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Abstract: Analysis of microarray data is a highly challenging problem due to the inherent complexity in the nature

of the data associated with higher dimensionality, smaller sample size, imbalanced number of classes, noisy

data-structure, and higher variance of feature values. This has led to lesser classification accuracy and over-fitting

problem. In this work, the authors aimed to develop a deep feedforward method to classify the given microarray

cancer data into a set of classes for subsequent diagnosis purposes. They have used a 7-layer deep neural network

architecture having various parameters for each dataset. The small sample size and dimensionality problems are

addressed by considering a well-known dimensionality reduction technique namely principal component analysis.

The feature values are scaled using the Min–Max approach and the proposed approach is validated on eight standard

microarray cancer datasets. To measure the loss, a binary cross-entropy is used and adaptive moment estimation is

considered for optimisation. The performance of the proposed approach is evaluated using classification accuracy,

precision, recall, f-measure, log-loss, receiver operating characteristic curve, and confusion matrix. A comparative

analysis with state-of-the-art methods is carried out and the performance of the proposed approach exhibit better

performance than many of the existing methods.

1 Introduction

Cancer is a group of diseases characterised by the abnormal growth
of cells. In a healthy body, the growth of the cells is in control such
that they grow and die systematically. The internal and
environmental factors may damage the cells’ genetic make-up
which results in the continuous growth of cells to form tumours
[1]. Factors such as improper cell division and damage to the
deoxyribonucleic acid are the major internal factors whereas,
exposure to substances such as chemicals in tobacco smoke,
radiation, and an ultraviolet ray of the sun are significant
environmental factors leading to cancer [2, 3].

The cancer disease is diagnosed and differentiated using gene
expression profiles. In the field of Computational Biology,
Genomics, Statistics, and Pattern Classification, microarray gene
expression data analysis is one of the challenging research
domains. The core challenge with microarray cancer analysis is
associated with the high curse of dimensionality and small sample
size which exists due to irrelevant and redundant genes [4–6]. In
addition, medical datasets are typically noisy, have variations in
feature values and an imbalanced number of classes which results
in over-fitting and lower classification accuracy [7, 8]. The need to
conduct research in microarray data analysis, specifically cancer
classification helps to identify and understand the features which
contribute to the development of cancer. The significant role
played by microarray data classification approach is the
identification of genes which contributes to certain biological
outcome and usage of such genes to predict new observations.
This helps in the detection of cancer in its early stage so that the
domain experts can make a treatment plan to enhance the survival
rate of cancer patients [4, 9, 10]. Hence, the problem requires
careful construction of a model that takes an input pattern which
represents objects and predicts the category of the object under
consideration and hence, there is a need to develop an accurate
prediction model on the given test data [7, 11, 12].

Microarray cancer data classification consisting of major tasks
such as collecting the data from its source, pre-processing, feature

selection, classification, and post-classification analysis.
The feature selection is the process of selecting important genes
from the tens of thousands of highly correlated and informative
genes and providing these filtered data elements to a classifier to
achieve better classification accuracy [13, 14]. Feature selection
plays a vital role in the classification of cancer data in order to
identify optimal and relevant subset of features, thereby enhancing
the classification accuracy and computational stability [15–18].
Analysis of microarray cancer data analysis plays a key role in
getting better insight about the disease that ultimately helps in
planning decisive measures and improve the cancer diagnosis
procedure [19].

In our work, we propose to employ a deep learning-based
classifier to classify microarray cancer data. Deep learning takes a
large volume of data to learn the behaviour of features during
training and predicts the class of unseen data. To validate the
proposed method, we have considered eight standard microarray
cancer datasets namely Prostate, Colon, Central Nervous System
(CNS), Ovarian, Leukaemia, and Lung cancer datasets. Feature
values are scaled using the Min–Max approach to overcome the
bias of decision in favour of high valued features.

The remaining part of the paper is organised as follows. We
discuss related research works in Section 2. Section 3 presents the
proposed methodology. The experimental set-up and results
analysis are presented in Section 4. Section 5 covers discussion
and comparative analysis, and the concluding remarks along with
future works are presented in Section 6.

2 Related works

Microarray data analysis is attracting the attention of researchers
across several disciplines. There has been considerable concern in
developing classification methods for microarray cancer data.
Some of the latest works proposed for microarray data analysis in
the field of artificial intelligence, machine learning, pattern
recognition, and other related areas are discussed below.
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Recently, due to the advancement in biomedical and information
technologies, several research works are going on, leading to
different algorithms that are helpful for cancer diagnosis using
different data-driven diagnosis methods [20, 21]. Mabu et al. [22]
proposed cluster-based feature selection and artificial neural
network method for classification of gene expression datasets.
Zeebaree et al. [12] proposed a gene selection and classification
approach for microarray cancer data using convolution neural
network. The authors do not reveal the procedure to obtain
dimensionality reduced features from the original dataset. Hou
et al. [23] introduced a diagnostic prediction model by integrating
an optimised genetic algorithm with artificial neural networks and
the model was validated on prostate cancer dataset. Mohapatra
et al. [4] suggested ridge regression (RR) with a single hidden
layer feed-forward network and feature weights were randomly
chosen. To validate the method, binary microarray datasets namely
Breast, Prostate, Colon tumour, and Leukaemia were used. It is
observed that the standard train/test protocol suit is not followed
with respect to breast cancer dataset.

Salem et al. [3] suggested genetic programming-based cancer
classifier with the help of information gain (IG) for feature
selection. Lin et al. [11] introduced genetic algorithm with
silhouette statistics for feature selection and classification on
SRBCT dataset. We have observed that the feature selection
method is non-optimal as it generates thousands of features which
result in the over-fitted model. Sharbaf et al. [16] proposed a
hybrid approach for gene selection and classification of microarray
datasets using cellular learning automata and ant colony
optimisation. They have examined the impact of various
rank-based feature selection methods and they use three classifiers
namely support vector machine (SVM), k-nearest neighbour
(KNN), and Naive Bayes for validation. Kumar et al. [17] built a
feature selection and classification algorithms based on the
MapReduce concept along with KNN classifier. Nguyen et al. [24]
proposed an aggregate gene selection for microarray data
classification and experimented their model on four standard
datasets namely DLBCL, Leukaemia, Prostate, and Colon datasets.
To validate the method, five existing classifiers namely linear
discriminant analysis, KNN, probabilistic neural network, SVM,
and multilayer perceptron (MLP) were used and they claimed that
the proposed method has stability across different classifiers but
they could not reveal the claimed stability beyond five classifiers.
Lofti and Keshavarz [25] introduced a hybrid of Principal
Component Analysis (PCA) and brain emotional learning for
microarray cancer data classification. They validated the work on
three datasets which are not enough to confirm about the
generalisation of the method. Ravi et al. [26] have carried out an
extensive review to reveal the potential of deep learning models in
health informatics. They have illustrated different deep learning
architectures such as deep feed-forward, convolutional networks,
and recurrent networks applicable to problems across several
problem areas. Kar et al. [27] proposed particle swarm
optimisation-based feature selection for classification of microarray
cancer data. The acute lymphoblastic leukaemia-acute myeloid
leukaemia (ALL-AML) and SRBCT datasets were used to validate
the method. They conduct an experiment ten times on each dataset
and average of these ten runs are reported as final results. Garcia
and Sanchez [28] proposed a two-stage method for microarray
classification. In the first stage, they have performed a feature
selection using the ReliefF ranking algorithm followed by training
a classifier on the lower-dimensional feature space to classify each
sample into their respective classes. They have used three linear
classification models namely Fisher linear discriminant, SVM, and
MLP neural network classifiers while the ReliefF algorithm is used
for feature selection and experimental results are reported on
eight different cancer datasets. Chen et al. [29] proposed particle
swarm optimisation-based feature selection and the C4.5 decision
tree has been applied for classification. Experimental results with
5-fold cross-validation approach on different tumour cancer
datasets are reported. An adaptive rule-based classifier is proposed
by Farid et al. [30] for big biological datasets considering
decision tree and KNN. The limitation of this work is that it is not

adaptive with respect to the number of neighbours. Lyu et al. [31]
have proposed a filter-based feature selection method based
on maximum information coefficient and Gram-Schmidt
Orthogonalisation approach. Li et al. [32] constructed an
overlapped grouping strategy and data-driven weights based on
information theory for lung cancer classification. Piao et al. [33]
introduced a feature subset-based ensemble method that learns
from the different projection of the original feature space to
classify multi-class microarray cancer data. Wang et al. [34]
proposed an integrated Markov blanket technique and
Wrapper-based feature selection to tackle the higher computational
complexity due to redundant features during feature selection.
Hoque et al. [35] introduced a greedy feature selection technique
that uses mutual information that combines feature-feature and
feature-class mutual information. The method was validated on
three base classifiers namely KNN, RF, and SVM.

Thus, we have seen a noticeable amount of research works that are
being carried out in the domain of microarray data classification.
Some of the existing methods found to work on a few datasets and
possess little lesser accuracy. These issues motivate us to explore
deep learning method for the classification of microarray cancer
data preceded by pre-processing operation using PCA to achieve
better classification accuracy. The details are brought out in the
following sections.

3 Proposed methodology

In this section, we present the proposed work which includes various
phases such as feature scaling, dimensionality reduction, and deep
feed-forward Neural Network-based classification method which
also includes parameter settings. The framework of the proposed
approach consists of the major tasks such as loading of the raw
microarray cancer data, followed by normalisation using the Min–
Max method, dimensionality reduction, and deep learning-based
classification as presented in Fig. 1.

3.1 Feature scaling

In the field of pattern recognition and machine learning, it is a known
fact that the feature scaling technique is explored to normalise the
data. This process brings all the data elements down to the same
scale in order to avoid outliers and hence enhances the quality of
prediction. Since the features in microarray cancer datasets are
having high variance, we propose to explore feature scaling as one
of the pre-processing techniques for data normalisation. Feature
scaling is carried out using the Min–Max approach in order to fit
the sigmoid activation function as it considers values between 0
and 1 with a threshold value of 0.5 for binary classification during
model training (see (1)).

X =
Xi − Xmin

Xmax − Xmin

(1)

where Xi is the original feature value, X stands for the normalised
data, Xmin is the minimum value, and Xmax stands for the
maximum value in the original dataset before scaling.

3.2 Dimensionality reduction method

In this work, we propose to explore a dimensionality reduction
technique namely PCA as a pre-processing technique to obtain
a relatively more compact form of data. The PCA-based
dimensionality reduction linearly transforms the features into a
lower dimensional space. The PCA works by linearly mapping
the high dimensional microarray cancer data to a lower
dimensional space with the intent of maximising the variance of
the data in the lower dimensional space [28, 36]. It is a
well-known fact that dimensionality reduction helps to overcome
over-fitting, enhances accuracy, and maintains the simplicity of the
model thereby enhances the classification accuracy. Each sample
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in the original dataset is represented based on (2) where X is any
sample in the dataset with a dimension d.

X = [X1, X2, . . . , Xn], X eRn·d (2)

Given an input dataset that can be expressed as Xi = x1, x2, . . . , xd
where Xi is any sample in the input dataset, the dimension of the
input dataset is expressed based on (2). The PCA constructs a
compact feature set Z with dimension k that retains the maximum
information by keeping maximum variance among features in the
new dataset. The eigenvectors W generated by the PCA model are
multiplied with each sample vector to create the new dataset.

Z = XW = [z1, z2, . . . , zk ], ZeR
n·k , WeR

d·k , k ≪ d (3)

where the dimension of the original dataset d is much higher than the
dimension of the new matrix.

3.3 Deep learning-based microarray cancer
data classification

We propose to explore deep feed-forward neural network-based
model to classify the microarray data. The deep feed-forward
network is a vital deep learning model. The model is called
feed-forward neural network because information flows through
the function being evaluated from zk , through the intermediate
computations used to define the function f, and finally to the
output yp, where zk is the input feature vector and yp is the
predicted class label. In a deep-forward learning approach,
the output of a given node is not connected to the node itself.
Rather, the feed-forward neural network is represented by different
directed (linked) functions hence, the model is a directed graph
describing how the functions are connected together. For instance,
let us consider three functions f1, f2, and f3 connected in a chain to
form the network and hence to define f (x) = (f1(x), f2(x), f3(x)).
These chain structures are the most commonly used structures in
neural networks. In this case, f1 is the first layer of the neural
network, f2 is the second layer, and f3 is the third layer and so

on [37]. The proposed model takes an input vector
Z = z1, z2, z3, . . . , zn where Z1R

n·k and each input vector is
multiplied by its corresponding weight. Hence, the weight vector
for the input data is represented as w = w1, w2, w3, . . . , wn and
the bias b is added to the weighted input vectors. In each layer of
the model, the weighted input vectors are multiplied by the
sigmoid activation function to yield the intermediate probabilistic
results in the hidden layers based on (4).

yp = f
∑

n

i=1

wn
i
· zki

+ b

( )

(4)

where yp is the dependent variable to be predicted, wn are the weight
matrices, zk are feature vectors, and f is the sigmoid activation
function based on (5).

We propose to use the sigmoid activation function during the
training of the deep feed-forward neural network model to predict
the class belongingness for a new data element. The sigmoid
function is employed as an activation function has bounded output
between 0 and 1 which handles the prediction of the class labels
as the probability (see (5)).

f (zi) =
1

1+ e− zn·wn( )
(5)

Equation (6) handles multi-features across the hidden layers by
learning the interesting behaviour of the data along the way to the
output layer.

yp =
1, if w0 + w1 · z1 + w2 · z2 + , · · · , + wn · zn .= 0.5

0, otherwise

{

(6)

where wn is a weight vector, w0 is a bias which is initialised to 1, zn is
a feature vector and yp is the predicted class label.

Equation (6) is used to find the relation between the
target-dependent variable and one or more of the independent

Fig. 1 Framework of the proposed deep learning approach
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features. Weight initialisation is carried out randomly and uniformly,
and then the weight update is performed during the course of the
training period. The proposed model compares the probability of
the actual and predicted class and assigns a class value based on
the threshold value of a binary class and assigns the prediction to
either of the classes (see (6)).

In a deep learning-based classification, the error of the final
prediction is computed as the difference between the predicted
class label yp and the given class label yi using the predefined
objective function namely cross-entropy. The errors are then
backpropagated back through the entire network to optimise the
weights for minimal error value [36].

The deep feed-forward approach and its computational units
applicable for classification purpose is presented in Fig. 2. It
consists of input features and weights, activation function, output,
error computation, and error back propagation. Each input feature
is multiplied with its weight to give a single output which will be
also an input to the next layer and finally gives the prediction. The
evaluation takes place by subtracting the actual class label from
the predicted class and the difference is triggered back as
back-propagation error. The back-propagation of errors is meant to
update the weights and finally gives a maximum possible
prediction, and hence the minimum error is registered.

As shown in Fig. 3, the activation function a defines the output of
the dot product of the input features [z1, z2, . . . , zn] and
corresponding weights [w1, w2, w3, . . . , wn] in the first hidden
layer h1. The output of an activation function passes to the next
node of the hidden layer and finally, the output is triggered at the
node of the output layer. Weights are updated by propagating the
weights back to the previous nodes until optimal prediction is
achieved.

3.3.1 Parameter settings: We have used a seven-layer deep
feed-forward model for all of the datasets and is presented in
Table 1. The number of parameters in each layer is computed
based on (7), where Ci is the number of neurons at the current
layer i, Pi is the number of neurons in the previous layer, and 1 is
the bias. The None parameter in the deep feed-forward learning
approach indicates the batch size at each layer that may vary. It is
noted that the number of neurons in the input layer is the input
shape for the next layer. We have used an epoch size of 1000 with
respect to seven datasets namely Breast, CNS, Colon, Leukaemia,

Ovarian, Prostate, Lung-Michigan cancers, and 1200 epochs in the
case of Lung-Harvard2 cancer dataset. The total number of
parameters Tparameters in one model is the summation of all

Fig. 2 Deep learning model and its computational units

Fig. 3 Activation function

Table 1 Proposed seven-layer deep feed-forward model

Type of layers Output shape # Parameters

Dense Layer_1 (None, 200) 4600
Dropout_1 (None, 200) 0
Dense Layer_2 (None, 100) 20,100
Dropout_2 (None, 100) 0
Dense Layer_3 (None, 50) 5050
Dense Layer_4 (None, 40) 2040
Dense Layer_5 (None, 30) 1230
Dense Layer_6 (None, 20) 620
Dense Layer_7 (None, 1) 21
total number of trainable parameters 33,661
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parameters in each layer. Hence, the total number of trainable
parameters in our work sums up to 33,661 which is the result of
the sum of all the parameters in all the layers

Tparameters =
∑

7

i=1

Ci(Pi + 1) (7)

The parameters employed are sigmoid activation function, a
binary cross-entropy to compute the loss on training and test data,
and adaptive moment estimation (ADAM) optimiser [38]. ADAM
optimiser works by computing the adaptive learning rate for each
parameter. It computes and keeps decaying average of past
gradients momentum mt as indicated in (8). It stores an
exponentially decaying average of the past squared gradients
variance (vt) as shown in (9), where t is time and g is the gradient.

mt = b1.mt−1 + (1− b1).gt (8)

nt = (1− b2)
∑

t

i=1

b
t−i
2 .g2i (9)

In our work, we pass the ADAM optimiser by name, and parameters
will take default values. The default values of ADAM optimiser
parameters are b1 = 0.9, b2 = 0.99, 1 = 10−8 where b1 and b2

are decay rates [38].
Since (8) and (9) are biased [38], another mathematical expression

which corrects the biases is required. Hence, (10) and (11) are used
to alleviate the problem of bias.

m̂t =
mt

1− bt
1

(10)

n̂t =
nt

1− bt
2

(11)

Finally, the model updates its parameters by back-propagation as
shown in (12), where u stands for the updated parameters that
enable the model to converge at timestamp t.

ut = ut−1 −
h.m̂t
���

n̂t
√

+ e
(12)

Since the model predicts based on the probabilistic approach,
binarisation of the class level is carried out to get the Boolean
results at a threshold value of 0.5 for either of the classes. The
cost function in our model is defined in terms of binary
cross-entropy. The proposed model computes probabilistic
estimation of the target value yi for a given class c and an input
vector zk in the output layer to determine class belongingness as
expressed in (13) where zk is a feature, yi is the target, and c is the
class which is either one or zero.

f (zi) = p(yi = c|zn) (13)

In binary class problem, the distance between the two probability
vectors which are the predicted and actual class are compared
using the distance function as shown in (14).

D(f (zi, yp, yi)) =
1

N

∑

i

((wn.zn + b), yp, yi) (14)

The distance of these vectors is averaged over the entire training
set N for all the input values zn, D is the distance function
between the predicted, say yp and actual, say yi class labels. Here,
wn is the weight matrix and b is the bias. To maximise the
probability of the correct target yi, given input features zi, we
apply negative log-likelihood minimisation function as shown in
(15) which maximises the estimation of a given sample zn
belonging to a class label yi

L(f (zi), yi) = −
∑

c

1(yi=c) log f (zn)c = − log f (zn) · yi (15)

where L is the loss, zn is a feature vector, yi is the target class label
corresponding to all features, and c is the class.

4 Experimental setup and results analysis

In this section, we present the description of datasets used in our
experimentation, performance metrics used in evaluating the
performance of the proposed method followed by experimental
results and analysis. As a development tool, we have used
Anaconda Python 3.5, Keras Deep Learning Library as a front-end
[39] and Tensor-flow open-source deep-learning library as the
back-end to construct our model.

4.1 Dataset description

The proposed approach is evaluated using eight different standard
microarray datasets obtained from ELVIRA Biomedical Dataset
Repository for high dimensional biomedical datasets http://leo.ugr.
es/elvira/DBCRepository/index.html. The CNS cancer dataset
contains 7129 features and 60 samples of which 21 are survivors
and 39 are failures. The Colon cancer dataset contains 2000 genes
and 62 samples, 40 of the samples are tumours which are labelled
as positive and 22 are normal cases. The Ovarian cancer has
15,153 genes and 253 samples, out of which 162 samples are
cancers and 91 samples are normal cases. The Leukaemia is a
bone marrow cancer containing 7129 features and 72 samples. It
has two classes where 47 samples of Acute Lymphoblastic
Leukaemia (ALL) and 25 of them are Acute Myeloid Leukaemia
(AML). The Prostate cancer contains 12,600 features and 102
samples of which 52 observations are tumours and the remaining
50 observations are normal. The Breast cancer contains 24,481
genes and 97 samples in which 46 cases are relapse and 51
samples are non-relapse. It is noted that both Lung-Harvard2 and
Lung-Michigan cancers have highly imbalanced class
distributions. The Lung-Harvard2 dataset has 181 samples with
150 Adenocarcinoma (ADCA) and 32 Malignant Pleural
Mesothelioma (MPM) classes. The Lung-Michigan dataset has 96
samples out of which 86 belongs to Adenocarcinomas class and
the remaining 10 samples are to non-neoplastic class.

Table 2 presents the description of eight standard datasets in terms
of the original number of features, the selected features using PCA,
the percentage of discarded features by PCA, the sample size,

Table 2 Dataset description

Dataset name #Features # Selected features % of discarded features Sample size Training size Test size #Classes

CNS cancer 7129 108 98.49 60 36 24 2
Colon tumours 2000 104 94.80 62 37 25 2
Leukaemia cancer 7129 53 99.26 72 39 33 2
Prostate tumours 12,600 76 99.40 102 61 41 2
Ovarian cancer 15,154 24 99.84 253 202 51 2
Breast cancer 24,481 60 99.75 97 78 19 2
Lung-Michigan 7129 45 99.37 96 57 39 2
Lung-Harvard2 12,533 77 99.39 181 32 149 2
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training and test size, and the number of classes. The proposed
PCA-based dimensionality reduction is giving minimum but
informative features that maximise the performance of the
proposed classifier by neglecting the irrelevant features. We note
that most of the features in the original datasets are not relevant
for the prediction of a class label.

4.2 Performance measures

To validate the performance of the proposed approach, we have used
several standard performance measures such as classification
accuracy, precision, recall, f-score, and receiver operating
characteristic (ROC) curve where it is summarised by area under
the curve (AUC), log-loss, and confusion matrix. The accuracy
is used to evaluate the overall predictive capability of the model
that considers four parameters namely True positive (TP),
True Negative (TN), False Positive (FP) and False Negative (FN),
as shown in (16). It works by considering the number of
correctly classified samples to the ratio of the total number of test
samples

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(16)

Recall also known as sensitivity is a true positive rate that is the ratio
of true positive (TP) to the sum of true positives (TP) and false
negatives (FN) as shown in (17)

Recall =
TP

TP+ FN
(17)

Another performance measure used in this work is precision, which
is also referred to as positive predictive value as shown in (18)

Precision =
TP

TP+ FP
(18)

As shown in (19), FMeasure is used to neutralise the bias in precision
and recall since it considers the harmonic mean of both precision and
recall

Fscore = 2 ·
Precision× Recall

Precision+ Recall

( )

(19)

The error score due to the proposed method is computed using the
log-loss function (see (20)), where N is the number of samples, yi
is the actual class label, and pi is the probability that the ith
sample belongs to either of the classes. Log-loss measures the
performance of a model by computing the prediction as
probability values between zero and one. A better classifier has to
score a minimum log-loss error value with the intention of
minimising to zero in the case of a perfect classifier.

Log Loss =
−1

N

∑

N

i=1

yi · ( log (pi)+ (1− y) · log (1− pi)) (20)

4.3 Analysis of experimental results

The detailed analysis of the experimental results obtained due to the
proposed method on different datasets with various performance
measures is presented in this sub-section.

In the proposed deep feed-forward neural network-based
microarray cancer classification method, each of its input layers
takes features and passes it for further manipulation in the next
layer with each neuron densely connected throughout the model.
The model is fully connected neural network which takes the
selected features as an input passes the features through its
hierarchical hidden layers to give a class prediction on the output
layer, which has a single neuron that produces an output of
probabilistic value between 0 and 1 inclusive, whereby if that
value is binarised it will give the predicted result based on the
specified threshold value of 0.5 which is a default value for binary
classification problem.

In our work, to verify the generalisation capability of the
proposed method, we have used separate training and test
samples during pre-processing, i.e. in carrying out the scaling of
features, dimensionality reduction, and classification. Some of the
datasets such as Breast cancer, Lung-Harvard2, Leukaemia, have
a standardised set of training and test samples, hence we use
these standards in our work. For some of the datasets such as
CNS, Colon, and Prostate, since there are no separate set of
training and test samples, we have divided the datasets into
training and test samples based on the ratio of 60:40 for
training and test cases before pre-processing, and 80:20 ratio for
Ovarian cancer data. The rationale behind dividing the datasets
in the specified ratio for training and testing is that it is set as
the standard used in many of the machine learning algorithms
[40–42].

The experimental result of the proposed method is presented in
Table 3, indicating the sample size of each dataset, the training
and test sample sizes. The classification accuracy, precision, recall,
f-score, AUC, and log-loss error are also presented. The proposed
method shows perfect classification performance scoring 1.00 on
four of the datasets namely, Leukaemia, Ovarian, Prostate, and
Lung-Michigan cancer datasets. On the remaining four datasets,
the proposed method has scored a classification accuracy of 0.99
on Lung-Harvard, 0.95 on Breast cancer, and 0.96 on both CNS,
and Colon cancer datasets.

To validate the performance of the proposed method, we have
used a confusion matrix that shows correctly and/or wrongly
classified test samples. The confusion matrix depicts correctly
classified samples along the diagonals and misclassified test
samples along the off-diagonal elements. In Breast cancer data, out
of 19 test samples, 1 case from the relapse class goes wrong to the
non-relapse class (see Fig. 4a). Similarly, out of 24 test samples,
1 sample from failures class is misclassified as survivors class in
CNS dataset (see Fig. 4b).

Moreover, in the case of the Colon dataset, out of 25 test cases, 1
negative case is misclassified as a positive case as shown in Fig. 4c.
Out of 149 test cases in the Lung-Harvard dataset, 1 ADCA class is
misclassified as MPM class as shown in Fig. 4e. In the other datasets,
the approach exhibits perfect classification accuracy, as shown in
Figs. 4d, f, g, and h for Leukaemia, Lung-Michigan, Ovarian, and
Prostate cancer datasets, respectively.

Table 3 Experimental results on all datasets

Dataset Training set size Test set size Training accuracy Test accuracy Precision Recall F-Measure AUC Log-loss error

breast cancer 78 19 1.00 0.95 0.95 0.95 0.95 0.96 0.410
CNS 36 24 0.96 0.96 0.96 0.96 0.96 0.97 0.219
Colon 37 25 1.00 0.96 0.97 0.96 0.96 0.97 0.189
Leukaemia 39 33 1.00 1.00 1.00 1.00 1.00 1.00 0.000
Ovarian 202 51 1.00 1.00 1.00 1.00 1.00 1.00 0.000
Prostate 61 41 1.00 1.00 1.00 1.00 1.00 1.00 0.003
Lung-Harvard2 32 149 1.00 0.99 0.99 0.99 0.99 1.00 0.032
Lung-Michigan 57 39 1.00 1.00 1.00 1.00 1.00 1.00 0.000
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To evaluate the performance of the proposed method, we
have computed the classification accuracy. Fig. 5a shows the
classification accuracy due to the proposed method on Breast
cancer data. Similarly, Figs. 5b, c, and e show the classification
accuracy of the proposed method on CNS, Colon, and
Lung-Harvard2 datasets that shows the minimum gap between the
lines of training and test cases. The classification accuracy of the
proposed method on Leukaemia, Lung-Michigan, Ovarian, and
Prostate datasets is shown in Figs. 5d, f, g and h, respectively. Due
to the perfect classification accuracy on these datasets, there is no
significant gap between lines associated with training and test
samples.

We have also validated our work using the log-loss error function.
As it can be observed from Fig. 6a, the loss on the training set is
close to zero, however, the reported loss on test case is 0.410 (see

Table 3) and this infers that there is still a need of further study on
this particular dataset to minimise the error.

The proposed method shows better performance by scoring
minimum error in the test cases of CNS, Colon, and Lung Harvard
datasets as shown in Figs. 6b, c and e scoring 0.219, 0.189, and
0.032, respectively, (see the last column of Table 3). Moreover,
there is no loss incurred on Leukaemia, Lung-Michigan, and
Prostate cancer datasets as shown in Figs. 6d, f and h and a very
negligible error that is 0.003 is scored on Ovarian cancer dataset
as shown in Fig. 6g. It is noted that the gap between the lines of
training and test cases is an indicator of whether the model is
over-fitting or not.

In a classification problem, the ROC curve is widely used to check
the performance of the model. It works by computing the AUC at
various threshold settings. It is one of the metrics used to measure

Fig. 4 Confusion matrix on eight microarray cancer datasets

a Breast dataset

b CNS dataset

c Colon dataset

d Leukaemia dataset

e Lung-Harvard2 dataset

f Lung-Michigan dataset

g Ovarian dataset

h Prostate dataset
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the performance of any classifier and possess a high degree of
tolerance in classifying data with lower-class imbalance. Unlike
accuracy and other performance measures, the ROC curve shows

the area coverage in terms of AUC. The intuition behind ROC and
AUC is that, the more the curve moved to the left top corner, the
better the classification accuracy it will be and this is achieved by

Fig. 5 Classification accuracy on eight microarray cancer datasets

a Beast dataset

b CNS dataset

c Colon dataset

d Leukaemia dataset

e Lung-Harvard2 dataset

f Lung-Michigan dataset

g Ovarian dataset

h Prostate dataset
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the proposed method. The ROC curve obtained due to the proposed
methodology on the Breast cancer dataset is shown in Fig. 7a,
scoring an AUC of 0.96 and is acceptable as per the rating of

acceptance of results from the literature. Figs. 7b and c show the
ROC curve for CNS and Colon cancer data scoring an AUC of
0.97 each which is rated as highly acceptable area coverage

Fig. 6 Loss due to the proposed method on eight microarray cancer datasets

a Beast dataset

b CNS dataset

c Colon dataset

d Leukaemia dataset

e Lung-Harvard2 dataset

f Lung-Michigan dataset

g Ovarian dataset

h Prostate dataset
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according to the literature [43, 44]. Similarly, the AUC obtained due
to the proposed method on the Lung-Harvard2 dataset is 0.99 as
shown in Fig. 7e. Since the proposed method is achieving a

perfect classification accuracy on Leukaemia, Lung-Michigan,
Ovarian, and Prostate datasets, the AUC score for each of these
datasets is 1.00 as shown in Figs. 7d, f, g, and h, respectively.

Fig. 7 ROC curve with area under the curve (AUC) on eight microarray cancer datasets

a Beast dataset

b CNS dataset

c Colon dataset

d Leukaemia dataset

e Lung-Harvard2 dataset

f Lung-Michigan dataset

g Ovarian dataset

h Prostate dataset
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5 Discussion and comparative analysis

This section provides a detailed discussion about the proposed
method based on the results achieved and comparisons with
state-of-the-art methods. An optimal performance by the proposed
deep learning-based classifier is achieved when we use a
PCA-based dimensionality reduction strategy to obtain informative
features. The proposed method classifies perfectly with 1.00
accuracy on four of the datasets namely Leukaemia,
Lung-Michigan, Ovarian, and Prostate datasets. Moreover, an
accuracy of 0.99 is obtained on the Lung-Harvard dataset. We
have got an accuracy of 0.96 on two datasets namely CNS and
Colon, and 0.95 on Breast cancer. This shows that the proposed
method is performing better than many of the state-of-the-art
methods.

This part of the paper presents a comparative analysis of the
proposed method with some selected latest works with respect to
classification accuracy. Table 4 demonstrates a comparison of the
classification accuracy of the proposed method with nine latest
methods. The hyphen (-) in the particular cells of the table depicts
that the authors did not consider the dataset in their work.

As presented in Table 4, the proposed method achieves better
classification accuracy, which is 1.00 in four datasets namely
Leukaemia, Lung-Michigan, Ovarian, and Prostate datasets. In the
case of CNS and Colon datasets, we get better results comparing
to the other works which are 0.96. In the case of Breast cancer
and Lung-Harvard2, an accuracy of 0.95 and 0.99 is achieved,
respectively. Generally, the proposed approach exhibits better
performance when compared to the other methods. Furthermore,
we suggest that the proposed method can be extended to
multi-class datasets and other binary class datasets such as Brain
cancers to show its validity which is our future work. Table 5

shows a comparison of the proposed method with the IG/SGA
method [3]. It is shown that the proposed approach perform better
than the IG/SGA method in terms of recall on two datasets namely
Colon and Leukaemia and the similar results are achieved on
Prostate and Lung-Michigan datasets. The hyphen (-) symbol in
this table is to indicate that the authors do not consider datasets
along that column.

We have also made a comparative study of our proposed deep
learning method with other state-of-the-art work introduced by
Mohapatra et al. [4]. We compare the methods in terms of
dimensionality, training and test size, accuracy, and AUC. Based
on the empirical evidence in Table 6, it shall be noticed that
work exhibits better performance when measured in terms of
classification accuracy and AUC.

6 Conclusion

In our work, we propose a deep feed-forward neural network
approach for the classification of binary class microarray datasets.
To validate the proposed method, eight standard microarray cancer
datasets namely CNS, Colon, Prostate, Leukaemia, Ovarian,
Lung-Harvard2, Lung-Michigan, and Breast cancers are used. To
overcome the curse of dimensionality and other problems
associated with the nature of the data, the PCA is used as a
dimensionality reduction technique. Feature scaling is carried out
using the Min–Max approach. To compute the magnitude of error
during training and testing, the binary cross-entropy is applied
since it is a standard loss function and is recommended for binary
classification problems. For optimisation purposes, we have
adapted the ADAM. A comparative study of the proposed method
with state-of-the-art methods is carried out. Experimental results

Table 4 Comparison of classification accuracy of the proposed model with some of the latest related research works on CNS, Colon, Ovarian, Prostate,
Leukaemia, Lung-Harvard2, Lung-Michigan, and Breast cancer datasets

References Datasets

CNS Colon Ovarian Prostate Leukaemia Lung-Harvard2 Lung-Michigan Breast

Salem et al. [3] 0.87 0.85 – 1.00 0.97 – 1.00 –

Mohapatra et al. [4] – 0.93 – 0.99 0.99 – – 0.76
Singh and Sivabalakrishnan [5] 0.79 0.72 – – 1.00 1.00 – –

Medjahed et al. [9] – 0.97 0.98 – 0.96 0.99 – 0.86
Tarek et al. [10] – 0.65 – 0.92 1.00 – 0.72 –

Nguyen et al. [24] – 0.88 – 0.91 0.94 – – –

Kar et al. [27] – – – – 0.97 – – –

Garcia and Sanchez [28] 0.73 0.84 0.99 0. – 0.98 0.98 0.65
Chen et al. [29] – – – 0.94 – – – –

proposed method 0.96 0.96 1.00 1.00 1.00 0.99 1.00 0.95

Table 5 Comparison of Recall of the proposed model with IG/SGA [3]

References CNS Colon Ovarian Prostate Leukaemia Lung-Harvard2 Lung-Michigan Breast

Salem et al. [3]. — 0.83 — 1.00 0.97 — 1.00 —

proposed method 0.96 0.96 1.00 1.00 1.00 0.99 1.00 0.95

Table 6 Comparison of the proposed model with [4] on data dimensionality, Training size, Test Size, Classification Accuracy (CA) and AUC parameters

Authors and Method Dataset Dimension Training size Test size Accuracy AUC

Mohapatra et al. [4] (WKRR) Breast 97 * 24,481 70 27 0.81 0.89
Colon 62*2000 40 22 0.95 0.79

Leukaemia 76*7129 50 26 0.95 0.87
proposed model (deep learning) Breast 97*24,481 78 19 0.95 0.96

CNS 60*7129 36 24 0.96 0.97
Colon Tumour 62*2000 37 25 0.96 0.97
Leukaemia 72*7129 39 33 1.00 1.00
Ovarian 253*15,154 202 51 1.00 1.00
Prostate 102*12,600 61 41 1.00 1.00

Lun-Michigan 96*7129 57 39 1.00 1.00
Lung Harvard 181*12,533 32 149 0.99 1.00
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on these standard microarray datasets and comparative analysis with
state-of-the-art methods reveal that the performance of the proposed
method is highly acceptable. To measure the performance of the
proposed method, we have contributed the performance measures
namely classification accuracy, precision, recall, f-measure, ROC
curve, confusion matrix, and log-loss. The classification accuracy
of the proposed method on four datasets namely Leukaemia,
Lung-Michigan, Ovarian, and Prostate is 1.00, which depicts a
perfect classification performance. Moreover, the proposed method
scores an accuracy of 0.99 on Lung-Harvard2, 0.96 on CNS and
Colon and 0.95 on Breast cancers. Furthermore, the ROC curve is
illustrated for each of the datasets. The Area Under Curve (AUC)
of the proposed method is 1.00 for Leukaemia, Lung-Michigan,
Lung-Harvard2, Ovarian, and Prostate datasets. The AUC for CNS
and Colon cancers is 0.97 and 0.96 for Breast cancer. As a future
work, we are planning to extend the proposed method and apply it
to multi-class microarray cancer datasets. We are also aiming to
improve the classification accuracy on those binary datasets that
scores less classification accuracy.
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