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Abstract: The learning-based super-resolution reconstruction method inputs a low-resolution image into a network, and

learns a non-linear mapping relationship between low-resolution and high-resolution through the network. In this

study, the multi-scale super-resolution reconstruction network is used to fuse the effective features of different scale

images, and the non-linear mapping between low resolution and high resolution is studied from coarse to fine to

realise the end-to-end super-resolution reconstruction task. The loss of some features of the low-resolution image

will negatively affect the quality of the reconstructed image. To solve the problem of incomplete image features in

low-resolution, this study adopts the multi-scale super-resolution reconstruction method based on guided image

filtering. The high-resolution image reconstructed by the multi-scale super-resolution network and the real

high-resolution image are merged by the guide image filter to generate a new image, and the newly generated image

is used for secondary training of the multi-scale super-resolution reconstruction network. The newly generated image

effectively compensates for the details and texture information lost in the low-resolution image, thereby improving the

effect of the super-resolution reconstructed image.Compared with the existing super-resolution reconstruction scheme,

the accuracy and speed of super-resolution reconstruction are improved.

1 Introduction

Single image super resolution (SISR) is a reconstruction technique
that recovers high-resolution (HR) images from low-resolution
(LR) images [1]. Recovery of HR from LR is an illness problem
due to the loss of important information in LR [2]. However, since
super-resolution reconstruction can be used as a monitoring facility
[3], medical imaging [4] and other built-in modules [5, 6] for
performing image restoration and recognition tasks. Therefore,
super-resolution reconstruction has a wide range of applications
and promotes the development of super-resolution reconstruction.
The SISR method is mainly divided into three categories: based
on learning [7]; based on interpolation [8]; and based on
reconstruction. To improve the accuracy of super-resolution
reconstruction, a reference-based super-resolution (RefSR)
reconstruction method has been proposed in recent years. The
RefSR method utilises HR detail in the reference image to achieve
super-resolution reconstruction. The RefSR method is more
competitive than the SISR method, but the key issue of the RefSR
method is how to solve the problem of transmitting the high
frequency detail of the reference image to the LR image.

With the great success of deep learning in computer vision [9, 10],
the learning-based super-resolution reconstruction method has also
become a research hotspot. For example, such as Random Forest
[11] and Convolutional Neural Network (CNN) [12] were first
applied to super-resolution reconstruction, which opened a new era
of super-resolution reconstruction. Subsequent SR methods
included SRCNN [13], which used a three-layer CNN to perform
super-resolution reconstruction of LR images. VDSR [14] used the
residual network for the first time to solve the SR problem.
ESPCN [15] made the up-sampling data more accurate and
reduced noise interference. The generative adversarial network
SRGAN [16] introduced the perceptual loss and improved the
visual effect after super-resolution reconstruction. The dense

residual block EDSR [17] with skip connections was used to fully
extract the features of different layers. The wide residual WDSR
[18], which considered that the effective features were mainly
concentrated in low-level features, and the wide residual network
was used for effective learning. Later DBPN [19] used up and
down iterative sampling to learn features more effectively. The
learning-based super-resolution reconstruction method is to input
the LR image into the network and learn the non-linear mapping
relationship between LR and HR through convolution. Because the
input LR image part features are lost, the mapping relationship
learned by the convolutional network are also different,
super-resolution reconstruction effects are uneven.

In recent years, with the emergence of perceptual loss [20] and
adversarial loss [21], large-scale factor reconstruction has greatly
improved visual effects [16, 22], but reconstructed images
often exhibit artefacts. To further improve the accuracy of
super-resolution reconstruction, the RefSR method introduced
additional images to aid in super-resolution reconstruction tasks,
but required careful selection of reference images. The reference
image should have textures and content similar to the LR image,
similar to the two initial images of image style migration [23, 24],
which can be obtained from adjacent frames in the video [25], or
from different visual images [26] or obtained from an external data
set [27]. The reference images selected by these methods are all
based on the reference of the LR image itself, and the LR image
needs to be strictly aligned with the reference image [28], so the
robustness is low.

In this paper, we propose a multi-scale super-resolution
reconstruction method based on a guided image filter. Like the
traditional SISR, we use a multi-scale method to build a network
and fully exploit the non-linear mapping between LR and HR.
The difference with the traditional SISR is that we draw on the
idea of RefSR. Real HR image features are applied to the
super-resolution reconstruction network by using guided image

CAAI Transactions on Intelligence Technology

Research Article

CAAI Trans. Intell. Technol., 2020, Vol. 5, Iss. 2, pp. 128–140

128 This is an open access article published by the IET, Chinese Association for Artificial Intelligence and

Chongqing University of Technology under the Creative Commons Attribution-NonCommercial License

(http://creativecommons.org/licenses/by-nc/3.0/)

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:


filter. The algorithm is divided into two stages. In the first stage, the
LR image is transmitted through the network to perform different
scales of up-sampling for SR tasks. In the second stage, the HR
image output from the first stage and the real HR image are
subjected to a guide image filtering process to obtain a new image.
The new image and real HR image are used to jointly train the
network to achieve super-resolution reconstruction. In the first
stage, in a multi-scale super-resolution reconstruction network,
images of different scales at each level play different roles, and
feature extraction is performed using a code–decoded structure
with residual blocks [29], using the improved long short-term
memory (LSTM) [30] processing inputs of different scales;
Super-resolution reconstructed image distortion due to loss of LR
features of the first stage input. In this paper, the method of
guiding image filter is used to effectively supplement the details of
LR image loss and texture information, and then train through the
first-stage network to complete the super-resolution reconstruction
task.

2 Related work

2.1 Super-resolution reconstruction

2.1.1 SISR reconstruction: With the development of deep
learning, the deep learning-based reconstruction method has shown
superior performance in both qualitative and quantitative analysis
of images [31, 32]. The SRNN proposed by Timofte et al. [13]
introduced CNN into the SR field for the first time. SRNN only
used a three-layer network to extract features and used mean
square error (MSE) as the loss function. The experimental results
are good, which proves the effectiveness of deep learning. As the
depth of the network increases, the results of the training will
become more and more accurate, but the deep network also brings
difficulties to the training. The problem of gradient disappearance
or gradient explosion hinders the design of deeper networks. In
2016, Kim et al. [14] proposed a network ResNet that can be
connected by jumping, and its network depth can reach 152 layers.
Effectively solve the problem of gradient disappearance or
explosion, and make the network develop to a deeper level. The
combination of deep networks and residual blocks has emerged,
such as EDSR [17], WDSR [18], DBPN [19]. EDSR
super-resolution reconstruction is better, but the number of
network layers is deeper and the number of parameters is larger,
the time used for super-resolution reconstruction is longer.
Compared with EDSR, WDSR adopts weight standardisation and
removes many redundant convolutional layers, which has
improved structure and performance. DBPN is different from the
previous method. DBPN uses the projection unit to perform
up-and-down iterative sampling. The extraction features are more
comprehensive, and the super-resolution reconstruction results are
better, but the network complexity is higher.

From the sampling method, SISR can be divided into four
categories: predefined up-sampling, single up-sampling,
progressive up-sampling, and iterative ups and downs. The
predefined upsampling is to learn the non-linear mapping between
LR and HR. Before inputting the network, the LR image is first
interpolated to enlarge the image size to match the target image
size, such as Bicubic. However, this method is easy to make noise
and affects the quality of reconstruction. To solve this problem, a
single up-sampling occurs, the predefined up-sampling
interpolation operation is removed, and the LR deconvolution is
performed on the last layer, such as FSRCNN [33] or ESPCN
[15], but CNN has insufficient learning ability and poor
reconstruction effect. Progressive upsampling uses the Laplacian
pyramid network to progressively predict SR images, similar to a
single upsampled stack. Enhanced ability to learn complex
mappings, fewer parameters, shorter runtimes, and more effective
for large-scale factors. The iterative up-and-down sampling DBPN
[19] has two units of upper projection and lower projection, which
implements iterative up-sampling and down-sampling. The
network can deeply explore the direct interdependence between

LR and HR. The network has higher complexity, but the
super-resolution reconstruction is better.

From the loss function, the model based on deep learning usually
trains the parameters by minimising the MSE between the real image
and the network output image, but this does not represent the true
visual experience of human beings. However, the perceptual loss
can lead to better visual effects, Johnson et al. [21] demonstrate
the effectiveness of perceptual loss on network training. For
example, the perceptual loss is used in generative adversarial
networks (GANs) [16], and the adversarial loss is introduced, and
the perceptual correlation distance between the real value and the
network output value is minimised, but the GAN-based perceptual
loss method is based on distortion. The cost is to improve the
perceived image quality, so the perceptual loss function still has
some limitations for the super-resolution reconstruction task.

2.1.2 RefSR reconstruction: To increase the quality of
super-resolution reconstruction, a method of assisting LR images
for super-resolution reconstruction using additional reference
images [34, 35] has emerged. These methods are called RefSR
methods. The method Boominathan et al. [34] use DSLR to
capture the HR features of the reference image as a reference, and
apply a patch synthesis algorithm to reconstruct. Adding a patch
registration in [35] to improve the algorithm before the nearest
neighbour search, and then uses dictionary learning to reconstruct.
Decompose the image in [36] into frequency subbands and apply
patch matching for high-frequency subband reconstruction.
Patch-based synthesis algorithms cannot handle the non-rigid
deformation of irregularities, thus causing synthetic patches to
have artefacts and blurring. Although the sliding window method
proposed by Boominathan et al. [34] can effectively alleviate this
problem, the calculation cost of the method is enormous.
Compared with the existing RefSR method, we do not need to
consider the corresponding problem between HR image and LR
image. We use the guide graph filter to generate a new image as
the training image, and use the L2 loss function to train, so that
the reconstruction can be achieved real-time requirements.

2.2 Guide image filter

The guide image filter is a filter with adaptive weights that can
maintain the boundary while smoothing the image. Unlike
Gaussian filtering and bilateral filtering, guided filtering is
directional, selective for regions and edges, and is an anisotropic
filter. Guided filtering uses the input image as a guide map to
effectively distinguish the edges and regions of the image, and has
edge sensing capability to better protect the edges and details of
the image.

Guide image filtering is simply defined as follows:

qi =
∑

j

Wij(I)pj (1)

where I is the guide image, P is the input image to be filtered, q is
the filtered image, W is the weight value determined according
to the guide map I, and W can be calculated by the following
equation:

Wij(I) =
1

v| |2

∑

k(i,j)[vk

1+
(Ii − mk )(Ij − mk )

s2 + 1

( )

(2)

where mk is the mean of the pixels in the window, Ii, Ij are the values
of two adjacent pixels, sk is the variance of the pixels within the
window, and 1 is the penalty value.

For (2) analysis, when Ii, Ij are located on both sides of the
boundary, If the positive and negative signs of the Ii − mk and
Ij − mk values are different, the weight value decreases. Instead,
the weight value increases. Therefore, the weight value of the alien
sign is much smaller than the weight value of the same number,
and the pixels in the flat region have a larger weight, and the
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smoothing effect is better. The pixel weights on both sides of
the boundary are less, the smoothing effect is weaker, and the
boundary is better.

The above theory proves the feasibility of guided filtering, but the
running time is slow, and it is difficult to achieve real-time
requirements. The fast-guided image filter proposed by He and
Jian [37] is consistent with the original filtering effect. However, it
is about 80% higher than the original running speed and reduces
the time complexity from O(N ) to O(N/s2).

The fast guided image filtering is first driven by the local linear
model as shown in (3), where I, p, and q are the guidance images,
the filtered input image, and the filtered output image, respectively

qi = ak Ii + bk , ∀i [ vk (3)

where i is the pixel index, and k is the index of the local square
window v of radius r, where ak is (4) and bk is (5)

ak =
(1/ v| |)

∑

i[vk
Iipi − mkpk

s2 + 1
(4)

bk = pk − akmk (5)

where mk and sk are the mean and variance of I in window k,
respectively, and 1 is the regularisation parameter that controls the
smoothness.

The calculation method of the output image after filtering is as
shown in the following equation:

qi = āiIi + b̄i (6)

where āi and b̄i are the average values of a and b of window vi

centred on i, respectively.

2.3 U-Net network

The U-Net network [38] is a variant of the fully convulted neural
network. The network consists of two parts: the contracted path
and the extended path. The image is first input into the network,
convolved through two 3× 3 convolution kernels (no padding
operation), and adjusted by the non-linear activation function
ReLU, downsampled through the pooling layer of 2× 2. The
shrinking path is subjected to five such operations, and each time
the pooling layer is subjected to a downsampling, the final
downsampling result is obtained. Then, through the extended path,
the 2× 2 convolution kernels is used for upsampling, the number
of feature channels is halved, the number of channels
corresponding to the contraction path portion is fused, and the
features of the corresponding phase of the contraction path are
spliced to the upsampling stage. The process also has five
operations. At the last layer of the network, the convolution kernel
is used for dimensionality reduction, and the result is mapped to
the expected number. The network structure is shown in Fig. 1.

The shrink path is used to extract features and the extended path is
used for accurate positioning. The U-Net network uses elastic
deformation to enhance the data, thereby reducing the number of
training samples, thus achieving end-to-end training for a very
small number of samples, and the training results are superior to
sliding window convolution [38]. Due to the small number of
samples, the training speed of the network is also very fast. At
first, the U-Net network was applied to medical images with a
small number of samples, and later improved, and the processing
of the SR problem [29] also achieved good results.

3 Proposed method

This paper proposes a multi-scale super-resolution reconstruction
algorithm based on guide pattern filtering. In the first stage,
referring to Fig. 2, the LR image input network is up-sampled

according to different proportions to obtain a series of images LR1,
LR2, LR3 as sub-network input. First, the LR1 image is trained
using an encoding–decoding network with a residual block to
obtain training result HR1, up-sampling HR1 and passing it to the
next scale LR2, trains again through the code–decoding network,
obtains HR2, up-samples HR2 and passing it to the next scale LR3,
training again through the encoding–decoding network, and finally
outputting the super-resolution image HR3; In the second stage,
the super-resolution image HR3 obtained in the first stage and the
real super-resolution image are subjected to the guide image
filtering process, and the obtained image is used as the training
image of the first stage to retrain the network for the
super-resolution reconstruction task. The method flow chart is
shown in Fig. 2.

3.1 Multi-scale super-resolution reconstruction network

Encoding–decoding networks have a wide range of applications in
the field of computer vision. We improved the U-Net network,
introduced residual blocks to improve the encoding–decoding
network [39], and added the number of convolution layers to
better extract LR features on different scales. In addition, for the
problem of slow network convergence caused by too many
convolutional layers, a hidden state loop module [40] is used
internally to make the network quickly converge. There are
re-used modules inside the network. The strategy in [29] is
adopted, and ConvLSTM [41] is included in the last layer of the
contraction path, which is used to hide the state and can achieve
different scale connections.

In a multi-scale super-resolution reconstruction network, the LR
image is upsampled into three scales, where the ith scale is half of
the (i + 1)th scale. For a code–decoder network, the input image is
first convolved and features are extracted, after passing two
ResBlocks, followed by a ConvLSTM, and then through two
ResBlocks. The network structure is shown in Fig. 3. First, the
first convolutional layer maps the image to H ×W × 32. After the
first residual block processing, the changed image becomes
H/2×W/2× 64. After the second residual block, the image
changes to H/4×W/4× 128. Image size and channel number do
not change with ConvLSTM. The network moves further forward,
and after two transposed layers, the image size changes to
H ×W × 32. The convolution kernel has a size of 5× 5, the
convolution step of the residual block and the transposed layer is
2, and the other convolution step is 1. ReLU is used as an
activation function between convolutional networks. The network
structure is shown in Fig. 3.

3.2 Extracting features

When the LR image passes through the contraction path of the
encoding–decoding network, the decoder adjusts the image size
through the corresponding transposed convolution layer [42] to

Fig. 1 U-Net network structure
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generate a large amount of data, and the network needs to capture the
effective information in the data. LSTM can establish stable
long-term dependence in various studies [39, 42]. However,

LSTM only controls the time and does not process the space,
considering the spatial correlation of the data. Xingjian et al. [41]
improved FC-LSTM [43] and used convolution instead of full

Fig. 2 Algorithm flowchart

Fig. 3 Multi-scale super-resolution reconstruction network structure
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connectivity. ConvLSTM estimates the value of a pixel by the input
of a pixel’s adjacent area and the previous state.

After the input LR image is downsampled, ConvLSTM is inserted
into the intermediate stage as a natural selection of sequential input.
The network structure includes the following:

fi = NetE(J
H
i ; uE) (7)

gi, hi = ConvLSTM(fi , hi−1; uLSTM) (8)

I
i( )
0 = NetD gi, H

E
i ; uD

( )

+ I
L�
0 (9)

where NetE is the CNN of the encoder, uE is the parameter, and fi is
the encoder network output. NetD is the convolutional network of the
decoder, uD is the parameter, and gi is the decoder network input. hi
is the hidden state of the ith step ConvLSTM. HE

i is the sum of the
intermediate feature maps of the encoder network and is used for
jump connections. I

i( )
0 is the output image at the ith time. I

L�
0 is the

result of Bicubic sampling of IL0 .

3.3 Multi-scale super-resolution reconstruction based on
guided filtering

The image processing in computer vision and computer graphics
mostly involves the concept of image filtering to suppress noise or
extract useful image structures. Our commonly used linear
translation invariant (LTI) filters, including Gaussian filters and
Sobel filters, are widely used in image blurring, edge detection,
and feature extraction. The filter kernel of the LTI filter is fixed, so
the filtering does not consider the content of the image. In
addition, although the LTI filter is effective, it takes a long time to
calculate and cannot meet the real-time requirements. Bilateral
filtering determines the weight by guiding the intensity of the
image or colour similarity, and weights the average of the pixels,
so the filter can filter based on the image content considerations.
The bilateral filter can smooth the edges, but gradient inversion
artefacts may appear near the edges and the calculation complexity
is high.

Unlike the above two types of filtering, the guide image filter is
based on image content filtering. The guide image may be the
input image itself or other different images. Guide image filters
not only have the characteristics of bilateral filters to keep the
edges smooth, but also have no gradient inversion artefacts.
The guided image filtering uses a local linear structure, and the
calculation is relatively small. For greyscale and colour images,
the guided filter has an O (N ) time (in pixels N ) exact algorithm
Fig. 4.

In the first stage multi-scale super-resolution reconstruction
network, we use real super-resolution images to train the network,
and the loss function is L2. Such as formula (10). In the first
stage, the large-scale super-resolution reconstructed image has
blurred edges and artefacts, and the reconstruction effect of the
details is not satisfactory. This shows that in the process of
convolution, the mapping relationship between LR images and HR
images has not been fully and effectively learned. To make the
network learn the mapping relationship as fully as possible, we
can increase the number of convolutions, or expand the receptive
field. In this paper, to make the network learn a more effective
mapping relationship, we use a guided image filter. The guided
image filter can extract the structure information from the guide
image and merge the structure information into the input image to
achieve the integration of one information. First, a guided filtering
operation is performed on the HR image output in the first stage,
and the guided image is a real HR image. We use guided filtering
to supplement the details that fail during the super-resolution
reconstruction process and improve the performance of the
super-resolution reconstruction image

L =
∑n

i=1

Ki

Ni

∥

∥

∥

∥

∥

I i − I i∗

∥

∥

∥

∥

∥

2

2

(10)

where Ki is the proportional weight, usually Ki = 1.0. Ni is the
number of I i elements. I i∗ is a true HR image, and I i is a HR
image of the network output.

The image optimised by guided filtering cannot be used as the
final super-resolution image. We combine the images after guided

Fig. 4 Some examples showing the difference between guide image filter and ground truth images

a As ground truth images,

b As guide image filter images,

c Is the result of (a) subtracts (b)
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filtering with real HR images to jointly train the network. Such as
formula (11). When the convolutional network learns the mapping
relationship between LR and real HR images, the mapping
relationship that may be learned is not comprehensive. However,
we also have guided filtered images, using the same CNN, to learn
the mapping relationship between LR and guided filtered images
again, making the learned mapping relationship more
comprehensive. Real HR images help super-resolution images to
enhance detail, while guided filtered images ensure that the edges
of super-resolution reconstruction are clear, achieve noise
reduction, and reduce artefacts, making the network have higher
performance

argmin
V

∑

(I i∗ ,I
∗ ,I i)[w

l1(I
∗
− I i)

2
+ (1− l1)(I

i
∗ − I i)2

{ }

(11)

where I∗ represents the filtered image, I i∗ is the real HR image, I i is
the high- resolution image output by the network, and parameter l1
is used to control the weight of the real image and the guided filtered
image.

The algorithm in this paper is shown in Algorithm 1.

Algorithm 1: Multi-scale super-resolution reconstruction based on
guided image filter

Require: LR image, Real high-resolution I i∗

i Input: Low-resolution Image
ii Output: High-resolution Image
iii Initialise Downsample the Low-resolution image to get
LR1, LR2, LR3

iv while LRi do

v Train the input low-resolution image. According to the (10):

L =
∑n

i=1

Ki

Ni

I i − I i∗
∥

∥

∥

∥

2

2

vi Network output to be improved high-resolution image
vii end while
viii Filter image I∗ obtained by (6): qi =

∑

j

Wij(I)pj
ix while LRi do
x Joint training with filtered images I∗ and real HR I i∗ images
by (11) :

argmin
V

∑

(I i∗ ,I
∗ ,I i)[w

l1(I
∗
− I i)

2
+ (1− l1)(I

i
∗ − I i)2

{ }

xi Output high quality high-resolution image
xii end while

4 Experimental analysis

The computer used in the experiment was configured as Intel Core
i7-6700K CPU@3.40 GHz, NVIDIA TITAN X GPU, 16 GB
RAM, Win10 operating system. Use TensorFlow to build a
platform framework [44].

The data set uses DIV2K [45]. Since the image size in the DIV2K
is large, the image is first reduced. The DIV2K consists of 800
training images and 100 test images and 100 proof images. Since
the 800 training images did not publish real images, our test was

selected in 100 verified images. The DIV2K validation set has less
data. It also uses four benchmark datasets Set5 [46], Set14 [47],
B100 [48], and Urban100 [49] for performance ratios. In addition,
the Manga109 dataset was used to perform super-resolution
reconstruction of characters in the comics.

The LR image is upsampled using Bicubic to obtain input images
of different scales. The variables are initialised using the Xavier
method [50]. 2× 104 iteration of (8). According to experience
[29], l = 0.01 in (8).

4.1 Model comparison

To verify the effectiveness of the proposed method, it is compared
with other traditional methods in both qualitative and quantitative
aspects. The comparison methods are: bicubic interpolation,
anchor domain method (A+) [51], and deep learning-based
SRCNN [33], VDSR [14], LapSRN [52], EDSR [17], DBPN [19],
compare these methods with peak signal to noise ratio (PSNR),
structural similarity (SSIM) values and visual effects.

As can be seen from Table 1, most CNNs use a recurrent neural
network (RNN), which can implement a deep feedforward
network in which all layers share the same weight. However,
theory and experience show that this kind of learning cannot be
preserved for a long time [53]. This article uses LSTM networks
of special implicit units to achieve long-term preservation of input.
The LSTM network is a special unit called memory cells, similar
to accumulators and gated neurons. The LSTM can be used in the
encoding and decoding network, which will have a weight
connected to itself at the next time step, copying the true value of
its state and accumulating external signals, and the LSTM network
is then proven to be more efficient than traditional RNNs. Global
residual learning (GRL) represents the difference between a
network learning real HR image and an upsampled (using bicubic
interpolation or learning filter) LR image. Local residual learning
(LRL) represents a local hop between intermediate convolutional
layers. Connected. Pyramid indicates whether there is a pyramid
structure, and Concatenation indicates whether to use cascading.

4.1.1 Model parameters: As can be seen from Fig. 5, this paper
proposes a more compromised algorithm. Although the number of
parameters is not the least, the super-resolution reconstruction

Table 1 Comparison of network structure

Method Input Reconstruction GRL LRL Pyramid Residual Concatenation

SRCNN LR+bicubic direct — — — — no concatenation
VDSR LR+bicubic direct ✓ — — ✓ no concatenation
lapSRN LR progressive ✓ — ✓ ✓ deep concatenation
EDSR LR direct — ✓ — ✓ deep concatenation
DBPN LR+bicubic direct — ✓ — ✓ deep concatenation
ours LR progressive ✓ — ✓ ✓ ConvLSTM concatenation

Fig. 5 Comparison of the number of parameters
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performance is optimal. Compared with the DBPN algorithm, the
number of parameters is reduced by 23%, and the number
of parameters is reduced by 58% compared with the EDSR
algorithm.

4.2 Running time

Comparing the running time of the algorithm with other
algorithms, it can be seen from Fig. 6 that the LapSRN algorithm
takes the shortest time to run, and the similarity between this
paper and the LapSRN algorithm is that this paper also uses the
pyramid structure to realise the coarse to fine super-resolution
reconstruction task. However, since the algorithm needs to
reconstruct the network twice through super-resolution, the
running time is long, but the performance of the algorithm is optimal.

4.3 Quantitative analysis

The quantitative comparison was performed using PSNR and SSIM
[54] to evaluate the reconstructed image quality. PSNR is based on
error-sensitive image quality evaluation, the error between the

calculated pixel points, as in (12). When the error between the
original HR image and the reconstructed super-resolution image is
less, the denominator of (12) is less, and the larger the PSNR
value, the better the reconstruction effect

PSNR = 10 · log10
PQ

y− ŷ
∥

∥

∥

∥

(12)

where P is the HR image size and Q is the LR image size. y is the
original HR image and ŷ is the SR image.

The SSIM is to evaluate the quality of the super-resolution
reconstructed image by measuring the similarity between the
original HR image and the reconstructed HR image. SSIM is
evaluated in terms of brightness, contrast, and structure. The mean
value is used for luminance estimation, the standard deviation is
used for contrast estimation, and the covariance is used for
measurement of SSIM. As in (13). The larger the SSIM value, the
less image distortion. That is, the closer the HR of the original
image is to the reconstructed super-resolution image, the better the
reconstruction effect

SSIM =
(2mymŷ + C1)(2syŷ + C2)

(m2
y + m2

ŷ + C1)(s
2
y + s2

ŷ + C2)
(13)

where my is the average grey value of the original HR image and sy

is the variance of the original HR image. mŷ is the average grey value
of the reconstructed HR image. sŷ is the variance of the HR image
after reconstruction. syŷ is the covariance of the original image and
the reconstructed image. C1, C2 is a constant.

Table 2 shows the quantitative test results of different methods
on different data sets. From the overall analysis, it can be seen
from the data in the table that the PSNR and SSIM indices are
gradually increasing on different data sets, indicating that the
super-resolution reconstruction method is getting better and better.
The PSNR and SSIM of the Set5 data set are relatively higher
than other data sets. This is because the Set5 data set is
mainly composed of natural scenes, and the super-resolution
reconstruction effect is better. The PSNR and SSIM of Urban100
data set are relatively low compared with other data sets. This
paper also implements the super-resolution reconstruction of the
Manga109 data set. Although there is no comic character image in
the training set data, the super-resolution reconstruction effect of
the comic image is better, as can be seen from Table 2.Fig. 6 Comparison of running time

Table 2 Compare with the state-of-the-art SR algorithms: average PSNR/SSIM for scale factors ×2, ×4 and ×8

Set5 Set14 B100 Urban100 Manga109

Algorithm Scale PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 2 33.64 0.929 30.05 0.871 29.54 0.845 26.87 0.84 30.84 0.932
A+ 2 36.55 0.954 32.42 0.908 31.22 0.887 29.22 0.859 35.32 0.966
SRCNN 2 36.65 0.955 32.97 0.904 31.36 0.888 29.53 0.896 36.61 0.972
VDSR 2 37.53 0.957 32.98 0.914 31.9 0.896 30.76 0.915 37.16 0.975
LapSRN 2 37.52 0.958 33.08 0.915 31.81 0.896 30.41 0.919 37.26 0.973
EDSR 2 38.11 0.962 33.93 0.919 32.32 0.902 33.55 0.934 39.11 0.977
DBPN 2 38.09 0.961 33.85 0.918 32.26 0.901 33.02 0.931 39.32 0.978

ours 2 38.12 0.964 33.89 0.921 32.34 0.905 33.51 0.932 39.35 0.979
Bicubic 4 28.42 0.81 26.01 0.702 25.94 0.843 23.14 0.656 24.93 0.788
A+ 4 30.28 0.86 27.32 0.749 26.82 0.709 24.32 0.718 27.03 0.852
SRCNN 4 30.48 0.862 27.49 0.75 26.92 0.71 24.52 0.722 27.67 0.859
VDSR 4 31.35 0.883 28.01 0.767 27.29 0.725 25.21 0.756 28.83 0.887
LapSRN 4 31.54 0.885 28.19 0.772 27.32 0.728 25.21 0.756 29.49 0.891
EDSR 4 32.45 0.895 28.81 0.786 27.71 0.741 27.29 0.802 31.42 0.915
DBPN 4 32.46 0.898 28.82 0.788 27.72 0.743 27.08 0.795 31.51 0.916

ours 4 32.48 0.899 28.83 0.789 27.74 0.745 27.31 0.805 31.43 0.918
Bicubic 8 24.38 0.656 23.17 0.567 23.68 0.545 20.73 0.514 21.46 0.645
A+ 8 25.51 0.691 23.97 0.596 24.18 0.567 21.38 0.546 22.36 0.679
SRCNN 8 25.32 0.687 23.86 0.594 24.11 0.564 21.31 0.545 22.37 0.683
VDSR 8 25.71 0.71 24.22 0.611 24.36 0.575 21.55 0.561 22.38 0.672
LapSRN 8 26.15 0.739 24.43 0.626 24.54 0.587 21.8 0.581 23.38 0.735
EDSR 8 26.97 0.775 24.95 0.641 24.79 0.595 23.11 0.629 24.56 0.778
DBPN 8 27.21 0.782 25.13 0.649 24.89 0.603 23.26 0.623 25.53 0.801
ours 8 27.23 0.783 25.16 0.651 24.91 0.605 23.24 0.621 25.49 0.799
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Analyse the data in Table 2. Bold indicates the best performance
and bold italic indicates the second. It can be seen from the table that
this paper is better for small-scale super-resolution reconstruction,
better than DBPN, EDSR and other methods. For large-scale
super-resolution reconstruction, the proposed network outperforms
some data sets. The most advanced DBPN method, but did not
make a significant breakthrough in the reconstruction of the
Urban100 dataset. For the Set5 and Set14 datasets with simple
structure, the performance of the proposed algorithm is better than
t state-of-the-art SR algorithms.

The PSNR and SSIM values are analysed. Comparing the A+
method with Bicubic, the PSNR index is improved by 1.5–3.0 dB,
and it can be seen that the performance has been significantly
improved. The SRCNN used the method of CNN to perform
super-resolution reconstruction. However, due to the simple
network structure and fewer features extracted, the super-resolution
reconstruction effect is slightly improved, and the increase is not
large. The PSNR index has increased and the range is between 0.1
and 0.57 dB. The VDSR method uses the residual network method
to introduce the residual network into the field of super-resolution
reconstruction. The PSNR of VDSR is higher than that of
SRCNN, and the lifting range is 0.31–0.88 dB, which improves
the performance of super-resolution reconstruction.

Therefore, the network model of super-resolution reconstruction is
moving in a deeper direction. Unlike previous networks, LapSRN
uses pyramidal progressive up-sampling and cascades the features
extracted at each level to achieve super-resolution reconstruction.
The EDSR method uses dense blocks and uses a residual network
for jumping connection, which increases the depth of the network,
and the network depth reaches 32 layers, and more features are
extracted, so the super-resolution reconstruction effect is better.
DBPN adopts the method of up-and-down iterative sampling,
using the upper and lower projection units, the network structure is
more complicated, but the reconstruction effect is better. When
the method proposed in this paper is used for large-scale
super-resolution reconstruction, the reconstruction effect on some
data sets is not as good as DBPN. However, compared with
DBPN, the proposed network structure is simple, the number of
parameters is small, and the running speed is fast. Compared with
complex network structures such as DBPN and EDSR, this paper
has certain advantages.

The PSNR, SSIM, and IFC [55] after super-resolution
reconstruction are compared in the DIV2K data set. The
experimental results are shown in Table 3. It can be seen from the
table that the algorithm is superior to most of the comparison
algorithms and obtains better experimental results.

4.4 Qualitative analysis

Table 2 shows the quantitative comparison of different data sets
under different methods. The values of PSNR and SSIM are
analysed to evaluate the results of super-resolution reconstruction.
However, since the numerical values do not fully explain the
problem, the following figure further studies the super-resolution
reconstruction results through qualitative comparison.

In Figs. 7–9, the test image is extracted on the data set, wherein the
red box represents the selected position, and the selected positions

are amplified by different scale factors by different methods, Each
method corresponds to the magnification of the selected location
and the overall super-resolution reconstruction. Compare the
experimental results of different methods. Fig. 7a is an extraction
of the ‘img-002’ image in the Set5 data set, and the magnification
factor is 2. Super-resolution reconstruction results were evaluated
by the visual effects of the parrot’s eye. It can be seen from the
figure that compared with the original HR, the Bicubic method has
the worst visual effect, and the reconstructed image artefacts and
edge blurring are more serious, and the texture and detail
information of the image cannot be clearly displayed; Compared
with the Bicubic algorithm, the A+ algorithm improves the edge
blur, but there are still more serious artefacts. The reconstruction
ability of the image details is poor, and the visual effect is not
good. The SRCNN after the A+ algorithm introduces a CNN into
the field of super-resolution reconstruction. It can be seen from the
experimental results that the SRCNN algorithm has a great
improvement on the processing of artefacts and edge blur
conditions compared with the previous methods. However, still
cannot meet the human visual requirements, because the
reconstructed image also has artefacts. This is because the SRCNN
network structure is relatively simple, feature extraction is not
sufficient, and the available features are less, resulting in
unsatisfactory reconstruction results. However, a problem has been
explained by the SRCNN network, that is, the learning-based
super-resolution reconstruction method is effective for
super-resolution reconstruction.

VDSR uses global residuals, which not only deepens the depth
of the network, but also improves the convergence speed of
the network. Super-resolution reconstruction is superior to
SRCNN. It can be seen from the reconstructed image that VDSR
is better than SRCNN for detail reconstruction, but there is still a
gap between the result and the actual HR image. This is because
both SRCNN and VDSR use the dual method to predefined
up-sampling the image. This method is easy to introduce noise
and affect the quality of image reconstruction. Therefore, the
reconstructed image is prone to artefacts. LapSRN uses
progressive up-sampling to avoid noise from predefined
up-sampling. The LapSRN network adopts two branches, one
branch extracts features and the other branch performs image
reconstruction. By extracting features of different scale images,
and the reconstruction ability of high-frequency features is
improved. The EDSR method uses a large number of dense blocks
to extract different depth features. The super-resolution
reconstruction is better, but the number of network parameters is
larger and the running time is longer. The DBPN algorithm uses
dense projection units, and the super-resolution reconstruction is
better. The algorithm is compared with the DBPN algorithm. The
reconstructed image achieves similar visual effects, but the
quantitative analysis of the experimental results is better than the
DBPN algorithm.

Compared with performing ×2 magnification, the difficulty of
performing ×4 magnification has increased. It can be seen from
the enlarged result in Fig. 8 that the image after super-resolution
reconstruction is prone to artefacts and the details are blurred. The
improved method mainly extracts more effective features by
convolution, thus updating the LR to HR non-linear mapping
relationship. As the algorithm continues to improve and extract

Table 3 Compare with the state-of-the-art SR algorithms on the DIV2K data set: average PSNR/SSIM/IFC for scale factors ×2, ×4 and ×8

×2 ×4 ×8

Algorithom PSNR SSIM IFC PSNR SSIM IFC PSNR SSIM IFC

Bicubic 32.42 0.903 6.345 28.12 0.756 3.643 25.17 0.246 0.837
A+ 34.55 0.934 8.312 29.27 0.807 3.005 25.93 0.687 1.024
SRCNN 34.58 0.931 7.141 29.32 0.809 2.637 26.06 0.692 0.975
VDSR 35.44 0.942 8.391 29.81 0.823 3.005 26.22 0.698 1.062
LapSRN 35.32 0.941 8.586 29.89 0.826 3.131 26.12 0.699 1.115
EDSR 35.73 0.946 8.921 30.12 0.853 3.356 26.53 0.726 1.265
DBPN 36.01 0.953 9.436 30.43 0.887 3.632 26.72 0.784 1.308
ours 35.98 0.951 9.241 30.61 0.905 3.814 26.93 0.816 1.399
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more effective features, the effect of smaller-scale super-resolution
reconstruction is getting better and better.

For larger scale super-resolution reconstruction tasks, the
performance of some methods may decrease. The PSNR and
SSIM indices in Table 2 can be verified. This method may not be
as good as the DBPN algorithm for large-scale reconstruction
tasks on some data sets, but the reconstruction effect on small
scale is better than DBPN algorithm. The DBPN network adopts
up and down iterative sampling, and the projection unit can extract
HR error features in LR and extract LR error features in HR to

realise self-correction mechanism. However, since the network
uses multiple projection units, the network structure is relatively
complicated, the number of parameters is large, and the
requirements for hardware devices are high. Comparing the
algorithm of this paper with the DBPN network, this paper does
not use multiple projection units, but uses a multi-scale method.
DBPN uses multiple projection units to extract features from
different depths of the image. Multiple convolutional layers and
deconvolution layers are required, but multiple successive
convolution and deconvolution operations are prone to internal

Fig. 7 Super-resolution reconstruction with a scale factor of 2

a Set5 img-002,

b Urban100 img-034,

c B100 12084
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covariate migration [53], thereby affecting the results of feature
extraction. It can be seen from Fig. 8b that the reconstructed
image of the DBPN algorithm still has artefacts, and there is a
certain degree of ambiguity at the edges, and the reconstruction
ability of the details is still lacking. Compared with the algorithm
in this paper, the super-resolution image of this paper has fewer
artefacts, clear details and texture.

Since the images in the Urban100 dataset are mostly composed of
urban photos, there are many self-similar structures in the image, and

the shooting distance is far, so the super-resolution reconstruction is
difficult. The PSNR and SSIM values of the ‘img-092’ image
reconstruction result in the Urban100 data set are analysed. It can
be seen from Fig. 10 that the reconstruction performance of the
large-scale factor is not significantly improved compared with the
DBPN method, but it is better than the EDSR algorithm. For
different data sets, the network performance is different. Through
experimental analysis, the proposed algorithm is superior to most
of the comparison methods and has certain superiority.

Fig. 8 Super-resolution reconstruction with a scale factor of 4

a B100 img-069,

b B100 img-001,

c Manga109 Hamlet
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Fig. 10 ‘img-092’ scale up the different scale factors and compare the PSNR index with the SSIM index. PSNR index on the left and SSIM index on the right

Fig. 9 Super-resolution reconstruction with a scale factor of 8

a B100 img-099,

b B100 img-092,

c Urban img-012
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5 Conclusion

The traditional super-resolution reconstruction network is to input a
single LR image, and the network is subjected to feature extraction
through different levels of convolution kernels. In order to extract
more effective features, the number of convolution layers is larger
and the network depth is deeper. In order to prevent the gradient
disappearance or gradient explosion caused by the increase of
network depth, a jump connection occurs. At the same time, in
order to extract the features of different layers as much as possible,
the structure of the dense residual block is used. Generally, the
network with the jump connection and the dense residual block
has a deep network depth, the network structure is complex, and
the parameters are many. Different from the traditional CNN, the
network uses multiple sub-networks to take images of different
scales of LR images as input of sub-networks, and then perform
super-resolution reconstruction tasks at this scale separately in
each sub-network, using sequential connections. The LR to HR
features learned at different scales are concatenated by
ConvLSTM, and finally the super-resolution reconstruction results
of the original LR images are output. The network structure is
relatively simple, with fewer parameters and faster convergence.

The multi-scale super-resolution method based on guide image
filter proposed in this paper. The coding–decoding network is used
to learn the features of different scales, and the network is trained
with the real HR image features. The experimental results are
improved in PSNR index and SSIM. In the future work, try new
convolutional networks and replace the ConvLSTM network in
multi-scale networks with new convolutional networks to make the
results of super-resolution reconstruction more accurate.
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