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Abstract: Large displacement optical flow algorithms are generally categorised into descriptor-based matching and
pixel-based matching. Descriptor-based approaches are robust to geometric variation, however they have inherent
localisation precision limitation due to histogram nature. This work presents a novel method called improved precision
dense descriptor flow (IPDDF). The authors introduce an additional pixel-based matching cost within an existing dense
Daisy descriptor framework to improve the flow estimation precision. Pixel-based features such as pixel colour and
gradient are computed on top of the original descriptor in the authors’ matching cost formulation. The pixel-based cost
only requires a light-weight pre-computation and can be adapted seamlessly into the matching cost formulation. The
framework is built based on the Daisy Filter Flow work. In the framework, Daisy descriptor and a filter-based efficient
flow inference technique, as well as a randomised fast patch match search algorithm, are adopted. Given the novel
matching cost formulation, the framework enables efficiently solving dense correspondence field estimation in a
high-dimensional search space, which includes scale and orientation. Experiments on various challenging image pairs
demonstrate the proposed algorithm enhances flow estimation accuracy as well as generate a spatially coherent yet

edge-aware flow field result efficiently.

1 Introduction

There are many kinds of literature on the optical flow, in both
pixel-based matching and descriptor-based matching. The former
is known to deal with the small displacement flow and the latter
can deal with large displacement flow of greater geometric variances.
Previously, most methods have focused on the smaller displacement
optical flow and rigid motion. Most of the small displacement
flow estimations are based on the variational method [1], in which
a local gradient-based matching of pixel grey values data term
is formulated together with a global smoothness assumption. Later,
subsequent research extends the work to overcome the limitation
of occlusions by adopting the non-quadratic penalisers in both
the data term and smoothness term accordingly [2, 3]. Also, the
violation of constant brightness assumption in the data term leads
to gradient constraint [4], which is a photometric invariant con-
straint. Furthermore, a local window is adopted in the data term
for a point-to-point pixel grey value patch matching. Then, an
adaptive local patch is employed to deal with the motion dis-
continuity. Later, a number of fast edge-preserving filters [5, 6]
are designed in order to perform the patch matching in constant
time irrespective of window size. Besides, PatchMatch [7, 8] has
explored complexity reduction in the search range dimension.
Afterwards, PatchMatch filter [9] has extended the works for
complexity reduction in both window size and search range
dimension by adapting the superpixel [10] as a bridge to link both
methods.

Descriptor-based matching is often employed in the image
registration task since the advent of the feature detectors [11-13]
and descriptors [14-16]. Feature detectors are first adopted to
identify some distinctive keypoint locations such as corners and
edges in an image. Later, descriptors are handcrafted to describe a
local region surrounding that keypoint. Various works [14-16] are
explored in the descriptor design in order to deal with geometric
distortion such as scale and orientation variances. Histogram of the
oriented gradient is first employed in SIFT descriptor [17] and due
to its robustness, it has gradually become the basic building block
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of subsequently advanced descriptors. Later, Daisy descriptor [18]
is proposed to compute descriptor densely for every pixel in an
image. Unlike previous methods of sparsely detect and describe a
few distinctive keypoints, Daisy descriptor can construct descriptor
densely thanks to its reuse of the histogram across the pixel. Daisy
Filter Flow [19] further adopted the Daisy descriptor in the
matching cost computation and adapted PatchMatch Filter [9] in
the flow inference.

The main advantage of large displacement optical flow is that it
requires sparser image sampling in the time domain than small
displacement flow. However, large displacement optical flow is a
challenging task as it may contain multi-layered motion and it
exhibits significant geometric variances. Large displacement
optical flow may involve multiple independent motions due to the
motion of individual objects in the scene and the motion of the
camera. Specifically, the Moseg dataset [20] that is experimented
here contains multi-layered motion and thus, the optical flow
cannot be modelled as a single global motion. The multi-layered
motion requires flow estimation to be computed densely or at least
for some pixels in all different motion layers for further inter-
polations. Also, large displacement optical flow often contains
significant scale and orientation variation as objects in the scene
may go through the larger motion.

Previous state-of-the-art methods which work well on small-
displacement rigid motion optical flow have difficulties in working
on the new challenges of significant geometric transformation.
Variational approach implements a coarse-to-fine framework to
deal with large-displacement optical flow [21]. Typical coarse-
to-fine warping method can solve large displacement optical flow
up to a certain extent that the motion is no larger than the scale of
the structure as pointed out in [22]. Another technique [22]
investigates into this large motion problem by integrating rich
descriptors into the variational optical flow setting.

Even though the descriptor-based approach can deal with signifi-
cant geometric difference, local region descriptor is rarely used in
the optical flow estimation. It is due to the top-performance
descriptors are mostly spatial histogram-based, which has
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localisation limitation, and thus affects the estimated flow precision
particularly on the motion boundary. Pixel-based methods, on the
other hand, does not suffer the localisation limitation as it computes
the matching cost on the fine-grain pixel-wise features such as
colour and gradient.

One would like to benefit from the typical pixel-based method for
their higher matching precision as well as the descriptor-based
matching for their ability to deal with significant geometry
difference. The contribution of this work is a novel combination of
descriptor-based algorithm and pixel-based matching algorithm
that can tackle large displacement optical flow with higher
accuracy than the previous methods. Fig. 1 highlights the basic
idea of concatenating the pixel-based finer grain feature with the
descriptor-based higher level histogram representation to improve
the precision of a descriptor-based only matching. Precision
improvement is clearly shown in Fig. 1 by comparing the straight
line on the road and pavement on the bottom right of both images.

This work investigates the improvement on the precision of the
large displacement optical flow estimation. Pixel-based matching
algorithms offer a high precision flow estimation. Descriptor-based
matching methods provide high recall flow estimation as they are
more robust to the geometric variances.

e A descriptor-based method adopts a patch-based histogram of
oriented gradient features in the matching cost formulation. This
kind of carefully hand-engineered descriptor such as SIFT [17] is
known for its robustness to geometric variances such as scale and
orientation distortion. However, this patch-based descriptor is built
upon histogram of oriented gradient and thus has inherent
localisation limitation due to the histogram nature.

e On the other hand, a pixel-based method adopts pixel-wise
finer-grain features such as colour and gradient in the matching
score computation. The pixel-based method does not suffer from
the localisation limitation as it does not employ a histogram
computation. Consequently, a pixel-based approach provides high
precision flow estimation. Thus, following the terminology from
[23], a descriptor-based matching has high recall (robustness) flow
estimation whereas a pixel-based matching provides high precision
(spatial discrimination).

In order to retain the descriptor robustness and improve its
precision, this work integrates the matching score from both the
pixel-based matching and descriptor-based matching. A novel
formulation is proposed to minimise the cost incurred by both
pixel-based and descriptor-based matching.

Fig. 1 Top row shows the idea of histogram-based descriptor matching is
used in DFF [19] and it is robust to geometric variation. The bottom row
illustrates the idea of concatenating the pixel-based and descriptor-based
matching and its result by our method, IPDDF. The finer grain details
preserved in the pixel-wise feature is integrated with histogram-based
descriptor representation to improve the precision. The precision
improvement is clearly shown by comparing the straight line on the road
and the curve pavement on the bottom right by zooming into the images

2 Related works
2.1 Pixel-based matching: high precision

Most optical flow estimation algorithms are pixel-based matching,
either local method such as Lucas and Kanade [24] or global
approach incorporating the regularisation constraint such as
smoothness term as in work by Horn and Schunck [1]. Pixel-based
matching usually enforces brightness and gradient constancy
between two corresponding image patches. Pixel-based matching
is accurate in translational motion and some can even achieve
subpixel accuracy. However, pixel-based matching has difficulty to
deal with non-translational motion, especially the challenging
geometric distortion such as scale and orientation difference.

2.2 Descriptor-based matching: high recall

The introduction of the keypoint detector and descriptor [15, 17, 18]
has led to sparse descriptor matching, followed by adaptive
sparse-to-dense interpolation for optical flow estimation. Patch-based
descriptors such as SIFT [17] and SURF [15] are robust to
photometric and geometric deformations. However, computational
complexity becomes the main design criterion when it comes to
dense descriptor-based matching. Recently, researchers have shown
that it is possible to compute descriptor on every pixel of the
images (e.g. Daisy [18], dense Scale-Invariant Descriptors [25]),
thanks to the constructional scheme of reusing shared histogram
across pixel [18]. This tackles the limitation of the previous
descriptor-based matching which can only be computed sparsely [17].

Among the dense descriptor, Daisy has shown it outperforms SIFT
and it runs about 60 times faster in wide-baseline stereo matching.
However, Daisy [18] is designed to tackle only with rigid camera
motions and subject to the assumption that the two given images
are calibrated. On the other hand, Daisy Filter Flow (DFF) [19]
generalises the Daisy descriptors and they can deal with scale and
rotation changes beyond just translations. DFF [19] computes the
descriptor-based correspondence field estimation efficiently in a high-
dimensional space which is augmented by scale and orientation. They
[19] built this efficient algorithm upon a few well-known methods
which are Daisy descriptor, PatchMatch fast search [7, 8] as well as
filter-based efficient flow field inference [26, 27].

2.2.1 Histogram-based descriptor localisation limitation: A
building block of a typical histogram-based keypoint descriptor
is illustrated on the bottom row left side of Fig. 1. Bottom left of
Fig. 1 shows a local patch of pixel gradients of black arrows,
where its length denotes the gradient magnitude and its direction
indicate the gradient orientation. The bottom middle of Fig. 1
shows a histogram of oriented gradients which quantised into eight
directions and the histogram is built by accumulating the pixel
gradient within that local region. A pixel gradient on the left can
shift up to four sample positions while still contributing to the
same histogram in the middle, therefore achieving the objective of
permitting greater local positional shift. This type of matching
gradients while allowing for shifts in their positions permits
matching of 3D objects from a range of viewpoint. However,
allowing the shift in the position of the gradients reduce the
matching location precision especially when the movement is due
to translational motion, rather than rotational motion.

3 Improved precision dense descriptor
flow (IPDDF)

In this paper, we propose a novel optical flow estimation algorithm:
IPDDF, that integrates the benefits of both pixel-based and descriptor-
based approaches. Our proposed method can handle complicated non-
rigid motion such as scale, orientation and view-point difference
thanks to the robustness of daisy descriptor [18]. Also, our proposed
method can tackle small object with large motion [21] as well as
motion details preserving [28], as our framework performs the flow
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estimation on a full resolution grid of the image. A typical variational
approach with coarse-to-fine framework struggle with those difficul-
ties, as the motion details and the small scale structures, are lost or
being smoothed away during the initial process of downsampling to
coarse-scale image [21].

Finally, our approach is suitable for large displacement optical
flow, which is a limitation for the differential approach with linear-
isation assumption and variational methods with a coarse-to-fine
framework [24]. Our method does not rely on linearisation assump-
tion which applies only to small-displacement. We do not use a
coarse-to-fine framework which can only estimate the flow of the
object if its structure is no larger than its displacement, as the struc-
ture details are smoothed away just at the level when the displace-
ment is small enough to be estimated in a variational setting [21].
Also, as an alternative to regularisation constraint as in a global
method to disambiguate weakly descriptive pixel-based data term,
we adopt a richly descriptive feature, specifically Daisy feature [18].

3.1 Proposed formulation: matching cost formulation
In this work, the dense daisy-descriptor framework from DFF [19] is
chosen as the baseline implementation. In their work, they focused
on matching images across different scenes. Here, we focused
especially on the large displacement optical flow problem. Given a
pair of images I and I, it is to estimate the labelling of the flow
field F = {f(p) = (u(p), v(p))} for every pixel p = {x,,y,} € 1.
In a dense descriptor flow framework, it is to search for the label
field L = {l(p) = (u(p), v(p), s(p), O(p))} within the label range,
that minimises the Markov random field formulation. The
additional labels, scale s(p) and angle 6(p) for each pixel p, are
accounted for by the robustness of Daisy descriptor.

Fig. 2 gives an overview of the adopted framework. It is comprised
of two stages: (i) pre-computation of the image gradient and Daisy de-
scriptor, (i) online matching of the computed cost. In the descriptor
pre-computation phase, a standard upright Daigy is pre-compute for
I' while a set of convolved orientation maps G,s,e [18] is pre-compute
for I, where s € E and 6 € 0. In the online matching stage, the con-
volved orientation maps can then be adopted to generate a rotated and
scaled Daisy descriptor D', on demand based on a hypothetical can-
didate label /. The hypothetical label is generated based on the
PatchMatchFilter [9, 19] concept, which is by iterative neighbour
propagation and random re-sampling. As in [19], the framework is
performed on a superpixel level in order to integrate the PatchMatch
search algorithm [8] with the efficient filter-based inference [5]. The
raw matching cost is computed for each hypothetical label using
image colour, gradient as well as the descriptor distances. The raw
matching cost is then adaptively aggregated for an edge-preserving
flow estimation by using the linear time filter-based inference [5].

I

L.(r \;.J
L} =
[hy . thodl]

The algorithm is repeated for a fixed iteration. An optimal label that
gives the minimum matching cost is chosen among the hypothetical
label.

3.1.1 Raw matching cost from the dense descriptor: The
matching cost is formulated as in (1). It is to compute the
corresponding points similarity based on their Daisy descriptor
distance. The smaller the distance, the smaller the matching cost,
and thus the more likely a hypothetical label is the match. The first
term in (1) is the Daisy descriptor distance between (i) the
standard upright unscaled descriptor fo(p) in the pixel p of image
I and, (ii) descriptor D’fﬁ( p') that is scaled by s and oriented at an
angle 6 in the pixel p’ that is translated by (u(p), v(p)) image I’,
which is exactly the same as in [19]

C/(p) = min(|DFp) — D' o(P))I, 1)

+ a-min(|l1(p) = I(P), 1)
+ B min(||VI(p) — VI' (D), 1)

M

3.1.2 Raw matching cost from non-histogram pixel-based
feature: The second and last terms in (1) are the newly
introduced matching cost into the original descriptor distance by
taking into account the brightness and gradient constancy,
respectively, for a better localisation precision to the original
histogram-based descriptor. The smaller the brightness and gradient
difference, the lower the matching cost, and thus the more likely the
hypothetical label is the match. Both a and 3 denote the weighting
of colour and gradient constancy costs, respectively. The thresholds
t, t, and ¢, are adopted to account for the outlier, which is either
due to occlusion, or the object that appears only in one view.
Truncated L, distances are used for all the three feature terms:
descriptor, colour and gradient terms for its robustness as in (1).

3.1.3 Filtered matching cost: As in DFF [19], a filtering-based
approach is employed to solve this typical multi-labelling task in
computer vision. This results in edge-preserving filtering and
adaptively smoothing the raw matching cost as in (1) yet provides
an efficient label inference. In contrast to DFF [19], we employed
the edge-preserving filter not only to the descriptor-based raw
label cost, but also to the pixel-wise colour and/or gradient raw
matching label cost. The raw matching cost C,(p) evaluated for the
pixel p and label / as in (1) is then adaptively aggregated across all
the pixels ¢ within a neighbourhood window W’ (p) of the radius r
as in (2). The weighting cost A, ,(I) denotes the appearance
similarity between the pixel p and its neighbour ¢ in the image 7,
in both intensity and spatial dimension closeness. This is a

bulputﬁﬂw field

’-Iap_ut_iﬁ@r- | Daisy precomputed standard . | -
—=———=—"| | upright descriptor, Df

[ Iterative neighbour propagation |
| & random sampling, (s, &, u,v) r|

1+ Precomputed image gradient, 71, 71I'|

"baisy precomputed convolve&]
\Input image, I’ s orientation map of predefined|

| Rotated and scaled Daisy |
| descriptor generation, D |

l

| Matching cost computation ("Adaptive weighted |
1 —= aggregrated cost using|

| set of scale and rotation

color, gradient differences |

from descriptors, image
| | filter-based inference

| \coeficients, G

1 = roo 28 :
2 / | P
& 1 i G’R '] 1 ‘T i
2 5,8 i . I =
. ~ fﬁm » ! [ 5 .‘."“
o seF KL ?) g POy 'r-r% AN
! - Loty !
Current Segment geo , o k¢ J:~i AN GO
Neighbour Segment L ‘_-S" 't . : il
* __Candidate pixel b ]

Fig.2 Figure shows the framework of our proposed method IPDDF. It consists of two stages: pixel gradient and Daisy pre-computation as well as online matching
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non-linear local varying weight and a brute force computation scale
linearly with the local window size. A number of fast edge-aware
filters [5, 6, 29] reformulate this bilateral weight so it can be
computed in constant time. The authors of [5, 6, 29] can be used

Input : (1) Input image pairs, I, I’. (2) Pre-computed image
gradient pairs, VI, VI'. (3) Pre-computed standard
Daisy descriptor Df{‘ for image 1. (4) Pre-computed
convolved orientation map [19] to generate Dﬁ; for
image I'. '
Output: The estimated pixel-wise label field
L = {i(p) = (u(p),v(p), s(p). 0(p))}
/*Initialization™/,
1: Partition I into K disjoint segments
I={S(k),k=1,2,.., K} and build adjacency graph. ;
2: Assign an initial random label [, to each segment S(k), all
pixels p € S(k) share the initial label I;,.;
/*lterative neighbour propagation and local resampling ¥/
repeat
fork=1:Kdo
3: Propagate a set of randomly sampled already
visited neighbour superpixel label L to current
superpixel S(k).;
forl € Ly do
4: Evaluate newly introduced raw matching cost
C;(q) asin(1)forallg € W"(p).;
5: Compute the filtered cost C;(p) for each pixel
p € S(k)asin (2).;
if C;(p) < Cy, (p),Vp € S(k) then
| 6:lp 1

7: Select a random pixel candidate s from superpixel
S(k) and generate a set of label L g around chosen
candidate label I, as in [8].;

8: Perform random label candidates l € L
evaluation and update by following step 4-6.;

until the maximum iteration number,

Fig. 3 Algorithm 1: Improved precision dense descriptor flow

to compute the support weight A, ,(I) of a neighbourhood pixel ¢
towards p adaptively.

They usually use the input image I to guide the image filtering
process and provide a spatially smooth yet edge-preserving filtered
output. Here, we adopt the linear-time guided filter method [5] for
its complexity trade-off and filtering quality

Cp)= Y A,DC(q) )

qEW"(p)

The search for the optimal label is simply Winner-Takes-All (WTA),
which minimise the aggregated matching cost as follows:

1, = argmine; C/(p) 3)

Exhaustively evaluating the raw and aggregated cost C;(p) and C,(p)
as in (1) and (2) for every single label /€ L is still very
time-consuming, even though the filter-based inference gives
favourable efficiency. It is due to the complexity is proportional to
the high-dimensional label space size, |[L| = L" - L” - |E| - H, where
(L",L", |E|, H) indicate the discrete search spaces for every
domain of (u, v, s, 0), respectively.

The generalised PatchMatch algorithm [8] is designed to perform
nearest neighbour search over translation, rotation and scale domain
with significantly reduced complexity in the search range of
O(log|L]). We follow the main idea of DFF [19] to find the
optimal label /, in (3) by combining filter-based inference [6] with
the fast randomised PatchMatch search [8] in the high-dimensional
label space. Here, only plausible candidate labels / through
propagation and resampling are evaluated, alleviating from going
through every label / € L. Segments or superpixels [10] are
adopted as a bridge to link the filter-based inference [6] with the
fast randomised PatchMatch [8] algorithms as in DFF [19]. Our
algorithm is described in Algorithm 1 (see Fig. 3).

4 Experiment results

The IPDDF algorithm is implemented based on the publicly
available DFF code. The parameters set for the dense Daisy

Y 26%
‘w:ﬁ Claisis

|

Fig. 4 Comparison of DFF, IPDDF with colour and gradient feature, and IPDDF with colour only feature, from left to right of the last three columns. The input
image pairs that show a large difference in sharpness, planar scale and rotation, and viewpoint are shown in the first two columns. The first image is warped to the
second image using the estimated flow field. The warped image is then overlaid directly onto the second image as shown in the last three columns. Only the good
matches are highlighted in a darker colour and the accuracy percentages are recorded on the top right corner for all warped images. Our method IPDDF show

accuracy percentage improvement over DFF for all three image pairs
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Fig.5 Quantitative result with correct matches on the trees sequence of the
dataset of Mikolajczyk et al. The accuracy percentages are reported for
different image pairs of n or more frames away from the source image I
The results are plotted for DFF against the IPDDF with colour only
feature, as well as IPDDF with colour and gradient features. Our
proposed method IPDDF has higher accuracy than DFF [19] in frame
difference of 3 and 5
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Fig. 6 Quantitative overlap results on the Moseg dataset. Average results
are shown for various ‘n+’ cases, namely, using all test pairs of n or
more frames away from the source image 1. IPDDF, DFF and SSID, and
their rotation-sensitive version with the postfix ‘-Rot’, are reported for
comparison. Our method IPDDF + Colour shows clear improvement over
the rest of the methods

feature are set as R=16, s € £ = {0.5, 1.0, 1.5,2.0,2.5} and
H =7, where 6 € ® = {15%0, 0 € [ — 3, 3]}, similar as in DFF
[19]. The search range is set to the image size both horizontally
and vertically to capture big location changes for large-scaled and
oriented motion. The SLIC segment K [10] grows sublinearly with
the image size, namely K = 800 for 800 x 480 image. The
truncation ¢ in (1) is set to 8.84 empirically. Also, the other two
truncation for colour and gradient features, ¢, and #, are set
empirically to 15 and 4, respectively. The weighting scheme of the
colour and gradient cost, @ and B in (1) are set empirically to
0.100 and 0.035, respectively. Gradient cost often has a higher
weight than the colour cost in the matching cost formulation as it
is more robust to photometric distortion. Also, the descriptor cost
in (1) contributes the most among the three cost terms, specifically
its weight to gradient weight is 10:1. It is due to the new
pixel-based cost serves to improve the localisation precision and
the descriptor cost is still dominating the matching cost. Thus,
both gradient and colour cost weight are just a fraction of the
descriptor cost. The number of iterations is set to 20 empirically.
The average runtime is 40 s for a 320 x 480 image. It is close to
the DFF (20-38 s for 12-25 iterations) as the proposed introduction
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of pixel colour and gradient in computing the matching cost only
amount to a few additional operations for each matching cost cal-
culation. Finally, the filtering window radius 7 is set to 9. Note
that the A, in (2) is the adaptive weight, which is computed auto-
matically by the linear-time edge-aware filter, specifically guided
filter [5] here.

Results on the dataset of Mikolajczyk et al. [30]: In this dataset,
we focus on the image sequences of graf, trees and boat for their
challenging geometric changes of scale and orientation variations.
We compared the original DFF [19] and our IPDDF algorithm with
the colour feature, as well as IPDDF with both colour and gradient
features. We apply the similar evaluation technique in [19, 31, 32],
namely the estimated match that is located within 15 pixels from
the ground truth location in the target image I’ as right matches.

Fig. 4 illustrates the typical performance on three types of test case-
s: viewpoint changes, sharpness difference, as well as planar and
rotation variations. Our algorithm shows its robust and favourable
performance on this dataset of various challenging settings. It
outperforms DFF [19] on the three image sequences of graf, trees
and boat. IPDDF with only colour feature performs best in graf and
boat for the challenging geometric changes setting. On the other
hand, IPDDF with both the colour and gradient features outperforms
in the trees sequences on the sharpness changes cases.

Fig. 5 shows the quantitative result with correct matches,
especially on the frees sequences of Mikolajczyk et al. [30]. The
comparison is performed on DFF [19], IPDDF with the colour
term, as well as IPDDF with colour and gradient features. In the
trees sequence which tests on sharpness differences, both our
variation of enhanced features, namely IPDDF with colour only
features, and IPDDF with both colour and gradient features,
outperform DFF [19]. It is due to the higher spatial resolution of
the colour and gradient features are adopted as compared to the
histogram-based descriptor only feature.

Results on the Moseg dataset [20]: The proposed method is tested
on this dataset that contains 31 challenging outdoor image pairs
with large-displacement and multi-layered motion, following the
recent segmentation-aware SID (SSID) work [33]. We follow the
evaluation protocol in [33], in which we use the estimated flow
to warp the segmentation mask from the target image I’ to the
source image I, and compute the overlap with the ground truth
using the Dice coefficient. As in [33], the overlap is measured as
2 x |4 N B|/(|A] + |B|) for two maps 4 and B.

Fig. 6 illustrates the overlap results acquired by using an SSID
descriptor [33] in the SIFT flow [32] framework and DFF
algorithm [19]. As in [33], the postfix ‘Rot’ which specifies the
rotation-invariant feature is switched off in the methods, since the
foreground object does not have many rotations. In this dataset,
we use only the colour feature as denoted by postfix ‘+ Colour’.
Both our IPDDF +Colour-Rot and IPDDF + Colour methods
outperform the state-of-the-art techniques, and they also work
better than the closest competitor DFF-Rot, especially for
the challenging pairs of large frame displacements. In addition,
Fig. 7 illustrates the visual result of the typical leading techniques.
Fig. 7 illustrates the visual quality of our method IPDDF is better
in finer grain precision than other methods by zooming into the
image. It is clearly shown by carefully examining in Fig. 7 that the
straight line on the road and curve pavement on the first row.
Also, in the left part of the image in the second row, the small
details such as post and tree branches are better reconstructed in
the warped image by IPDDF. The visual quality of the warped
image by IPDDF has verified that the proposed method improves
fine-grain precision.

5 Conclusions

We presented IPDDF — a dense Daisy descriptor-based flow
estimation with enhanced colour and gradient data term for various
image matching framework. The proposed IPDDF is robust in
estimating dense correspondences between difficult image pairs in
the presence of the drastic changes of photometric and geometric
variations especially on the scale and orientation difference,
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Fig. 7 Visual comparison of warping the image I' to I on the Moseg pairs of large motion and scale variations. The ground truth segmentation masks of the
image I are overlay onto the warped images in red, facilitating the object-mask alignment inspection. Third and fourth columns show the result obtained by
SSID-Rot and DFF-Rot. The last column shows our IPDDF + Color-Rot visual result. IPDDF shows clear improvement over the previous method by
carefully examining the quality of the warped image. In the first row, the straight line on the road and curve pavement is visually better in IPDDF (last
column) by zooming into the image. In the second row, the post and tree branches at the left part of the image are visually better in IPDDF (last column). It

verifies that integrating the pixel-wise feature improves in finer grain precision

brightness changes, and image quality. The addition of enhanced
colour and gradient features to the dense-descriptor flow further
improve the fine-grain precision of correspondence matching tasks.
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