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Abstract: Big data analysis requires the presence of large computing powers, which is not always feasible. And so, it

became necessary to develop new clustering algorithms capable of such data processing. This study proposes a new

parallel clustering algorithm based on the k-means algorithm. It significantly reduces the exponential growth of

computations. The proposed algorithm splits a dataset into batches while preserving the characteristics of the initial

dataset and increasing the clustering speed. The idea is to define cluster centroids, which are also clustered, for each

batch. According to the obtained centroids, the data points belong to the cluster with the nearest centroid. Real large

datasets are used to conduct the experiments to evaluate the effectiveness of the proposed approach. The proposed

approach is compared with k-means and its modification. The experiments show that the proposed algorithm is a

promising tool for clustering large datasets in comparison with the k-means algorithm.

1 Introduction

Clustering algorithms are widely applied to big data analysis to show
the internal relationship between the data [1–8]. The most popular
among them is k-means. It is fast enough and does not require
large computational resources for small datasets. However, the
method shows unsatisfactory results on big data. Analysis of
large-scale datasets requires the presence of large computing
powers, which is not always feasible. As well as the result of
k-means clustering depends on the position of the initial centroids
of the clusters, in this regard, it can easily fall into the local
optimum [9, 10].

An effective way to process big data is to split data into small
blocks (batches) [11–17]. At the same time, the result of each
batch should be reliable and demonstrate a good result for the
entire dataset. It is difficult to choose the optimal batch size [18].

In this paper, we propose an approach based on parallel processing
of batches using the k-means algorithm. In this case, the dataset is
split into several batches to satisfy the limitations of the k-means
algorithm [19]. The resulting clusters are created in parallel
without full memory loading, which significantly speeds up the
clustering.

The relevance of the work is that the use of small batches reduces
computational cost and increases the convergence speed of the
clustering algorithm. Real large datasets are used to evaluate the
performance of the proposed approach. The proposed approach is
compared with k-means and Mini Batch k-means algorithms.

The rest of this paper is organised as follows: a literature review is
given in Section 2. Section 3 describes the proposed clustering
algorithm for big data on a single machine. The experimental
results are given in Section 4, followed by conclusion.

2 Related work

A large number of researches have been devoted to big data analysis
[3, 4, 6, 7]. The issue with big data clustering is that a lot of memory
is required. Researchers offer new methods and extend existing
clustering algorithms to solve this issue.

In recent years, the k-means algorithm and its modifications have
been the subject of research on the analysis of large volumes of data
[16, 20–23].

However, the k-means algorithm is quite sensitive to initialisation
issues. So, an approach for the k-means algorithm initialisation was
proposed in [24]. It is quite simple to implement, not trivial and
converges quickly enough in a small number of iterations.
However, this approach requires a large computational cost. It is
necessary to use parallel technology to perform clustering on
high-dimensional data.

In connection with this, there is a growing need to parallelise big
data clustering while preserving the main clustering structure and
reducing computational costs. So, k-means based parallel
algorithms are used to cluster data in various applications
[20, 25, 26].

A multi-core parallelisation of the k-means/k-modes algorithm for
biological data clustering that provides complex cluster number
estimations for big data on a single computer was proposed [21].
However, this approach requires additional effort and equipment
(specialised hardware for fast communication between computers,
multiple software installations in heterogeneous environments).

A parallel implementation of the k-means clustering algorithm on
a cluster of personal computers (PCs) was described in [27]. The
proposed algorithm is parallelised based on the inherent
data-parallelism especially in the distance calculation and centroid
update operations for DNA dataset. The time complexity of this
method is highly dependable on the number of iterations.

An efficient method for topological data clustering and
discovering clusters of arbitrary shape was proposed [25].
Experiments on real and synthetic datasets showed the efficiency
of the proposed method. However, the speedup of the algorithm
was not evaluated.

Summarising the analysis of the state of research in parallel big
data processing using k-means, we can draw the following
conclusions. Firstly, not all papers based on k-means initialisation
issues consider parallel data processing. Secondly, works aimed at
improving the quality of clustering often require large
computational resources. Besides, parallel clustering is quite a
demanded area of research due to the constant growth of data
volumes. This confirms the relevance of our research.

A new clustering method based on parallel batch clustering on a
single machine using the k-means algorithm is proposed. The
basic idea is that the dataset is divided into several parts of equal
dimensions, which are then parallel clustered to detect the
centroids of the clusters and overcome the curse of dimensionality
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inherent in k-means for big data clustering. Then k-means applies
again to the resulting array of centroids from all batches. It leads
to a reduction in computational costs comparing to the classic
k-means. Experiments on datasets of medium and high dimension
show that the proposed approach based on parallel clustering of
batches significantly improves the clustering time for all datasets.

3 Proposed algorithm

In this paper, we propose an algorithm based on batches that are
clustered in parallel. The proposed algorithm with a split dataset
consists of several steps. The input dataset is divided into batches.
Clustering is applied to each batch as a separate dataset. The initial
centroids are selected randomly. Each batch is processed in
parallel until the convergence condition is met. The algorithm
minimises the sum of squared errors for all clusters. The resulting
centroids of each batch form a new small dataset to which
clustering is again applied to determine the centroids. Data
partitioning into the batches before clustering and their parallel
processing reduce the computation time.

Let us denote the following notations: X = x1, x2, . . . , xn
{ }

is the
set of a finite number of points given in m-dimensional space, q is the
batch size, the maximum value q(q , n) is determined by the PC
parameters, and is also processed within a reasonable time,
C = C1, C2, . . . , Ck

{ }

is a set of clusters, where Cq p = 1, k
( )

is
the pth cluster and k is the number of clusters, Op is the centroid
of the pth cluster.

To determine the optimal batch size, we consider the method
proposed in [28]

q =
n a( ) · k2

r2
, (1)

where a is the desired significance level, n a( ) is the value obtained
from the table in [29], k is the number of clusters, and r is the
‘relative difference’. We assume that α= 0.05 (with a 95%
probability), n a( ) = 1.27359 and r = 0.08.

The objective function has the following form:

minimise f x( ) =
∑

k

p=1

∑

xi[Cp

xi − Op

∥

∥

∥

∥

∥

∥

2

, (2)

Op =

∑

xi[Cp
xi

Cp

⌈ ⌉ , p = 1, k, (3)

where ·‖ ‖ is the Euclidean norm in R
m, Cp

∣

∣

∣

∣

∣

∣ is the number of data
points in the cluster Cp.

The resulting centroid, obtained after applying k-means to the set
of centroids of all batches, is denoted as O∗

p p = 1, k
( )

.
The task is to reduce the clustering time. Steps of the proposed

algorithm are shown in Fig. 1.
If the dataset cannot be completely split into equal batches, the

residual part of the data points is fed to step 5 of the algorithm,
where the points are mapped to each cluster obtained in step 4.

4 Experimental results and discussion

Three large datasets are considered in the paper to evaluate the
effectiveness of the proposed approach (Table 1). They were taken
from the UCI machine learning repository [30].

In the experiments, these datasets are split into equal fragments
(batches). Each batch has the same size (5000, 10,000, 15,000,
and 20,000 samples). k samples are randomly selected from a
dataset for centroids initialisation.

The algorithms were executed ten times with the number of
clusters equal to 2, 3, 5, 10, and 15 to compare the efficiency of
our algorithm with k-means and its modifications. The mean

values and standard deviations of the objective function (f ) and
execution time (T ) have been recorded. All experiments were
carried out to obtain objective results. The proposed algorithm and
k-means algorithm were programmed in Matlab 2018a and Mini
Batch k-means [11] were implemented in R 3.4.1. The algorithms
were performed on Intel(R) Core(TM) i7-4170HQ CPU @
2.50 GHz * 4, RAM 8 GB.

In general, the best performance according to the objective
function is observed for the k-means algorithm.

However, compared to our approach, the computational efficiency
of the k-means is worse in four times. The proposed approach can get
results in a relatively short time, requiring less computational
resources.

YearPredictionMSD and US Census (1990) datasets are very
large, and therefore k-means cannot cluster them at k= 10 and
k= 15. Due to this, only CPU execution time can show the
superiority of the proposed approach.

The presented approach considerably reduces the computation
time. We compared the efficiency of clustering and the runtime
(the CPU time for the algorithm in one run) between the presented
approach and the k-means algorithm on large datasets (Phone
Accelerometer dataset, YearPredictionMSD dataset, and US
Census (1990) dataset) (Table 1).

The experimental results on Phone Accelerometer,
YearPredictionMSD, and US Census (1990) datasets using the
proposed approach are presented in Tables 2–4. Standard
deviations are shown in parentheses.

The tables show the relative improvement (in percentage) of the
proposed approach compared to the k-means for the average
values of the objective function and time.

The ‘+ ’ sign indicates the improvement of clustering when
applying the proposed approach, and the ‘−’ sign indicates its
deterioration compared to the k-means.

In Table 2, there is an increase in the performance of the proposed
approach for different values of k and the size of the batch for the
Phone Accelerometer dataset. With k= 3, the mean value of the

Table 1 Summary of the datasets

Dataset No. of instances No. of attributes References

US Census (1990) 2,458,285 68 [31–33]
YearPrediction MSD 515,345 91 [34]
Phone Accelerometer 1,048,575 6 [35]

Fig. 1 Steps of the proposed algorithm
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Table 2 Experimental results on Phone Accelerometer dataset

No. of clusters k-means Batch
size

Mini Batch k-means Proposed algorithm

f T f T f % T %

k=2 4.1942 ×1010

(0.0000)
5.22 (0.59) 5000 4.1973 × 1010 (0.0000) 3.03 (0.67) 4.1934 ×1010 (0.0000) +0.02 1.15 (0.12) +353.91

10,000 4.1950 × 1010 (0.0000) 3.02 (0.59) 4.1930 ×1010 (0.0000) +0.03 1.08 (0.05) +383.33
15,000 4.1945 × 1010 (0.0000) 3.20 (0.61) 4.1911 ×1010 (0.0000) +0.07 0.99 (0.06) +427.27
20,000 4.1952 × 1010 (0.0000) 3.40 (0.15) 4.1947 ×1010 (0.0000) −0.01 0.97 (0.06) +438.14

k=3 2.5774 ×1010

(0.0000)
6.99 (0.22) 5000 2.5766 × 1010 (0.0000) 3.68 (0.91) 2.5749 ×1010 (0.0000) +0.10 2.72 (0.11) +156.99

10,000 2.5777 × 1010 (0.0000) 3.71 (0.75) 2.5760 ×1010 (0.0000) +0.05 2.57 (0.10) +171.98
15,000 2.5782 × 1010 (0.0000) 4.57 (0.68) 2.5774 ×1010 (0.0000) 0.00 2.47 (0.15) +183.00
20,000 2.5774 × 1010 (0.0000) 3.62 (0.70) 2.5734 ×1010 (0.0000) +0.16 2.55 (0.20) +174.12

k=5 1.5673 ×1010

(0.0000)
22.41 (0.21) 5000 1.5704 × 1010 (0.0000) 8.06 (0.50) 1.5702 ×1010 (0.0001) −0.18 7.35 (0.39) +204.90

10,000 1.5695 × 1010 (0.0000) 8.31 (0.47) 1.5690 ×1010 (0.0001) −0.11 7.81 (0.27) +186.94
15,000 1.5679 × 1010 (0.0000) 10.79 (0.39) 1.5676 ×1010 (0.0000) −0.02 10.10 (0.41) +121.88
20,000 1.5678 × 1010 (0.0000) 10.08 (0.56) 1.5671 ×1010 (0.0000) +0.01 9.75 (0.53) +129.85

k=10 7.8899 ×109

(0.0000)
160.91 (0.16) 5000 8.0881 × 109 (0.0001) 26.31 (0.86) 7.8868 ×109 (0.0000) +0.04 30.19 (0.37) +432.99

10,000 8.0450 × 109 (0.0001) 36.20 (0.19) 7.9019 ×109 (0.0001) −0.15 35.64 (0.35) +351.49
15,000 8.0020 × 109 (0.0000) 117.78 (0.88) 8.0193 ×109 (0.0002) −1.61 123.81 (0.24) +29.97
20,000 7.9832 × 109 (0.0001) 118.33 (0.30) 8.0872 ×109 (0.0001) −2.44 121.84 (0.28) +32.07

k=15 5.2791 ×109

(0.0000)
339.77 (0.84) 5000 5.4366 × 109 (0.0001) 76.42 (0.58) 5.2758 ×109 (0.0000) +0.06 84.68 (0.11) +301.24

10,000 5.3832 × 109 (0.0000) 237.93 (0.55) 5.3325 ×109 (0.0002) −1.00 272.66 (0.42) +24.61
15,000 5.3961 × 109 (0.0000) 298.39 (0.31) 5.4164 ×109 (0.0001) −2.53 301.75 (0.46) +12.60
20,000 5.3904 × 109 (0.0000) 313.48 (0.78) 5.3990 ×109 (0.0001) −2.22 324.70 (0.39) +4.64

Table 3 Experimental results on YearPredictionMSD dataset

No. of clusters k-means Batch
size

Mini Batch k-means Proposed algorithm

f T f T f % T %

k=2 1.0415 × 109

(0.0000)
44.88 (0.66) 5000 1.0390× 109 (0.0000) 17.54 (0.81) 1.0420×109 (0.0000) −0.05 14.22 (0.10) +215.61

10,000 1.0389 × 109 (0.0000) 18.10 (0.16) 1.0418×109 (0.0000) −0.03 17.12 (0.16) +162.15
15,000 1.0381× 109 (0.0000) 17.36 (0.55) 1.0415Ex109 (0.0000) 0.00 17.02 (0.10) +163.69
20,000 1.0389× 109 (0.0000) 19.47 (1.13) 1.0416×109 (0.0000) −0.00 16.29 (0.15) +175.51

k=3 9.6949 × 108

(0.0000)
136.82 (0.21) 5000 9.6523× 108 (0.0000) 30.15 (0.62) 9.7059×108 (0.0000) −0.11 27.12 (0.16) +404.50

10,000 9.6445× 108 (0.0000) 32.33 (0.40) 9.7097×108 (0.0001) −0.15 29.61 (0.13) +362.07
15,000 9.6491× 108 (0.0000) 31.15 (1.28) 9.6967×108 (0.0000) −0.02 29.55 (0.22) +363.01
20,000 9.6352× 108 (0.0000) 33.46 (0.75) 9.6969×108 (0.0000) −0.02 29.33 (0.26) +366.48

k=5 9.0560 × 108

(0.0005)
327.77 (0.86) 5000 9.0440× 108 (0.0000) 55.68 (0.90) 9.1073×108 (0.0002) −0.57 54.49 (0.31) +501.52

10,000 9.0531× 108 (0.0000) 62.89 (0.54) 9.0758×108 (0.0001) −0.22 62.88 (0.30) +421.26
15,000 9.0537× 108 (0.0000) 68.95 (1.06) 9.0599×108 (0.0001) −0.04 67.85 (0.48) +383.08
20,000 9.0247× 108 (0.0000) 80.05 (1.40) 9.0597×108 (0.0001) −0.04 78.18 (0.37) +319.25

k=10 — — 5000 8.2782× 108 (0.0000) 151.42 (0.66) 9.0079×108 (0.0004) — 153.60 (0.70) —

10,000 8.2783× 108 (0.0000) 162.97 (0.67) 8.5568×108 (0.0002) — 164.21 (0.53) —

15,000 8.2696× 108 (0.0000) 399.81 (1.09) 8.5352×108 (0.0002) — 456.02 (0.96) —

20,000 8.2832× 108 (0.0000) 495.33 (1.01) 8.3611×108 (0.0002) — 506.99 (0.86) —

k=15 — — 5000 7.9515× 108 (0.0001) 200.46 (0.57) 8.4650×108 (0.0002) — 218.28 (0.32) —

10,000 7.9407× 108 (0.0000) 603.09 (0.69) 8.3460×108 (0.0002) — 733.70 (0.54) —

15,000 7.9361× 108 (0.0000) 694.57 (1.19) 8.2542×108 (0.0001) — 707.42 (0.69) —

20,000 7.9400× 108 (0.0000) 704.57 (1.11) 8.2048×108 (0.0001) — 795.08 (0.97) —

Table 4 Experimental results on US Census (1990) dataset

No. of clusters k-means Batch
size

Mini Batch k-means Proposed algorithm

f T f T f % T %

k=2 5.1331× 107

(0.0000)
594.68 (0.75) 5000 5.2134× 107 (0.0000) 17.20 (1.30) 5.1330×107 (0.0000) +0.00 10.61 (0.29) +5504.90

10,000 5.2276× 107 (0.0000) 10.22 (1.33) 5.1331×107 (0.0000) 0.00 9.86 (0.54) +5931.24
15,000 4.9196× 107 (0.0000) 9.48 (1.75) 5.1331×107 (0.0000) 0.00 9.39 (0.60) +6233.12
20,000 5.2299× 107 (0.0000) 9.89 (1.48) 5.1331×107 (0.0000) 0.00 9.39 (0.59) +6233.12

k=3 4.6351× 107

(0.0008)
2874.99 (0.56) 5000 4.5407× 107 (0.0000) 20.13 (1.11) 5.1085×107 (0.0002) −9.27 19.65 (0.55) +14530.99

10,000 4.5432× 107 (0.0000) 24.66 (1.32) 4.9740×107 (0.0001) −6.81 19.61 (0.79) +14560.84
15,000 4.5645× 107 (0.0000) 21.46 (0.95) 4.8781×107 (0.0001) −4.98 18.75 (0.45) +15233.28
20,000 4.5590× 107 (0.0000) 20.45 (0.82) 5.0697×107 (0.0002) −8.57 18.84 (0.40) +15160.03

k=5 2.6269× 107

(0.0001)
12,877.15 (0.78) 5000 3.7240× 107 (0.0001) 70.59 (0.55) 3.4704×107 (0.0001) −24.31 58.53 (0.22) +21900.94

10,000 3.7634× 107 (0.0001) 59.47 (0.96) 3.6823×107 (0.0001) −28.66 58.94 (0.52) +21747.90
15,000 3.7738× 107 (0.0001) 59.94 (1.05) 3.0490×107 (0.0001) −13.84 64.65 (0.29) +19818.25
20,000 3.7781× 107 (0.0001) 71.11 (1.22) 2.9575×107 (0.0001) −11.18 63.80 (0.80) +20083.62

k=10 — — 5000 2.5437× 107 (0.0001) 188.58 (1.74) 2.2295×107 (0.0000) — 171.73 (0.20) —

10,000 2.5385× 107 (0.0001) 180.62 (0.41) 2.4565×107 (0.0001) — 179.16 (0.19) —

15,000 2.5423× 107 (0.0001) 511.44 (0.70) 2.6572×107 (0.0001) — 502.85 (0.24) —

20,000 2.5455× 107 (0.0001) 512.28 (1.13) 2.2433×107 (0.0000) — 547.75 (0.51) —

k=15 — — 5000 2.1666× 107 (0.0000) 222.25 (0.60) 2.8379×107 (0.0001) — 245.00 (0.56) —

10,000 2.1639× 107 (0.0000) 812.30 (0.71) 2.1128×107 (0.0000) — 828.94 (0.40) —

15,000 2.1633× 107 (0.0000) 912.34 (0.63) 2.1257×107 (0.0000) — 936.91 (0.59) —

20,000 2.1631× 107 (0.0000) 932.16 (0.91) 2.3052×107 (0.0001) — 989.64 (0.67) —
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objective function was less than that of k-means and Mini Batch
k-means, and with the batch size equal to 15,000, it coincided
with the k-means algorithm. At the same time, the relative
improvement in the average execution time compared to the
second was 183%.

As mentioned above, because of the impossibility of clustering on
the whole ‘big’ dataset with a large number of clusters using the
k-means algorithm, the results are carried out in Table 3 only for
k= 2, k= 3, and k= 5.

Despite the considerable size of the YearPredictionMSD dataset
requiring a large number of memory resources, the proposed
approach showed a satisfactory result. For example, with k= 2 and
the size of the batch equal to 15,000, the mean value of the
objective function coincided with the k-means.

Evaluation of the proposed approach at the largest of the
considered in this paper datasets (US Census (1990) dataset) has
proved the applicability of the proposed approach (Table 4). With
k= 2 and different batch sizes, the performance did not deteriorate,
and when the batch is equal to 5000, it even surpassed the
k-means algorithm. The average clustering time has significantly
decreased.

Our approach showed the best results according to the mean value
of the objective function in comparison with Mini Batch k-means

when k= 2, 5, 10 (batch size equal to 5000, 10,000, and 20,000)
and k= 15 (batch size equal to 10,000 and 15,000).

The influence of the number of iterations on the values of the
objective function and computation time for six datasets was
studied to evaluate the performance of the proposed approach.

Figs. 2–4 show the results of the objective function and
calculation time with the number of clusters equal to five,
depending on the number of iterations for all considered batch
sizes.

An increase in the batch size results in a decrease in the value of
the objective function and an increase in the computation time at
each iteration. The method achieves good performance after six
iterations according to the value of the objective function.

An analysis of the proposed k-means based parallel batch
clustering for different numbers of computer nodes on three
datasets with k= 15 and batch size equal to 20,000 was
considered. The effect of changing in the number of nodes is
shown in Fig. 5.

With an increase in the number of nodes, a decrease in the
execution time of the proposed algorithm is observed. After four
nodes, the reduction in running time becomes less noticeable.
Significant improvement is observed for eight nodes. Thus, there is
an increase of about two times in the speed of the parallel

Fig. 2 Performance of the proposed approach with different number of iterations on Phone Accelerometer dataset

a Objective function value

b Runtime (seconds)

Fig. 3 Performance of the proposed approach with different number of iterations on YearPredictionMSD dataset

a Objective function value

b Runtime (seconds)
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implementation of the proposed approach compared to its sequential
version.

The proposed algorithm is useful for big data clustering. The
running of the k-means algorithm takes a long time at each
iteration, and the running time of the proposed algorithm based on
parallel clustering takes only a small percentage of the total time
of the first one.

The partitioning data into batches helps reduce the response time
of the clustering algorithm and the computational costs, despite the
increase in the number of clusters.

Taking into account the results of the experiments, we can
conclude that the speed of the proposed algorithm is much higher,
compared to the k-means algorithm, which allows us to apply it
for analysis of large-dimensional data. Unlike the k-means, the
proposed approach showed good results on real datasets according
to the speed and quality of clustering.

5 Conclusion

Analysis of large-scale datasets requires the presence of large
computing powers, which is not always feasible. And so it became
necessary to develop new clustering algorithms capable of such

data processing based on batches using their parallel clustering.
This approach was proposed in the paper.

Three datasets were used in this study for comparison to explore
the performance of the proposed approach, including Phone
Accelerometer, YearPredictionMSD, and US Census (1990)
datasets. The proposed approach was compared with k-means and
Mini Batch k-means algorithm. Based on the results of the
experiments, the computational efficiency of the proposed
approach based on the batch in comparison with the k-means was
proved. Analysing the effect of the size of the batch on the mean
value of the function and the mean running time of the algorithm,
we can conclude that efficiency can be achieved even with small
batch size. Despite the increase in the number of clusters, the
speed of the proposed algorithm is significantly higher compared
to the k-means. The experimental results showed that the proposed
algorithm is a promising tool for clustering large sets of data in
comparison with the k-means algorithm.
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