
Enhanced CNN for image denoising ISSN 2468-2322

Received on 8th November 2018

Revised on 27th December 2018

Accepted on 7th January 2019

doi: 10.1049/trit.2018.1054

www.ietdl.org

Chunwei Tian1,2, Yong Xu1,2 ✉, Lunke Fei3, Junqian Wang1,2, Jie Wen1,2, Nan Luo4

1Bio-Computing Research Center, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, People’s Republic of China
2Shenzhen Medical Biometrics Perception and Analysis Engineering Laboratory, Harbin Institute of Technology, Shenzhen,

Shenzhen 518055, People’s Republic of China
3School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, People’s Republic of China
4Institute of Automation Heilongjiang Academy of Sciences, Harbin 150090, People’s Republic of China

✉ E-mail: yongxu@ymail.com

Abstract: Owing to the flexible architectures of deep convolutional neural networks (CNNs) are successfully used for

image denoising. However, they suffer from the following drawbacks: (i) deep network architecture is very difficult to

train. (ii) Deeper networks face the challenge of performance saturation. In this study, the authors propose a novel

method called enhanced convolutional neural denoising network (ECNDNet). Specifically, they use residual learning

and batch normalisation techniques to address the problem of training difficulties and accelerate the convergence of

the network. In addition, dilated convolutions are used in the proposed network to enlarge the context information and

reduce the computational cost. Extensive experiments demonstrate that the ECNDNet outperforms the state-of-the-art

methods for image denoising.

1 Introduction

Image denoising is a classical technique of image restoration and has
been successful in many fields such as pathological analysis and
human entertainment [1, 2]. The degradation model is widely used
in denoising problem to recover clear image, which is expressed
as y = x+ m, where x is a clean image, y is a noisy image and m

is the additive Gaussian noise with standard deviation s. According
to the Bayesian theory, it is known that the prior is very important
for image denoising [3]. For example, wavelet transformation with
a prior of Markov random field is used to suppress noise [4].
Combing the self-similarities and sparse representation can improve
the performance and reduce the storage for image denoising [5].
Block-matching and 3D filtering (BM3D) converts 2D image data
into 3D data arrays and uses the sparse method to deal with the
obtained 3D data arrays to remove noise [6]. Enforcing the gradient
histogram of the noisy image is approximate to the theoretical
gradient histogram of the clean image for image denoising [7]. In
addition, Nonlocally centralised sparse representation (NCSR) [8],
gradient methods [9, 10], total-variation methods [11, 12] and
weight nuclear norm minimisation (WNNM) [13] are also very
effective for image denoising.

Although the above methods have obtained great performance for
denoising task, they still face the following problems [3]: (i) they
need to set manually the parameters to obtain the optimal results.
(ii) They use complex optimisation to improve the performance,
which increases the computational cost.

Owing to the flexible connection fashion of the deep network
architecture and strong learning ability, deep learning techniques
have become the most effective methods to address the above
problems for image denoising. Specifically, deep convolutional
neural networks (CNNs) have attracted more attention in image
denoising [14]. For example, CNN uses residual learning method
to improve the performance in image denoising [3]. It first uses a
model to deal with multiple restoration tasks such as image
denoising, image super-resolution and image deblocking. The
fusion of CNN and characteristics of denoisng task is useful to
remove unknown [15]. Combining CNN and nature of images is
very effective to obtain a clean image. For example, CNN utilises
non-local similarity to deal with colour noisy images [16].

Discriminative learning methods embedded into optimisation
method obtain great performance for real noisy images [17]. CNN
consolidated unsupervised learning is a good choice for image
restoration [18]. Using the principle of enhanced signal-to-design
novel network architecture is also very popular to recover image
[19]. Integrating spatial domain into CNN can better filter noise
[20]. The combination of traditional denoising methods and CNN
such as BMCNN is very competent to separate noise from noisy
image [21]. The fusion of multiple features is very beneficial for
image denoising [22]. Deep CNN has good visual effects on
multiplicative noises [23]. Deep CNN is a good tool for medical
image denoising [24, 25]. The recently proposed deep cascade
convolutional residual denoising network (DCCRDN) repeatedly
uses concatenate operations to train the models for image
denoising [26]. Although the above deep network methods have
obtained great performance for denoising tasks, most of these
methods suffer from the drawbacks of vanishing or exploding
gradients when the network architecture is very deep. In addition,
the above methods sacrifice the computational cost to improve the
performance. For example, they apply multiple concanation
operations to train the denoising model.

In this paper, we propose a novel network referred to as enhanced
convolutional neural denoising network (ECNDNet). ECNDNet
utilises residual learning technique [27] to prevent vanishing and
exploding gradient problems. Moreover, batch normalisation (BN)
[28] is used to accelerate the convergence of the trained model and
make the network easy to train. To decrease the computational
burden, we use dilated convolution [29] to capture more context
information. Extensive experiments demonstrate that our proposed
ECNDNet method outperforms the popular image denoising
methods such as fast and flexible denoising net (FFDNet) [15],
image restoration CNN (IRCNN) [17] and BM3D [6].

The main contributions of this work are summarised as follows:

(i) The depth of the proposed ECNDNet is only set to 17 layers,
which can effectively reduce the computational cost.
(ii) ECNDNet uses residual learning mechanism to prevent
vanishing and exploding gradient problems. Besides, it utilises BN
technique to normalise data and improve the efficiency of the
training model.
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(iii) ECNDNet uses dilated convolutions to enlarge the receptive
field and improve the performance.

The remaining of this paper is organised as follows. Section 2
presents related work of the proposed method. Section 3 provides
the proposed method. Section 4 shows the extensive experimental
results of this paper. Section 5 offers the conclusion.

2 Related work

2.1 BN and residual learning

One of the reasons for CNN’s success is its end-to-end connection.
The end-to-end connection architecture of CNN generally includes
initial parameter [30], gradient optimisation methods [31, 32] and
rectified linear unit (ReLU) [33]. Although the general network
architecture has obtained good performance, they face vanishing/
exploding gradient problems and have difficulty in training deep
networks. In this paper, we use BN and residual learning to
address the above problems. The detailed information about
BN [27] and residual learning [28] are explained as follows: the
distribution of sample data is changed after it passes the
convolution layer. This phenomenon is called internal covariate
shift problem. This problem can be addressed by BN technique.
That is, first, BN normalises the training data in every batch. Then,
it uses scale and shift operations to recover the distribution of
training data. The above two important parameters of BN are
updated when the trained network is back propagation. BN is set
before the activation function of each layer. BN enjoys the
following merits: (i) it can accelerate the convergence of the
training model and makes the network easier to train. (ii) It makes
the different batches of training data keep uniform distribution and

improves the performance of the network. (iii) It has low
sensitivity for initialisation.

To the best of our knowledge, although increasing the depth of
network can improve the performance for image denoising, deeper
network may lead to the vanishing or exploding gradient
problems. Residual learning is a good tool to solve this problem. It
mainly adds the input (original images) and residual block (the
output of several feature layers) as the input of the current layer to
guarantee the performance. As shown in Fig. 1, we assume that x
and f (x) represent the input and the output of stack several layers,
respectively. The input of the next layer of the stack several layers
is f (x)+ x.

2.2 Dilated convolution

As we know, more features can improve the performance for image
processing [34–36]. Enlarging the receptive field in the CNN is very
effective for extracting more features for image denoising [37]. There
are two popular ways to enlarge the receptive field: (i) enlarging the
width of the network (also referred to as increasing the filter size).
(ii) Increasing the depth of the network. However, the first way
may produce more parameters, which results in over fitting of the
network. It also increases the computational cost. The second way
may lead to vanishing/exploding gradients when the depth of the
network is big. As a consequence, dilated convolution is a good
choice to balance the above ways. Dilated convolution uses a
dilated filter with dilation factor f to increase the obtained
information. That is, a dilated filer can be expressed as a filter with
size (2f + 1)(2f + 1). For example, when is 1, the receptive field
of the first layer is 3. The receptive fields of the other layers are 5,
7, 9,…, respectively. In addition, combining the dilated filter and
the convolutional kernel of 3× 3 is very popular for image
processing [29]. For more details on dilated convolution, please
refer to [29].

3 Proposed denoising method

3.1 Network architecture

According to the previous research, we know that the denoising
method can be expressed as y = x+ m. In this paper, the objective
function of learning f (y) is as follows:

l(p) =
1

N

∑

N

j=1

f yj; p
( )

− yj − xj

( )∥

∥

∥

∥

∥

∥

2

(1)

Formula (1) is the objective function to train the denoising model,
where p represents the parameters, yj represents the jth noisy
image patch and xj represents the jth label image patch.
Specifically, the image patches can reduce the computational costFig. 1 Idea of residual learning mechanism

Fig. 3 Architecture of CRNet

Fig. 2 Architecture of ECNDNet
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and learn more features [38]. Thus, we divided the image into
patches is reasonable for image denoising. In addition, very deep
architecture is another non-ignorable factor which can result in
vanishing or exploding gradient problems. As a result of these
concerns, we proposed a novel network called ECNDNet.
ECNDNet consists of dilated convolution, residual learning, BN,
convolution (Conv) and ReLU. We empirically find that sets the
dilated convolution to the 2nd, 5th, 9th and 12th layers can not
only increase the captured information, but also reduces the
computational cost than that of each layer with dilated
convolution. Moreover, the use of BN and residual learning makes
this network more effective for image denoising. The architecture
of the designed network is shown in Fig. 2. Also the depth of the
proposed network is 17. It has four types in this network: Conv,
ReLU, BN and dilated Conv. Specifically, they are convolution,
rectified linear units, BN and dilated convolution, respectively.
The 1st and 16th layers are Conv +ReLU. The 2nd, 5th, 9th and
12th layers are dilated Conv +BN+ReLU. Specifically, the dilated
factor is important to enlarge the receptive field for dilated
convolution. Here we use dilated factor of 2 and the receptive
fields of all 17 are 3, 7, 9, 11, 15, 17, 19, 21, 25, 27, 29, 33, 35,
37, 39, 41 and 43, respectively. It can map the context features
from 3× 3 to 43× 43. The final layer is Conv. The other layers
are Conv +BN+ReLU. The size of the convolutional kernels is
128× 1× 40× 40 for the first and the last layers, respectively.
The size of other convolutional kernels is 128× 64× 40× 40.

The merits of the proposed method have three-fold: (i) it uses
17 layers network and residual learning to prevent the problems of
vanishing or exploding gradients. (ii) It uses BN technique to
accelerate convergence and make the network easier to train.
(iii) It uses dilated convolutions to enhance the performance of the
designed network and reduce the computational cost.

3.2 Discussion

The proposed method relies on residual learning, BN and dilated
convolution, they are complementary for image denoising. In this
part, we will prove the effectiveness of these methods for

Fig. 7 Guassian denoising results of CRRBNet and ECNDNet on BSD68 is

shown. CRRBNet has BN and ReLU and residual learning. ECNDNet

includes BN, ReLU, residual learning and dilated convolution. They are

trained with s = 15

Fig. 6 Guassian denoising results of CRNet and CRRBNet on BSD68 is

shown. CRNet only has convolution and ReLU. CRRBNet includes BN and

ReLU and residual learning. They are trained with s = 15

Table 1 Average PSNR (dB) results from different methods on BSD 68

Methods BM3D WNNM EPLL MLP CSF TNRD IRCNN ECNDN

s = 15 31.07 31.37 31.21 — 31.24 31.42 31.63 31.71
s = 25 28.57 28.83 28.68 28.96 28.74 28.92 29.15 29.22
s = 50 25.62 25.87 25.67 26.03 — 25.97 26.19 26.23

Fig. 5 Architecture of CRRBNet

Fig. 4 Architecture of CRRNet
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Fig. 8 Denoising results of one grey image from BSD68 with s = 50

a Original image

b BM3D/22.56 dB

c Noisy/15.07 dB

d WNNM/22.83 dB

e EPLL/22.81 dB

f ECNDNet/23.19 dB

Table 2 Average PSNR (dB) results of different methods on widely used 12 images with noise levels 15, 25 and 50

Images C.man House Peppers Starfish Monarch Airplane Parrot Lena Barbara Boat Man Couple Average

noise level s = 15
BM3D [6] 31.91 34.93 32.69 31.14 31.85 31.07 31.37 34.26 33.10 32.13 31.92 32.10 32.37
WNNM [13] 32.17 35.13 32.99 31.82 32.71 31.39 31.62 34.27 33.60 32.27 32.11 32.17 32.70
EPLL [38] 31.85 34.17 32.64 31.13 32.10 31.19 31.42 33.92 31.38 31.93 32.00 31.93 32.14
CSF [44] 31.95 34.39 32.85 31.55 32.33 31.33 31.37 34.06 31.92 32.01 32.08 31.98 32.32
TNRD [42] 32.19 34.53 33.04 31.75 32.56 31.46 31.63 34.24 32.13 32.14 32.23 32.11 32.50
IRCNN [17] 32.55 34.89 33.31 32.02 32.82 31.70 31.84 34.53 32.43 32.34 32.40 32.40 32.77
ECNDNet 32.56 34.97 33.25 32.17 33.11 31.70 31.82 34.52 32.41 32.37 32.39 32.39 32.81
noise level s = 25
BM3D [6] 29.45 32.85 30.16 28.56 29.25 28.42 28.93 32.07 30.71 29.90 29.61 29.71 29.97
WNNM [13] 29.64 33.22 30.42 29.03 29.84 28.69 29.15 32.24 31.24 30.03 29.76 29.82 30.26
EPLL [38] 29.26 32.17 30.17 28.51 29.39 28.61 28.95 31.73 28.61 29.74 29.66 29.53 29.69
MLP [45] 29.61 32.56 30.30 28.82 29.61 28.82 29.25 32.25 29.54 29.97 29.88 29.73 30.03
CSF [44] 29.48 32.39 30.32 28.80 29.62 28.72 28.90 31.79 29.03 29.76 29.71 29.53 29.84
TNRD [42] 29.72 32.53 30.57 29.02 29.85 28.88 29.18 32.00 29.41 29.91 29.87 29.71 30.06
IRCNN [17] 30.08 33.06 30.88 29.27 30.09 29.12 29.47 32.43 29.92 30.17 30.04 30.08 30.38
ECNDNet 30.11 33.08 30.85 29.43 30.30 29.07 29.38 32.38 29.84 30.14 30.03 30.03 30.39
noise level s = 50
BM3D [6] 26.13 29.69 26.68 25.04 25.82 25.10 25.90 29.05 27.22 26.78 26.81 26.46 26.72
WNNM [13] 26.45 30.33 26.95 25.44 26.32 25.42 26.14 29.25 27.79 26.97 26.94 26.64 27.05
EPLL [38] 26.10 29.12 26.80 25.12 25.94 25.31 25.95 28.68 24.83 26.74 26.79 26.30 26.47
MLP [45] 26.37 29.64 26.68 25.43 26.26 25.56 26.12 29.32 25.24 27.03 27.06 26.67 26.78
TNRD [42] 26.62 29.48 27.10 25.42 26.31 25.59 26.16 28.93 25.70 26.94 26.98 26.50 26.81
IRCNN [17] 26.88 29.96 27.33 25.57 26.61 25.89 26.55 29.40 26.24 27.17 27.17 26.88 27.14
ECNDNet 27.07 30.12 27.30 25.72 26.82 25.79 26.32 29.29 26.26 27.16 27.11 26.84 27.15
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image-denoising. Here CRNet, CRRNet and CRRBNet have the
same the number of network layers, convolutional kernel size and
initial parameters. Specifically, CRNet consists of Conv and ReLU
as shown in Fig. 3, where Conv and ReLU denote the convolution
and rectified linear units, respectively. CRRNet consists of Conv,
ReLU and residual learning technique as shown in Fig. 4. Here
Figs. 1–4 are the schematic diagrams, in this paper CRRBNet
consists of Conv, ReLU, residual learning and BN as shown in
Fig. 5. First, we illustrate the peak signal-to-noise ratio (PSNR) of
every training epoch for CRNet and CRRBNet. From Fig. 6, we
know that the combination of BN and residual learning is effective
for image denoising. Then, we prove that the dilated convolution
is useful for image denoising as shown in Fig. 7.

4 Experimental results

4.1 Experimental setting

We design a 17-layer network called ECNDNet. Its depth is the same
as denoising CNN (DnCNN). Its loss function (also referred to as
objective function) is shown as in (1). We choose Adam [39] to
optimise the converge model. The initial parameters are set as
follows: (i) learning rate, beta_1, beta_2 and epsilon are 1×10−3,
0.9, 0.999 and 1×10−8, respectively. (ii) The initial weights are set
as shown in [40]. (iii) The number of batches is 128. (iv) The
number of epochs is 180 for the trained model. In addition, the
learning rates of the 180 epochs are 1×10−3 to 1×10−8.

We choose PyTorch tool [41] to train the denoising model in this
paper. All the experiments are implemented in the environment of
Ubuntu 16.04 and python 2.7 and run on PC with Intel Core i7
7800X CPU, RAM 16G and a Nvidia GeForce GTX 1080 Ti
GPU. The types of Nivdia CUDA and cuDNN are 9.0 and 7.5,
respectively.

4.2 ECNDNet for grey image denoising

We choose 400 images [42] with size of 180× 180 for Gaussian
denoising. The format of training images is ‘.png’. According to
the IRCNN [17] and fast and flexible denoising network (FFDNet)
[15], we use BSD68 [43] and Set 12 to test the denoising model.
In addition, we use popular methods such as BM3D [6], WNNM
[13], expected patch log likelihood (EPLL) [38], cascade of
shrinkage fields (CSF) [44], trainable nonlinear reaction diffusion
(TNRD) [42], IRCNN [17] and multi-layer perceptron [45] to
verify the performance of gray image denoising. To test the
robustness of our proposed method for low-level and high-level
noise, we choose s = 15, s = 25 and s = 50 to conduct
comparative experiments. For example, the PSNR of our proposed
method is 31.71 dB higher than that of the state-of-the-art method
such as IRCNN as shown in Table 1 s = 15( ). Besides, theFig. 9 Widely used 12 images

Fig. 10 Denoising results of one grey image with s = 15

a Original image

b BM3D/31.85 dB

c Noisy/24.59 dB

d WNNM/32.71 dB

e EPLL/32.10 dB

f ECNDNet/33.11 dB
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best and second best performance are shown in italic and bold,
respectively.

We use Fig. 8 to vividly show the performance of our method and
other comparative methods with s = 50 on BSD68 dataset. To show
the performance of our proposed method for the images of different
categories, we validate it using the Set12 dataset.

From Table 2, it is known that our proposed method has good
performance for each category image (Fig. 9). For example, the
average PSNR of our method is 30.39 dB higher than that of
BM3D when noise level is 25. Specifically, the best PSNR is
marked in italic and the second PSNR is marked in bold as shown
in Table 2. The detailed results of the comparative experiments are
shown in [3, 15, 17]. Fig. 10 shows the denoising performance of
different methods of an image.

5 Run time

PSNR and run time of processing an image are two important factors
of image denoising. The performance of the proposed method has
been proved in Section 4.2. The run time of processing an image
is tested for gray image denoising as follows. We utilise noisy
image sizes of 256× 256, 512× 512 and 1024× 1024 with
s = 50 to test the speed of different methods for an image.
Specifically, we use PyTorch to test run time of DnCNN-s and
ECNDNet. From Table 3, we know that our ECNDNet is
competitive with popular methods such as BM3D, WNNM, EPLL,
CSF, TNRD and DnCNN-s in run time. In summary, our proposed
method is robust for image denoising.

6 Conclusion

In this paper, a deep CNN called ECNDNet is proposed to solve the
image denoising problem.

Specifically, BN, residual learning and dilated convolution are
used to enhance network performance. BN can deal with internal
covariate shift problem and makes the network easier to train.
Residual learning technique can address the problem of vanishing
or exploding gradients. It is used to obtain clean images from
noisy images and residual images. Dilated convolution can extract
more context information and reduce the computational cost.
In addition, BN, residual learning and dilated convolution are
complement for image denoising. Extensive experiments show that
ECNDNet is more effective than the popular denoisng methods
such as IRCNN. In the future, we will combine model base-
optimisation and discriminative learning methods to remove the
noise from real noisy images.
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