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Abstract: The teaching-learning-based optimisation (TLBO) algorithm is a population-based metaheuristic inspired on the
teaching-learning process observed in a classroom. It has been successfully used in a wide range of applications. In this
study, the authors present a variant version of TLBO. In the proposed version, different weights are assigned to students
during the student phase, with higher weights being assigned to students with better solutions. Three different
approaches to assign weights are investigated. Numerical experiments with benchmark instances of the flow-shop
and the job-shop scheduling problems are carried out to investigate the performance of the proposed approaches.
They compare the proposed approaches with the original TLBO algorithm and with two variants of TLBOs proposed in
the literature in terms of solution quality, convergence speed and simulation time. The results obtained by the
application of a Friedman statistical test showed that the proposed approaches outperformed the original version of
TLBO in terms of convergence, with no significant losses in the average makespan. The additional simulation time
required by the proposed approaches is small. The best performance was achieved with the approach of assigning a

fixed weight to half the students with the best solutions and assigning zero to other students.

1 Introduction

Heuristic optimisation algorithms are useful due to their ability to
find good solutions to optimisation problems in an acceptable time
[1]. Researchers have developed various heuristic optimisation
techniques with different characteristics; many of them inspired by
different phenomena observed in nature. Examples of heuristic
techniques include particle swarm optimisation (PSO) [2], genetic
algorithm (GA) [3] and ant colony optimisation [4].

Among all the heuristic optimisation methods proposed in
the literature, the teaching—learning-based optimisation (TLBO)
algorithm [5] is a promising one. As mentioned earlier, TLBO
is a population-based algorithm that simulates the dynamics of
teaching—learning processes. TLBO has been successfully used in
a wide range of optimisation problems [6-10], with an additional
advantage of a reduced number of parameters [11].

Several variants of TLBO have been developed to enhance the
balance between the diversification and the intensification
capabilities of the algorithm in order to improve its performance
on complex optimisation problems. Incorporating elitism [11],
variable population [12] and dynamic group strategy (DGS) [13]
are among the successful variants of TLBO. Despite the good
results achieved by these variants, there are still opportunities for
further enhancements.

In this paper, we propose a new variant of the TLBO algorithm.
In the proposed variant, different weights are assigned to students
during the student phase, with higher weights being assigned to
students with better solutions. The proposed approach is similar
to the roulette wheel selection operator used in GAs [3], in which
candidates with better fitness values have a higher probability
of being chosen. We propose three different approaches to assign
weights to students. We perform numerical experiments using
benchmark instances of the classical flow-shop and job-shop
scheduling problems, which are proven to be non-deterministic
polynomial-time (NP)-hard combinatorial problems.

Both the flow-shop and the job-shop scheduling problems are
combinatorial problems that appear in many practical situations.
Also, previous researches have already shown that TLBO presents

a competitive performance to solve these problems [6, 14]. So, the
testbed used in this paper is appropriate to assess the performance
of the proposed TLBO variants.

The remaining sections of this paper are organised as follows.
Section 2 summarises the related papers on TLBO improvements.
Section 3 describes the original version of TLBO and presents the
shop scheduling problems considered in this paper. Section 4
introduces the proposed modified version of TLBO. Section 5
presents the results obtained with the proposed version of the
TLBO algorithm in benchmark instances of the shop scheduling
problems. Concluding remarks and suggestions for future research
are presented in Section 6.

2 Related works

In the past few years, several papers proposing variants of TLBO
have been published. In [11], Rao and Patel proposed an
elitist TLBO (ETLBO). In the ETLBO, the best candidate
solutions found in each iteration are preserved. In [15], Rao and
Patel proposed the use of multiple teachers and the adaptation
of the teaching factor aiming at improving the diversification and
intensification capabilities of TLBO. In [16], Chen et al
incorporated local learning and self-learning methods in TLBO.

To decrease the computational cost and improve the global
performance, Chen et al. [17] introduced the area copying operator
of the producer—scrounger model in TLBO. In this model, the
producer exploits new positions according to its ability along with
a random angle and a maximal radius. The scroungers search
around the producer. The convergence speed may be improved
since producers and scroungers exploit the new positions when the
diversity of the algorithm is lost.

In [12], Chen et al. proposed a modified TLBO with a variable
population size (PS) to reduce the computational cost of TLBO.
In the increasing phase, new individuals are generated according
to a normal distribution with adaptive mean and variance. In the
decreasing phase, individuals with high similarity are removed
from the current population.
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n [13], Zou et al. proposed a modified TLBO with a DGS
(DGSTLBO). Different from the original TLBO algorithm,
DGSTLBO enables each learner to learn from the mean of his
corresponding group, rather than the mean of the whole class,
during the teacher phase. The effectiveness of DGSTLBO was
assessed with experiments using benchmark functions and showed
promising results.

In [6], Baykasoglu et al. investigated the performance of the basic
version of TLBO in the solution of job-shop and flow-shop
scheduling problems. They compared the TLBO performance in
the solution of the flow-shop scheduling problem with the
performance of other optimisation algorithms such as the novel
PSO algorithm and the hybrid PSO algorithm, and showed that
TLBO in its basic version provided a very close performance
in comparison with known solutions in the literature. Similar
results were observed for the job-shop scheduling problem, with
TLBO in its basic version presenting a very close performance
when compared with other optimisation methods such as the
beam search algorithm [18] and the GRASP algorithm [19],
among others.

Modified versions of TLBO to solve multi-objective optimisation
problems have been developed [20-22]. The literature also
contains hybrid methods that combine TLBO with other
algorithms [23-25].

As can be noted, different strategies to reduce the computational
cost or improve the capability of escaping from local minima have
been incorporated in TLBO. Recent reviews on the application of
TLBO in different classes of optimisation problems can be found
in [26, 27]. Similarly, the variant proposed in this paper aims at
reducing the computational cost of TLBO while preserving its
optimisation performance. Moreover, the variable student weight
strategies proposed in this paper can be incorporated in most of
TLBO variants already proposed in a straightforward way.

3 Theoretical background
3.1 Teaching-learning-based optimisation

The TLBO algorithm is a population-based metaheuristic inspired by
the dynamics of teaching—learning processes [5]. The algorithm is
composed of two main phases, namely the teacher phase and the
learner phase. The learner phase is often referred to as the student
phase. The teacher phase simulates the learning process, in which
students gain new knowledge from the teacher. The learner phase
simulates the learning process, in which students learn through the
interactions among themselves.

Each student produces a solution denoted by X. The solution X
represents a candidate solution for the optimisation problem at
hand. The solutions produced by the students are evaluated and a
fitness value f(X) that quantifies the quality of each solution is
computed for all candidate solutions. In the flow-shop and the
job-shop scheduling problems, each candidate solution X contains
a sequence to execute the jobs in the available machines, and the
fitness value of each solution represents the total amount of time
needed to execute all the jobs, also called makespan.

The student with the best solution in each iteration of the algorithm
is called the teacher. Fig. 1 illustrates the implementation of the
TLBO algorithm [5]. The phases of the TLBO are described in
more details in the next sections.

3.1.1 Teacher phase: During this phase, the algorithm mimics
the process, in which each student gains knowledge from the
teacher. Let n be the total number of students and M; be the
average solution among all the students. Also, let 7; be the teacher
(i.e. the student with the best solution) at the ith iteration. The
teacher will try to bring M; to a value closer to Xp;, which is the
solution of the teacher. The difference between Xp; and M,,
denoted by D;, is defined as

| Initialize population, termination criterion |

o
f Calculate the mean of each design variable |<—
| Identify the teacher (best solution) |
Modify solutions based on best solution Teacher
K™= X + 1 X - (Tex M) Phase
Is new solution
better than existing?
-
-
| Xat= X=X | | Xt = X+ 1 (X - X,) | Student
Phase
Is new solution
better than existing?.
-
Is termination

criteria satisfied?

[ Final value of solutions 1

Fig. 1 TLBO flowchart [5]

where r; is a random variable chosen from a uniform distribution
in the range [0, 1] and 7} is the teaching factor that is randomly
set to 1 or 2 in each iteration i, with equal probabilities, according to

Ty = round(1 + rand(0, 1)) )

The difference D, is used to update the current solution belonging to
each student £ in iteration i, denoted by X;;, according to

Xi =X, +D, 3)

where X¥ is the updated value of X,,.

Then, the fitness of each updated solutlon Xk, , denoted by f (Xkl ),
is computed. For each student, if /' (X 4 ) 1s better than (X}, then X,
is replaced with X;¥. Otherwise, X;¥ is discarded and X, is kept for
the next iteration.

3.1.2 Student/learner phase: During the learner phase, TLBO
mimics the learning of the students through interactions among
themselves. Let X; and X be the solutions belonging to two
students, namely y and z, at iteration i, respectively If f(X,,) is
better than f(X};), X,; is updated using (4). If f X ) is better than
fX), X, is replaced with X¥. Otherwise, X¥ is discarded and X
is kept for the next iteration.

Slmllarly, if (X,) is better than f(X,;), X, is updated using (5).
If { ) is better than f(X);), X,; is replaced with X . Otherwise,

Vi
is dlscarded and X, is kept for the next 1terat10n

*
D; = rfXq; — Ty My) (D X=X+ ri(Xvi -X) “4)
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Xy =X, +rX,; - X,) )

Consider a population of n students. Also, consider a student k, with
1 < k < n. Let w(k) be the weight assigned to a student & that defines
the relative probability of choosing a student £ to interact during the
learner phase. In the original TLBO, all the students have the same
probability of being chosen, i.e. w(k;) = w(k,), Y1 <k, <n and
1 <k, < n. The idea behind the proposed variant is to change the
relative weights w based on the fitness value of each student £.

The stop conditions are verified after each iteration of the
algorithm. In this paper, the algorithm ends after a predefined
number of iterations.

3.2 Flow-shop scheduling problems

The flow-shop scheduling problem is a classical NP-hard
combinatorial optimisation problem [28]. It has many practical
applications in logistics, industrial and other fields [29]. The
flow-shop scheduling problem has been widely studied for many
decades [30].

In the flow-shop scheduling problem, the main goal is to find the
sequence to execute all the jobs that result in the minimum
makespan. The makespan is the amount of time required to
complete all the jobs. A total of n jobs are considered, and each
job consists of m operations. The flow shop is composed of m
machines. The operations of all jobs must be executed following
the same sequence, i.e. machines m,, ..., m,,.

If a flow-shop scheduling problem has m machines and j jobs.
For each possible sequence, the makespan can be computed as
follows [6, 31]:

Cc1, )=d(, 1) (6)
c1, p)y=C, i—-1)+4dQ, i) 7)
Cr, )=Cr—1, )4+d@, 1) 8)

C(r, i) =max[C(r, i — 1), C(r— 1, D)] +d(r, i) 9)

where d(r, i) is the execution time for operation » (1 <r < m)
belonging to the job i (1 <i <) in the machine m, and C(r, i) is
the time, in which operation » belonging to a job 7 in the machine
m, is finished.

As an example, consider that a flow shop contains four jobs and
three machines. The execution time of each operation belonging to
each job in each machine is defined as follows:

a=10,4, @2, 2), G, ]
72 =101, 3), 2, 6), G, 2)]

j3 = [(15 7)5 (2’ 2)’ (3a 3)]

Now, consider the candidate solution P =[1, 4, 3, 2]. Using
(6)—(9), it is possible to compute the makespan for the permutation
P. Fig. 2 shows the Gantt chart that represents the candidate
solution P, which has a makespan of 24 time units.

A solution for the flow-shop scheduling problem is represented
using a priority vectors approach [6]. Let X, = {x;(1), ..., x.()}
be a vector representing the solution of a student k, where each
element x, (i) of the vector X is a real number that denotes the
relative priority of the ith job.

To convert an X, into a job sequence, the elements of the priority
vector are sorted in decreasing order. Once the job sequence is
found, the fitness value of the candidate solution represented by
X, is computed according to (6)—(9).

To illustrate how to map a priority vector X, into a job
permutation, consider a flow-shop problem containing six jobs and
the priority vector X shown in Table 1. The highest value of X,
(8.407) is its fifth position, which means that job 5 will be
executed before the others. Following a decreasing order of
priority, the job permutation associated with student & will be
P=[5 1,6, 4, 3, 2].

3.3 Job-shop scheduling problem

The job-shop scheduling problem is one of the most studied and
most complex problems in the scheduling research field [32, 33].
It is classified into the NP-complete group.

A job-shop scheduling problem is composed of a group of j jobs
and m machines. Jobs are composed of a sequence of operations.
Each operation has a predefined order and the machine where it
must be executed [6]. Let u(m, j) be the operation of a job j that
requires a machine m. Also, let d(m, j) be the duration of the
operation u(m, j). The objective of a job-shop scheduling problem
is to find an execution sequence that minimises the amount of time
required to execute all the operations.

Let J = {j;, ...,jj} be the set of jobs, M = {m,, ..., m,,} be
the set of machines and U = {ug, uy, ..., ), Ugem} be the
set of all operations to be executed, where operations u, and
Ujxmy+ are the dummy initial and the dummy final operations,
respectively. Also, let d, and f, be the execution time (duration)
and the completion time of operation u, respectively.

The relations among operations are defined by two types of
constraints: precedence constraints and machine constraints.
Precedence constraints ensure that the execution of operation u
will not start before the completion of all its predecessor
operations, denoted by P,. Machine constraints ensure that each
machine executes only one operation at a time.

Let A(#) denote the group of operations that are being executed at a
time ¢. Also, let 7, ,, be a binary variable that assumes value 1 if
operation u must be executed by a machine m and assumes value
0 otherwise. A candidate solution can be described by a vector
F=1{fy, -+ fyxms1], where each element f, of F is the
completion time of operation u. Then, the job-shop scheduling
problem can be formally defined as follows [6, 34]:

. minimise:  fij, 41 (10)
Ji=10, 1, 2,9, G, 9] o
subjected to:
where a pair (m, d) indicates the machine m that executes the
operation and the duration of the operation d. fi—d,=f, VxE€P, 11
m | 4 |4 Js [ v |
me l Ji I J | | Js | I J2 |
my | Js L 4 o]
F————————————————————————+— Tme
0 5 10 15 20 25

Fig. 2 Gantt chart for the flow-shop example
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Table 1 Example of the conversion of a priority vector into a job
sequence for the flow shop

i 1 2 3 4 5 6
X (i) 5.472 1.386 1.493 2.575 8.407 3.543
rym <1, meM;t>0 (12)
UEA(t)
[,=20, u=1, ..., (G(xm+1 (13)

where (10) is the objective function to be minimised, (11) represents
the precedence relations between operations, (12) ensures that each
machine will not execute multiple jobs simultaneously and (13)
imposes non-negative finishing times.

A solution for the job-shop scheduling problem is represented by
using a priority matrix approach [6]. Let X, be an m X j real-number
matrix containing the candidate solution belonging to the student &
for a job-shop problem with m machines and j jobs, i.e.

X1 X oo Xy

X1 X Xj
Xy = . .

Xm1 Xm2 T Xy

where each element x,;, with 1 <r» <mand 1 <i <}, is the priority
of the operation of job i that must be executed by a machine r.

The number of different candidate schedules for a job-shop
scheduling problem with m machines and j jobs is (j!)". Since this
number is very large even for a small number of machines and
jobs, exploring the whole search space to guarantee the global
minimum solution has a huge computational cost.

To reduce the search space, feasible schedules can be classified
into four types [34]:

o [nadmissible schedules: Schedules, in which machines have
excessive idle times. Schedules in this group can be improved by
eliminating the excessive idle times. Excessive idle times are
eliminating by shifting the operations.

e Semi-active schedules: These schedules are obtained when the
operations are scheduling using the ‘as early as possible’ approach.
Schedules in this group do not contain excessive idle times.
However, they can still be improved by shifting some operations
without causing delays in other operations.

e Active schedules: Schedules, in which no operation can be
anticipated without causing delays in other operations (violating
precedence restrictions). The global optimal is known to always be
an active schedule. Thus, if the search space is reduced to the
active schedules, the optimal solution can still be found.

o Non-delay schedules: Schedules, in which a machine is always
executing an operation unless a precedence constraint is violated.
Schedules in this group are always active schedules.

Fig. 3 illustrates the relations among the four schedule types. As
mentioned earlier, the search space can be reduced to the subspace
of active schedules without affecting the optimal solution [35].
In this paper, we use the Giffler & Thompson (G&T) algorithm to
map a priority matrix X, to an active schedule. A brief description
of the G&T algorithm is given below [36].

3.3.1 G&T algorithm: The G&T algorithm is a recursive method
to generate active schedules for the job-shop scheduling problem in a
systematic way [36]. The notation adopted in the G&T algorithm is

e Feasible N\
4 Semi-active N
S .

Fig. 3 Relationship among schedule types

1: Step 1: Initialize S = () and X to the subset of all the operations

without precedence restrictions.

: while X # 0 do

3 Step 2: Find operation u{rn, j)* € X that has the earliest
completion time f(m,j)* and the corresponding machine m*
that will execute operation u(m, j)*.

4 Step 3a: Identify the subset of operations Y € X such that
all operations in Y are executed on machine m™ and for which
e(m,j) < f*.

s: Step 3b: Choose the operation u(m, 7)** from Y with the
largest priority value.

6 Step 3c: Add u(m, j)*" to S.

(3]

7: Step 3d: Assign e(m, j)™* as the starting time of operation
u(m, )",
8: Step 4: Delete u(m, j)** from X and include its immediate

successor, if any, in X,
9: end while

Fig. 4 Algorithm 1: G&T algorithm

e S is the partial schedule that contains all the operations already
scheduled.

e Xis the set of operations that are ready to be scheduled, i.e. the set
of operations that have no precedence restrictions.

e e(m, j) is the earliest time, in which operation u(m, j) in X can
start to be executed.

e d(m, j) is the duration of the operation u(m, j).

e f(m, j) is the earliest time at which the execution of the operation
u(m, j) in X can finish, i.e. f(m, j) = e(m, j) + d(m, j).

The implementation of the G&T algorithm is presented in
Algorithm 1 (see Fig. 4) [6]:

To illustrate the use of the G&T algorithm, consider a job-shop
scheduling problem composed of three jobs and three machines.
The operations in each job are defined as follows [37]:

h=1012,3), 1,7, G, 2)]
j2 = [(19 2)’ (35 5)5 (2’ 4)]
j3 = [(2’ 5)> (35 4)’ (la 5)]

where a pair (m, d) describes the machine m that must execute
the operation and the execution time d of the operation. All the
operations belonging to each job must be executed in the
presented order.

Also, consider the priority matrix X, that represents the solution
of a student k£ in TLBO

as follows: 0.11 4.70 0.67
o . . . . . X, =617 9.23 1.23
e u(m, j) is the operation belonging to job j that requires a
machine 7. 4.19 3.01 3.47
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where each element x,, is the relative priority value of the
operation belonging to the jth job that is executed by the mth
machine. The following lines describe all the steps to find a
schedule associated with the priority matrix X, according to
Algorithm 1.

Initialisation:

Step 1: S =@ and X = {u(2, 1), u(l, 2), u(2, 3)}.

Iteration 1:

Step 2: (2, 1)=3,f(1, 2) =2 and f(2, 3) = 5. Therefore, f* = 2
and m™ = 1.

Step 3: Y = {u(l, 2)}. Operation u(l, 2) is added to S, with
e(l, 2)=0.

Step 4: u(1, 2) is deleted from X and u(3, 2) is added to X. For the
next iteration, X = {u(2, 1), u(3, 2), u(2, 3)}.

Iteration 2:

Stip 2:/@2, )=3,f3, 2)=Tandf(2, 3) = 5. Thus, /* = 3 and
m- =2.

Step 3: Y = {u(2, 1), u(2, 3}. The operation u(2, 1) has the highest
priority (6.17) and is added to S, with e(2, 1) = 0.

Step 4: u(2, 1) is deleted from X and u(1, 1) is added to X. For the
next iteration, X = {u(1, 1), u(3, 2), u(2, 3)}.

Iteration 3:

Step 2: f(1, 1) =10, f(3, 2) = 7 and f(2, 3) = 8. Thus, [* =7
and m* = 3.

Step 3: Y = {u(3, 2)}. Operation u(3, 2) is added to S, with
e, 2)=2.

Step 4: u(3, 2) is deleted from X and u(2, 2) is added to X. For the
next iteration, X = {u(1, 1), u(2, 2), u(2, 3)}.

Iteration 4:

Step 2: f(1, 1) = 10, f(2, 2) = 11 and f(2, 3) = 8. Thus, f/* =8
and m* = 2.

Step 3: Y = {u(2, 2), (2, 3)}. The operation #(2, 2) has the highest
priority (9.23) and is added to S, with e(2, 2) = 7.

Step 4: u(2, 2) is deleted from X. No operation is added to X because
u(2, 2) is the last operation of the job j,. For the next iteration,
X ={u(l, 1), u(2, 3)}.

Iteration 5:

Step 2: f(1, 1) = 10 and £ (2, 3) = 16. Thus, /* = 10 and m* = 1
Step 3: Y = {u(l, 1)}. Operation u(l, 1) is added to S, with
e(l, 1)=3.

Step 4: u(1, 1) is deleted from X and u(3, 1) is added to X. For the
next iteration, X = {u(3, 1), u(2, 3)}.

Iteration 6:

Step 2: f(3, 1) = 12 and £ (2, 3) = 16. Thus, /* = 12 and m* = 3.
Step 3: Y = {u(3, 1)}. Operation u(3, 1) is added to S, with
e(3, 1) =10.

Step 4: u(3, 1) is deleted from X. No operation is added to X because
u(3, 1) is the last operation of the job j,. For the next iteration,
X = {u2, 3)}.

Iterations 7, 8 and 9:

Now, all operations which have not been scheduled belong to the
job j;. Therefore, in iterations 7, 8 and 9 the operations of the
job j; will be scheduled following the sequence of job j,
ie. u(2, 3), u(3, 3) and u(1, 3).

Fig. 5 shows the Gantt chart for the solution, which has a
makespan of 25.

4 Proposed method

This section describes the proposed modification in the TLBO
algorithm. In the proposed variant, different weights are assigned
to each student during the student phase, with higher weights
being assigned to students with better solutions. The idea behind
the proposed method is that good students are more likely to be
invited to participate in study groups.

A similar concept was proposed in [3] for the selection operator of
GAs. In GAs, the selection operator chooses two parents from the
current generation to reproduce and generate a new child with the
help of crossover and mutation operators [38]. In the selection
operator proposed in [3], called roulette wheel, the probability of an
individual chromosome being selected is directly related to its fitness.

Consider a population of » students. Let ¢ be the rank index of
each student, which indicates the relative position of the solution
associated with that student. The rank index of the best student
is 1. Similarly, the rank index of the worst student is n.

Let w(g) be the weight assigned to the student whose rank index
is g, with 1 < g < n. In this paper, three different approaches are
investigated to assign the weights to students. The proposed
approaches are as follows:

o Approach I: In this first approach, a weight of 1 is assigned to half
the students with the best solutions and a weight of zero is assigned
to the other students, according to

wig)=1, 1=qg=n/2 (14)

wg)=0; q>n/2 (15)
e Approach 2: In this second approach, the weight assigned to each
student is based on the rank index ¢, as defined in (16). In other
words, a weight of 1 is assigned to the worst student, a weight of 2
is assigned to the second worst student and so on. This procedure
continues until the best student, who receives a weight of »n

wig)=n—q+1; l<g=n (16)
o Approach 3: In this third approach, the weight assigned to half the
students with the worst solutions follows the same rule used in
approach 2. A fixed weight of n/2 is assigned to the other
students, as presented in the equations below:

w(q) = n/2;
w@)=n—q+1;

1<q<np? (17)
q>n/2 (18)

Fig. 6a shows a graphical representation of the weights assigned to
each student in the original TLBO. The weights assigned to each
student in proposed approaches 1, 2 and 3 are illustrated in
Figs. 6b—d, respectively.

Let p(g) be the probability of student whose rank index is g being
selected during the student phase. The computation of p(g) is made
according to the equation below:

w(q)
= 19
(@) S 19)

1 W)

Fig. 5 Gantt chart for the job shop
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Rank Index, g

a

w(q)

1 n/2
Rank Index, g
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Rank Index, g
d

Fig. 6 Graphical representation of different approaches to assign weights to each student during the student phase of TLBO

a Original TLBO,

b Proposed approach 1,
¢ Proposed approach 2,
d Proposed approach 3

5 Numerical experiments

In this section, we present the results observed during the numerical
experiments carried out to investigate the performance of the
proposed approaches to assign weights to students in benchmark
instances of the flow-shop and the job-shop scheduling problems.

About 20 benchmark instances of the flow shop and 20
benchmark instances of the job-shop scheduling problem were
used in the numerical experiments. Tables 2 and 3 present the
number of jobs and machines in each instance of the flow-shop
and the job-shop scheduling problems, respectively.

Table 2 Flow-shop benchmark instances

5.1 Parameter settings

The performance of metaheuristic algorithms is highly dependent on
the choice of parameter values. For the TLBO algorithm, the
parameters to be defined are the PS and the maximum number of
generations (GNs). In the absence of a mathematical model to
determine the optimal values for these parameters, they are
commonly determined empirically. In this paper, a design of
experiments (DOE) approach was used to find out good settings
for the parameters. The DOE approach is a method used
to investigate and evaluate the effect of multiple factors on a
process [39].

For the flow-shop scheduling problem, instance reC23 was used in
the DOE method because it has an intermediate complexity level.
Five different candidate values were considered for GNs 200, 300,

Instance Jobs Machines Instance Jobs Machines 400, 500 and 600. Five different values were also considered for
PSs 30, 60, 90, 120 and 150. A full factorial experimental layout
carl 1 5 reC17 20 15 was used. For each combination, 30 runs were carried out.
g::s ? 57’ ::g;g gg 18 To identify the parameters that have a significant effect, a
hell 100 10 reC25 30 15 statistical analysis of variance (ANOVA) was carried out. The
hel2 20 10 reC29 30 15 results are presented in Table 4. All the main effects are
reC03 20 5 reC33 50 10 considered significant at the level of 5%. In Table 4, df is the
reCo5 20 5 reC35 50 10 number of degrees of freedom, SS is the sum of squares, MS is
reC09 20 10 reC37 75 20 . .. . s
reC11 20 10 reC39 75 20 the mean square, F is the F-test statistics and p is the probability
reC15 20 15 reC41 75 20 value used to test the null hypothesis, in which a parameter effect
is not significant.
Tables 5 and 6 show the average makespan computed for each
Tabl ) value of GN and PS, respectively. On the basis of these results,
able 3  Job-shop benchmark instances the final values for GN and PS for the flow-shop scheduling
Instance Jobs Machines Instance Jobs Machines problem were chosen as 300 and 90, respectively. These values
abzb 10 10 l1a31 30 10
abz7 20 15 la35 30 10 X
06 6 6 1a36 15 15 Table 4 ANOVA results for flow-shop instance reC23
ft20 20 5 orb05 10 10
1a06 15 5 orb09 10 10 Source Ss df MS F p
la11 20 5 swv01 20 10
la12 20 5 swv04 20 10 GN 2311 4 57.8 3.19 0.042
la16 10 10 swv05 20 10 PS 3905.4 4 976.3 53.93 0.000
1a22 15 10 swv16 50 10 Error 289.7 16 18.1 — —
la26 20 10 yn1 20 20 Total 4426.1 24 — — —
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will be used in all the experiments conducted for the flow-shop
scheduling problem.

For the job-shop scheduling problem, instance 1a26 was used in
the DOE method because it has an intermediate complexity level.
The same values of GN and PS used for the flow-shop scheduling
problem were used here. A full factorial experimental layout was
conducted. For each combination, 30 runs were carried out.

Table 5 Average makespan with different values of GN for flow-shop
instance reC23

GN 200 300 400 500 600

makespan 2110.4 2107.7 2115.8 2114.0 2109.3

Table 6 Average makespan with different values of PS for flow-shop
instance reC23

PS 30 60 90 120 150

makespan 2130.0 21211 2097.2 2108.9 2099.9

Table 7 ANOVA results for job-shop instance 1a26

Source SS df MS F p
GN 2645.8 4 661.4 3.44 0.033
PS 3683.4 4 920.9 4.78 0.010
error 3079.5 16 192.5 — —
Total 9408.7 24 — — _

Table 8 Average makespan with different values of GN for job-shop
instance 1a26

GN 200 300 400 500 600

makespan 1480.0 1464.6 1448.5 1462.9 1457.8

Table 9 Average makespan with different values of PS for job-shop
instance la26

PS 30 60 920 120 150

makespan 1481.6 1466.9 1455.0 1445.5 1464.9

A statistical ANOVA was also carried out. The results are
presented in Table 7. All the main effects are considered
significant at the level of 5%.

Tables 8 and 9 show the mean makespan computed for each value
of GN and PS, respectively. On the basis of these results, the final
values for GN and PS for the job-shop scheduling problem were
chosen as 400 and 120, respectively. These values will be used in
all the experiments conducted for the job-shop scheduling problem.

5.2 Simulation results

5.2.1 Convergence speed: In this first experiment, our goal is
to investigate the performance of the proposed approaches in terms
of convergence speed. The proposed approaches are compared
with the original TLBO. Two variants of TLBO proposed in the
literature are also considered in the experiments: the ETLBO [11]
and the variable population scheme TLBO (VPTLBO) [12]. For
each benchmark instance, we carried out 30 runs of each
algorithm. For each run, we computed the GNs that the algorithm
ran until finding the final solution. Tables 10 and 11 show the
average GNs obtained for the benchmark instances of the
flow-shop and the job-shop scheduling problems, respectively.

It can be noted from Tables 10 and 11 that the original TLBO was
outperformed by at least one of the proposed approaches in all
benchmark instances considered in this paper. Also, in 12 out of
the 20 instances of the flow shop, and in 16 out of the 20
instances of the job shop, the original TLBO was outperformed by
all the proposed approaches. VPTLBO was outperformed by at
least one of the proposed approaches in 19 out of the 20 flow-shop
instances. However, VPTLBO presented the best result in four
instances of the job-shop scheduling problem.

Another interesting result observed in this experiment is the
superior performance of approach 1, which presented the best
performance among all methods in 10 and 11 instances of the flow
shop and the job shop, respectively. Also, the proposed approach
1 outperformed the original TLBO in all benchmark instances
considered in this paper.

We performed a statistical test to verify whether the superior
performance of the proposed approach 1 is statistically significant.
For this purpose, we used the Friedman test [40, 41]. The
Friedman test is a non-parametric procedure that can be used to
compare multiple algorithms and detect significant differences
between their results [42].

The null hypothesis H, for the Friedman test is that there are no
significant differences in the performances of the methods. The
first step to compute the Friedman statistics is to convert the
original data into ranks. For each scheduling problem (flow shop

Table 10 Average GNs to find the final solution for the flow-shop problems

Instance Original TLBO Approach 1 Approach 2 Approach 3 ETLBO VPTLBO
carl 39X 28V 36X 29X 6.5 X 5.1x

caré 43.1x 41.6 X 25.1 v 33.3x 117.1 % 162.9 x
car7 13.3x 128 v 13.9 x 13.9x 13.1x 20.9 x

hel1 123.0 x 106.5 v 111.9 x 126.0 x 199.6 X 127.6 x
hel2 96.1 x 76.6 x 87.2 x 86.1 X 61.7 v 82.7 x

reC03 61.5 x 58.5 v 57.5 X 79.0 x 60.7 X 64.5 x

reC05 63.5 x X2 x 56.7 X 409 v 101.9 x 133.4 x
reC09 733X 61.9v 65.5 X 65.8 X 116.2 X 102.3 x
reC11 100.1 x 72.3 x 94.8 x 99.2 x 62.1 v 164.7 X
reC15 875X 85.7 x 88.4 x 91.9 x 74.4 v 79.8 x

reC17 101.6 X 79.4 v 101.1 x 85.2 X 84.7 x 150.7 x
reC19 109.2 x 86.5 v 126.6 X 110.0 X 97.8 x 125.3 x
reC23 99.9 X 82.8 x 105.1 x 102.7 x 68.8 v 87.7 x

reC25 140.6 x 93.1 x 127.6 x 112.3 x 85.2 v 168.5 X
reC29 124.2 x 96.0 v 97.2 x 104.8 x 108.4 x 171.7 x
reC33 84.3x 69.4 v 89.7 X 95.1 x 105.9 X 113.6 x
reC35 84.4 x 60.7 v 75.8 X 80.9 x 99.6 X 166.6 X
reC37 2245 x 173.8 x 207.4 x 210.0 x 161.0 v 267.6 X
reC39 196.5 X 153.0 X 188.5 X 180.0 X 1314 v 201.9 x
reC41 197.3 x 173.0 X 219.8 x 217.5 x 130.0 v 227.9 x

Symbol v indicates that the result is the best result among all the algorithms. The symbol X indicates that the result was outperformed by at least one

algorithm.
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Table 11

Average GNs to find the final solution for the job-shop problems

Instance Original TLBO Approach 1 Approach 2 Approach 3 ETLBO VPTLBO
abzb 197.4 x 113.4 v 153.6 X 150.8 x 150.6 X 145.7 X
abz7 238.7 X 235.8 v 240.9 x 253.2 X 275.3 X 292.9 x
ft06 87.1x 57.5 x 233V 50.2 X 50.6 X 65.5 X

ft20 2441 x 2403 x 304.0 x 219.1 x 185.7 x 181.7 v
1a06 51.7 x 33.3v 38.8 x 61.6 X 128.0 X 79.6 X

la11 106.6 X 83.2v 120.6 X 97.1 x 210.8 x 97.2 x

la12 146.5 X 138.8 X 144.9 x 105.1 X 369.0 x 100.6 v
la16 160.0 X 94.8 X 140.4 x 153.6 X 777 v 100.1 x
la22 317.4 x 196.1 X 282.6 X 280.0 x 105.4 v 189.1 x
la26 307.1 x 261.7 X 218.9 x 269.3 x 197.9 x 185.8 v
la31 307.9 x 240.4 v 265.7 X 266.0 X 290.4 x 294.2 x
la35 300.4 x 248.2 x 254.5 X 270.8 X 1753 v 183.2 x
l1a36 307.3 x 260.2 x 288.0 x 200.3 v 290.4 x 287.6 X
orb05 169.3 X 118.2 v 148.0 X 123.0 x 137.7 x 176.8 X
orb09 209.1 x 152.6 v 171.4 x 178.7 x 163.0 X 181.6 X
swv01 308.4 x 261.3v 278.6 X 280.8 x 3229 x 286.1 X
swv04 310.1 x 2X.0 X 264.2 X 275.8 X 260.2 X 240.0 v
swv05 306.0 x 2434 v 247.0 x 248.9 x 252.6 X 294.4 x
swv16 318.6 X 2641 v 270.1 x 268.7 X 275.2 x 293.3 x
yn1 262.8 X 201.7 v 229.1 X 242.2 X 252.7 X 294.6 X

Symbol v indicates that the result is the best result among all the algorithms. The symbol X indicates that the result was outperformed by at least one

algorithm.

or job shop), for each benchmark instance i, with (1 <i < n), the
results obtained from the algorithms are ranked from 1 (best result)
to k (worst result). In case of ties, averaged ranks are used for tied
algorithms. Then, for each algorithm j, with (1 <j < k), the final
algorithm rank R; is defined as

(20)

where Ty is the rank obtained in benchmark instance i with the
algorithm j.

Table 12 Friedman test result for algorithm convergence speed

The Friedman statistics is defined as

12n

T+ 1) @D

Zk:R? _L‘H)z
s/ 4
Jj=1

where n is the number of benchmark instances (20 in our
experiments) and k is the number of algorithms (6 in our
experiments).

The Friedman statistics /' must be compared with the critical value
F, which is calculated using a Xz distribution with £ — 1 degrees of
freedom and a significance level «. In this paper, we assumed
a = 0.05. To reject the null hypothesis H,, the condition F' > F
must be satisfied. Table 12 shows the results obtained for the
statistical test.

On the basis of the statistical test result, we can reject the null

Statistics Value hypothesis H, and consider that the proposed weight assignment
approaches increased the convergence capability of TLBO.
Fe 11.0705 . : -
F (flow shop) 40.9643 This result was expected because of the higher probability of
F (job shop) 33.4571 selecting good students introduced by the proposed approaches
strengthens the intensification capability of the method. One
Table 13 Flow-shop simulation results
Instance BKS Original TLBO Approach 1 Approach 2 Approach 3 ETLBO VPTLBO
Average Best Average Best Average Best Average Best Average Best Average Best
carl 7038 7038.0 v 7038 v 7040.3 x 7038 v 7038.1 x 7038 v 7038.0 v 7038 v 7038.0 v 7038 v 7038.0 v 7038 v
car6 8505 8539.1 x 8505 v/ 8532.6 X 8505 v 8530.6 X 8505 v/ 8534.9 x 8505 v 8528.2 v 8505 v 8538.7 x 8505 v
car7 6590 6593.4 x 6590 v/ 6590.0 v 6590 v 6595.6 X 6590 v 6591.1 X 6590 v 6591.7 X 6590 v 6591.3 X 6590 v
hel1 516 528.9 x 519 v 528.2 x 521 x 528.1 x 520 x 528.0 x 520 x 536.5 X 519 v 5229 v 520 x
hel2 136 139.1 x 136 v 139.1 x 137 x 139.3 x 137 x 138.6 v 136 v 139.0 x 137 x 140.1 x 137 x
reC03 1109 11233 v/ 1111 x 1125.2 x 1110 x 1125.6 X 1109 v 1124.7 x 1M1 X 1123.9 x 1111 x 1127.9 x 1109 v
reC05 1242 1255.8 X 1245 v 1257.4 x 1245 v 1257.4 x 1245 v 1260.2 x 1245 v 1254.4 v 1245 v 1256.8 X 1245 v
reC09 1537 1580.4 x 1538 x 1578.3 v 1538 x 1580.3 X 1546 X 1579.6 X 1537 v 1579.5 x 1538 x 1580.4 x 1538 x
reC11 1431 14742 v 1431 v 1488.8 x 1441 x 1484.3 x 1438 x 1481.1 x 1445 x 1508.3 X 1441 x 1485.3 X 1431 v
reC15 1950 2017.7 x 1967 x 2008.1 v 1964 v 2010.8 x 1966 x 2010.2 x 1964 v 2013.4 x 1978 x 2015.0 x 1967 x
reC17 1902 19731 v 1924 v 1979.7 x 1929 x 1987.9 x 1937 x 1976.1 x 1933 x 1982.9 x 1969 x 1981.4 x 1942 x
reC19 2093 2208.6 X 2142 x 2208.2 x 2158 x 2201.0 x 2137 v 2196.6 v 2141 x 2201.9 x 2156 X 2206.9 X 2145 x
reC23 2011 2110.1 x 2067 x 2107.5 x 2062 x 2113.8 x 2069 x 2104.6 X 2046 v 2108.6 X 2046 v 2101.0 v 2060 x
reC25 2513 2652.8 X 2583 x 2642.1 x 2591 x 2649.3 x 2602 x 2653.4 X 2577 v 2638.9 v 2608 x 2645.1 X 2601 x
reC29 2287 24441 X 2369 x 2456.7 X 2371 x 2442.4 x 2361 v 24459 x 2378 x 2449.7 X 2361 v 24420 v 2377 x
reC33 3114 3245.3 x 3173 x 3253.6 X 3187 x 3249.8 x 3164 v 32451 v 3171 x 32455 x 3173 x 3258.4 x 3173 x
reC35 3277 33749 x 3292 x 3366.9 v 3288 v 3378.7 x 3288 v 3369.0 X 3288 v 33745 x 3292 x 3370.7 x 3288 v
reC37 4951 5408.8 X 5267 v 5400.1 X 5320 x 5400.8 X 5306 X 5406.1 X 5309 x 5398.6 v 5320 x 5408.3 X 5334 x
reC39 5161 5503.3 X 5387 x 5491.0 X 5377 v 5486.6 v 5392 x 5488.4 X 5382 x 5488.3 X 5397 x 5489.0 X 5392 x
reC41 5087 5464.7 X 5342 x 5437.0 X 5352 x 5428.3 v 5342 x 5436.9 X 5326 v 5430.2 x 5342 X 5458.0 X 5356 X

Symbol v indicates that the result is the best result among all the algorithms. The symbol X indicates that the result was outperformed by at least one

algorithm.
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Table 14 Job-shop simulation results

Instance BKS Original TLBO Approach 1 Approach 2 Approach 3 ETLBO VPTLBO
Average Best Average Best Average Best Average Best Average Best Average Best

abzb 1234 1333.6 X 1285 v 1338.1 x 1314 x 1343.8 x 1307 X 13539 x 1318 x 1333.2 v 1307 x 1348.0 x 1320 x
abz7 656 826.8 X 810 X 825.6 X 809 v 823.1 v 820 x 827.6 X 811 X 827.5x 810 X 825.9 x 811 X
ft06 55 56.0 X 55 v 55.6 X 55 v 55.9 X 55 v 55.3 v 55 v 56.2 X 55 v 55.7 X 55 v
ft20 1165 12245 x 1192 v 12224 v 1201 x 1239.0 x 1216 X 1228.6 X 1214 x 1226.0 X 1212 x 1222.6 X 1214 x
1a06 926 926.0 v 926 v 926.0 v 926 v 926.0 v 926 v 926.0 v 926 v 926.0 v 926 v 926.0 v 926 v
la11 1222 12220v 1222v 1224.0 x 1222 v 1223.6 x 1222 v 12225x 1222/ 1227.2 x 1222 v 12243 x 1222 v
la12 1039 1040.3 x 1039v 10395v 1039 v 1039.6 X 1039 v  10402x 1039 v 10415 x 1039 v 1040.2 x 1039 v
la16 945 1006.6 X 991 x 1007.3 x 981 x 1004.4 x 995 x 1013.5 x 968 v 1007.1 X 975 X 1003.9 v 991 x
la22 927 1069.9 X 1032 v 1074.6 X 1054 x 1091.1 x 1033 x 10965 x 1063 X 1068.1 v 1046 x 1086.4 X 1058 x
la26 1218 1459.9 x 1435 x 1462.6 X 1433 x 14474 1408  1460.6 X 1431 x 1503.4 X 1433 x 1496.1 X 1435 x
la31 1784 1942.2 x 1897x 1938.3 v 1911x 1941.0x 1893 v 1945.6x 1901x 1945.9x 1893 v 1968.6X 1916x
la35 1888 2027.3x 1990 X  2026.3 v 1986 X 2046.6 X 1981 X  2047.0x 1974  2058.3 X 1985 x 2027.6 X 1992 x
1a36 1268 1475.7 x 1417 v 14741 v 1428 x 1477.6 X 1457 x 14841 x 1444 x 1475.3 X 1461 x 1475.8 X 1457 x
orb05 887 954.9 X 908 v 964.3 X 931 x 946.9 v 929 x 953.9 X 927 X 970.4 X 932 x 963.1 X 931 X
orb09 934 1005.8 x 979 x 997.3 x 975 x 996.8 X 971 x 994.2 v 962 X 995.7 x 958 v 1009.1 x 962 X
swv01 1407 1668.0 X 1595 v 1663.6 X 1621 x 1685.8 X 1644 X  1685.8 X 1651 x 1673.7 X 1631 x 1662.9 v 1644 x
swv04 1470 1743.7 x 1663 X 1738.5 x 1661 v/ 1753.6 X 1679 X 17463 Xx 1696 X 1725.6 v 1701 x 1745.6 X 1663 X
swv05 1424 17129 x 1679 x 1709.1 v 1639 v 1717.0 X 1669 x 1726.8 x 1654 x 1710.0 X 1673 X 1737.9 x 1682 x
swv16 2924 29777 x  2939v  2967.4 x 2940 x 2999.0 x 2946 X 29724 x 2950 x  2963.2v 2953 x 2969.5 x 2946 X
yn1 884 1115.3 x 1078 x 1110.9 x 1087 x 1105.8 v 1065 v 1107.5 x 1074 x 1127.1 x 1097 x 1113.2 x 1074 x

Symbol v indicates that the result is the best result among all the algorithms. The symbol X indicates that the result was outperformed by at least one

algorithm.

possible disadvantage of the proposed approaches is that the
algorithm may lose its capability to escape from local minima. In
the next experiment, we compare the performance of the
algorithms in terms of makespan.

5.2.2 Solution quality: 1In this second experiment, our goal is to
compare the performance of the proposed approaches with the
performances of the original TLBO, ETLBO and VPTLBO in
terms of solution quality, i.e. in terms of makespan. For each
benchmark instance, we carried out 30 runs of each algorithm.
Tables 13 and 14 show the average and the best makespan
provided by each algorithm for each benchmark instance of the

Table 15 Friedman test result for quality of solutions

Statistics Average value Best value
Fc 11.0705 11.0705
F (flow shop) 3.0350 2.2643
F (job shop) 9.8571 2.0357

Table 16 Simulation time, in seconds, for the flow-shop problems

flow-shop and the job-shop scheduling problems, respectively. In
these tables, BKS is the best known solution for each instance,
presented for reference purposes.

It can be noted from Tables 13 and 14 that the best performances
in terms of average makespan and best makespan for both the
flow-shop and the job-shop scheduling problems are distributed
among the algorithms considered in the experiments.

Again, we used the Friedman test to analyse the results. As we
observed an increase in convergence speed of the proposed
approaches, our goal here is to investigate whether this increase in
convergence speed is followed by a decrease in the quality of final
solutions.

We consider the same significance level « = 0.05. We
computed the Friedman statistics for both the average and the best
(lowest) makespans found by each algorithm. Table 15 shows the
results.

On the basis of the statistical test result, we cannot reject the null
hypothesis H,, for this second experiment. Then, we can conclude
that the proposed approaches provided a significant increase in the
convergence speed of the method, without penalising the quality
of solutions.

Instance Original TLBO Approach 1 Approach 2 Approach 3 ETLBO VPTLBO
carl 12.50 x 1248 v 16.21 x 13.37 x 12.89 x 15.40 x
car6 13.59 v 15.16 X 24.57 x 16.09 x 15.41 x 17.94 x
car7 1279 v 14.45 x 17.96 x 1411 x 15.31 x 17.74 x
hel1 47.70 X 50.07 X 55.49 x 52.00 x 44.69 v 54.00 x
hel2 18.99 v 20.58 x 2431 x 21.80 x 21.18 x 23.60 x
reC03 15.91 v 16.60 x 20.68 x 17.89 x 17.38 x 19.81 x
reC05 16.82 x 15.75 x 17.37 x 17.52 x 1432 v 19.24 x
reC09 18.07 v 19.11 x 22.04 x 21.36 x 18.76 x 22.22 x
reC11 18.47 v 21.97 x 24.61 x 21.42 x 21.59 x 2477 x
reC15 18.27 v 2174 x 24.47 x 20.86 X 23.12 x 24.79 X
reC17 19.70 v 21.24 x 2272 x 21.78 x 26.02 x 24.80 x
reC19 20.77 v 23.04 x 25.04 x 24.73 x 21.38 x 26.62 x
reC23 21.97 x 23.45 x 26.00 x 24.63 x 19.63 v 27.41 x
reC25 23.74 x 26.76 X 27.84 x 27.76 x 19.06 v 29.90 x
reC29 24.01 v 25.10 x 26.69 X 26.08 x 25.19 x 28.69 x
reC33 24.68 x 27.61 X 29.25 x 28.74 x 25.84 X 31.41 x
reC35 24.65 v 25.99 x 27.25 x 26.69 X 25.59 x 29.76 x
reC37 47.82 x 56.90 X 55.63 X 55.10 X 46.70 v 59.81 x
reC39 45.44 v 53.40 x 54.35 x 54.14 x 45,58 X 56.89 X
reC41 47.45 x 54.75 x 55.85 X 65.75 X 45.55 v 59.18 x

Symbol v indicates that the result is the best result among all the algorithms. The symbol X indicates that the result was outperformed by at least one

algorithm.
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Table 17 Simulation time, in seconds, for the job-shop problems

Instance Original TLBO Approach 1 Approach 2 Approach 3 ETLBO VPTLBO
abzb 4440 v 472.0 x 615.7 X 546.2 X 484.7 x 629.2 x
abz7 1168.0 v 1497.9 X 2723.8 X 1594.3 X 1676.9 X 2001.6 X
ft06 1183 v 126.6 X 164.3 X 146.4 X 155.3 X 165.5 X
ft20 410.0 v 439.0 X 548.7 X 471.6 X 438.7 X 558.0 X
1a06 293.7 v 345.7 X 472.3 X 394.1 x 357.8 X 444.7 X
la11 429.5 x 429.2 v 564.6 X 499.9 x 513.9 x 5241 x
la12 387.1 x 428.7 X 505.3 X 519.1 x 380.2 v 510.9 x
la16 379.7 v 4325 X 558.9 X 573.9 x 427.2 x 541.8 x
la22 648.0 v 855.3 x 933.8 x 759.1 x 779.8 X 884.5 x
la26 901.6 v 1059.4 x 1326.3 x 1148.2 x 1178.1 x 13275 x
l1a31 1247.0 v 1467.4 X 1647.7 X 1670.2 X 1748.5 x 1768.7 X
la35 1392.6 v 1452.1 x 1901.1 x 1640.4 X 1398.9 x 1768.4 X
1a36 1033.8 x 1129.6 X 1209.5 x 1167.8 X 936.8 v 1217.6 X
orb05 382.0 x 446.8 X 566.7 X 564.0 X 369.0 v 561.1 X
orb09 389.2 v 440.8 x 537.3 x 482.1 x 450.9 X 493.9 x
swv01 794.8 v 1079.3 x 10715 x 1044.0 x 906.2 X 1136.6 X
swv04 830.8 v 1055.5 X 1123.6 X 1020.4 x 976.2 X 1108.4 x
swv05 930.6 v 1101.5 X 1200.5 x 1024.0 x 938.5 x 1144.4 x
swv16 2507.5 v 2812.8 x 3279.1 x 3030.7 X 2624.5 x 3289.1 x
yn1 1675.3 X 2323.8 x 2288.9 x 2553.4 X 1601.7 v 2193.3x

Symbol v indicates that the result is the best result among all the algorithms. The symbol X indicates that the result was outperformed by at least one

algorithm.

Table 18 Friedman test result for simulation time

Statistics Value

Fc 11.0705
F (flow shop) 77.4857
F (job shop) 70.8571

5.2.3 Simulation time: In this last experiment, our goal is to
compare the performance of the proposed approaches with the
performance of the original TLBO, ETLBO and VPTLBO in
terms of simulation time. For each benchmark instance, we carried
out 30 runs of each algorithm. Tables 16 and 17 show the
simulation time, in seconds, computed for each algorithm for each
benchmark instance of the flow-shop and the job-shop scheduling
problems, respectively.

The results presented in Tables 16 and 17 show that the best
performance in terms of simulation time in most of the instances
for both the flow shop and the job shop was obtained with the
original TLBO. This result was expected because the variant
versions of TLBO include additional computations that increase
the computational cost of the algorithm. The result of the
application of the Friedman test considering a significance level
a = 0.05 is presented in Table 18.

As expected, the null hypothesis H, can be rejected for
this experiment since the original TLBO presented a better
performance in comparison with the variant versions.

6 Conclusions

In this paper, we presented a modified version of the TLBO
algorithm. In our proposed version, different weights are assigned
to students during the student phase of the algorithm based on the
fitness of the current solution of each student, with higher weights
being assigned to students with better solutions. The motivation
behind this idea is that, in a classroom environment, students are
capable of identifying which colleagues have more knowledge
about a subject and they tend to invite these colleagues to study
together to learn from them.

Three different approaches to assign weights to students were
investigated. Numerical simulations using 20 benchmark instances
of the flow-shop scheduling problem and 20 benchmark instances
of the job-shop scheduling problem were carried out. The
proposed approaches were compared with the original TLBO and
with two variants available in the literature: the ETLBO and the
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variable population scheme TLBO. The results show that the
proposed approaches outperformed the original TLBO algorithm
in terms of convergence speed, with no significant losses in
quality of solutions. The original TLBO presented a better
performance in terms of simulation time because the additional
calculations in the variant versions increase their computational
cost. The proposed approaches presented a competitive
performance in comparison with other variants of TLBO.

The best performance in terms of convergence speed was obtained
with the proposed approach 1, which consists of assigning a fixed
weight to half the students with the best solutions and assigning
zero to other students. For both the flow-shop and the job-shop
scheduling problems, this approach presented the best convergence
speed in most of the instances considered in this paper. The
application of the Friedman statistical test showed that the increase
in convergence speed achieved by the proposed variants is
statistically significant. The Friedman test also indicated that the
increase in convergence speed did not cause a significant decrease
in the makespan. The variant versions of TLBO required more
simulation time to run in comparison with the original TLBO.
However, the difference in simulation time between the proposed
approach 1 and the original TLBO is <1 min for all instances of
the flow-shop scheduling problem. For the job-shop scheduling
problem, this difference is <2 min in most of the instances. If the
algorithm is not used in real-time applications, then the proposed
approach 1 is a good alternative to be considered to solve
scheduling problems.

Although TLBO has been recently proposed, the number of
publications exploring possible modifications to its original form
increases rapidly. The TLBO algorithm has been successfully
applied to different optimisation problems including combinatorial
problems. The results obtained in this paper indicate that searching
for the equilibrium between exploration and exploitation in TLBO
may lead to additional improvements in the algorithm. As
mentioned earlier, all the proposed approaches can be incorporated
in most variants of TLBO available in the literature in a
straightforward way.

We believe that better results can be achieved by starting the
algorithm with the original TLBO and then gradually migrating to
one of the proposed approaches. This strategy would strengthen
the diversification capability of the method in the first generations
while increasing the intensification capability of the method in the
last generations. During the first generations, students do not know
each other and cannot identify the best students. For this reason,
invitations to participate in study groups are more likely to be
made randomly. During the execution of the algorithm, the best
students become known and invitations to participate in study
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groups are driven by this knowledge. However, to implement this
strategy, it would be necessary to define a migration rate, which
means to add one more input parameter to TLBO. Future research
will investigate this topic. Another opportunity to extend this
paper is to investigate the performance of proposed approaches in
multi-objective optimisation problems.
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