed by robot link and joint constraints, as
well as objects in the environment.

The costs of different low-level motion planners (various RRT
variations) are shown in Table 1. The results are the average
values of ten single plans on an Intel Xeon E3-1505M v5 CPU.
The results show that the RRT, RRT-connect, and Dynamic
Domain RRT planner could find a path in <0.2 s. The reason is
our target applications do not have difficult narrow passages.
These RRT variations could meet the requirements of regrasp
planners. An exception is the RRT star method. It is an
optimisation method and is computationally intensive. Using the
RRT star method as the low-level motion planners is inadvisable.

6.3 Discussion

The results show that the developed system is robust and can
automatically choose intermediate states and plan robot motion.
The teaching method is direct as the human user only need to
demonstrate some goal poses. No intermediate motion is recorded
and thus no special skills are desired from the demonstrators. The
tools are assumed to be electric tools which can be switched on
and off using an electric solenoid. These tools are simple to use –

posing the tooltip to targets and turning on the power. There is no
need to perform complicated skills like pushing, knocking,
winding, and so on.

Also, the system allows teaching multiple goal poses. The human
demonstrator may move the tooltip to different targets with a special
task order. The system will record both the tool poses at these targets
and their order. The planner is able to plan a motion to move the tool
to the goal poses following the taught order.

The assumption of electric tools limits the application of
the system. It cannot be used to teach the usage of general tools
like manual drivers, wrenches, knives, and so on. In these cases,
the robot not only needs to learn the goal pose of the tools, but
also need to learn the motion trajectories. For example, the tooltip
of a manual driver must be winded with a certain degree, released
from the head of the screw, and winded back to start over. Using
such tools needs complicated motion skills. There are two
solutions to incorporate the motion skills. One is to save the
motion skills as a skill database, and use affordance [62] and
adaption [63] to retrieve and reuse the saved skills. The second
one is to discretise the skills to some key goals and develops a
planner that generates smooth motion to connect the key goals.
The generated smooth motion is expected to approximate the
taught skills and thus allow the robot to learn from human
demonstration. The first solution has been explored by many
far-seeing researchers in the last decades. It requires a large skill
base and well-perceived target information for motion adaption,
which is difficult to our system. The second one is a promising
solution and is to be implemented as a future work. The
implementation of teaching in this paper, as mentioned before,
plans multiple regrasps between the taught goal poses. It is a
preliminary implementation. Between the goal poses, the robot
does not necessarily maintain the same grasping configuration.
After reaching the previous goal, the robot may release the tool,
regrasp it, and move it to the next goal. This implementation does
not allow the robot to smoothly or continuously move to the
taught goals (the discretised key goals) and generate smooth

motion to approximate the complicated motion skills. In the future,
we will develop a planner that allows maintaining the same grasp
configuration for all discretised goals and enables teaching a robot
to use non-electric tools.

7 Conclusions and future work

The paper introduced a direct method for teaching robots in
manufacturing cells how to use electric tools. The proposed
method integrates regrasp planning with vision feedback for
detecting starting poses and generates robot motion to move the
tools to the taught goal poses. Through multiple experiments,
the proposed method proves robust, feasible, and simple to the
teaching of robots. It can find a collision-free and kino-dynamic
feasible grasp sequences and motion trajectories when the goal
pose is reachable. The method allows the robot to automatically
choose placements or handover considering the surrounding
environment as intermediate states to change the pose of the tool.

To our best knowledge, the method is the first study that uses
regrasp planning for LfD. Despite the novelty and feasibility, there
is a long way to go to finally implement full direct teach and
planning. The first problem is precision. While the tool could be
manipulated to the goal pose, it cannot be easily attached to
targets like the head of a screw, the holes of an electric outlet, and
so on. It is necessary to include real-time visual feedback with the
AR markers and force control to obtain the correct attachment.
Second, as mentioned in the experimental section, it would be
advisible to develop a planner that can maintain the same grasp
configurations for all taught goals and enables teaching a robot
complicated motion skills.
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