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Abstract: Complex neutrosophic set (CNS) is a modified version of the complex fuzzy set, to cope with complicated

and inconsistent information in the environment of fuzzy set theory. The CNS is characterised by three functions

expressing the degree of complex-valued membership, complex-valued abstinence and degree of complex-valued

non-membership. The aim of this manuscript is to initiate the novel dice similarity measures and generalised dice

similarity using CNS. The special cases of the investigated measures are discussed with the help of some remarks.

Moreover, some distance measures based on CNS are also proposed in this manuscript. Then, the authors applied the

generalised dice similarity measures and weighted generalised dice similarity measures using CNS to the pattern

recognition model to examine the reliability and superiority of the established approaches. The advantages

and comparative analysis of the proposed measures with existing measures are also discussed in detail. At last,

a numerical example is provided to illustrate the validity and applicability of the presented measures.

1 Introduction

Multi-attribute group decision making (MAGDM) problems are an
important part of modern decision theory. In real decision making,
because the decision-making problems are fuzzy and uncertain, the
attribute values are not always expressed as real numbers, and some
of them are more suitable to be denoted by fuzzy numbers. So,
Zadeh [1] developed the notion of a fuzzy set (FS) to cope with
complexity. The FS only characterised by membership function,
whose range is interval [0, 1]. FS is successfully applied in the
environment of aggregation operators [2, 3], medical diagnosis
[4, 5] and MAGDM [6] problems. Further, Zadeh [7] proposed the
interval-valued FS, which is an extension of FS and characterised
by membership grade, whose rang is some closed interval of
interval [0, 1]. Rosenfeld [8] investigated fuzzy group, Chang [9]
found fuzzy topological spaces. But some decision maker arise a
question, what will be the result when we change the range of FS,
which is [0, 1] instead of unit disc in a complex plane. Therefore,
Ramot et al. [10] developed the notion of complex FS (CFS),
which consists of complex-valued membership grade, whose range
is unit disc in a complex plane. Further, Ramot et al. [11] again
initiated the notion of complex fuzzy logic. The notion of CFS,
which is proposed by Ramot, is totally different from complex
fuzzy number that was proposed by Buckley [12].

Further, Atanassov [13] found the notion of intuitionistic FS (IFS),
characterised by membership and non-membership grades. The
boundedness of IFS is that the sum of membership and non-
membership grades is belonging to [0, 1]. IFS is a useful tool to
cope with complicated and difficult information in real-decision pro-
blems. IFS overcomes a disadvantage of the FS which can only
have a membership grade. The IFS is successfully applied in the en-
vironment of pattern recognition [14, 15], medical diagnosis [16,
17], aggregation operators [18, 19], distance and similarity measures
[20, 21] and MAGDM [22, 23] problems. Moreover, the concept of
complex IFS (CIFS) was investigated by Alkouri and Salleh [24].
CIFS is an extension of CFS and FS to cope with uncertain and unpre-
dictable information. The CIFS contains two functions so-called
complex-valued membership and complex-valued non-membership
grades, with a condition that is the sum of real-part (also for imaginary
part) of membership degree and real-part (also for imaginary part) of
non-membership degree is less than or equal to 1. The CIFS is

modified version of CFS, which contain two dimensions information
in a single set. The membership degree and non-membership degree
represents the polar coordinates in CIFS. Moreover, Kumar and
Bajaj [25] found complex intuitionistic fuzzy soft sets with distance
measures and entropies. Garg and Rani [26, 27] robust correlation co-
efficient measure of CIFS and their applications in decision-making
and some generalized complex intuitionistic fuzzy aggregation oper-
ators and their application in multicriteria decision making process.
Further, Rani and Garg [28, 29] again initiated distance measures
between the CIFSs and their applications in decision making
process and complex intuitionistic fuzzy power aggregation operators
and their application in multicriteria decision making.

Smarandache [30] generalised the idea of IFS is to propose the
framework of a neutrosophic set (NS) to deal with indeterminate
and inconsistence information. The NS is characterised by three func-
tions expressing the degree of membership (MS), abstinence and non-
membership (NMS). The NS is successfully applied in different areas
such as distance measures [31], aggregation operators [32] and multi-
attribute decision making (MADM) [33]. Further, interval NS was
pioneered by Wang et al. [34]. Broumi et al. [35] initiated the
notion of rough NS. Single-valued NS (SVNS) was found by
Haibin et al. [36]. The constraint of NS is that the sum of MS, abstin-
ence and NM grades are restricted to 0−, 3+

] [

, but the constraint of
SVNS is less than or equal to 3. For more work on NS and SVNS,
we may refer to [37–39]. The concept of complex NS (CNS), pro-
posed by Ali and Smarandache [40], is a generalisation of NS and
CIFS to deal with two-dimensional information in a single element.
The CNS is characterised by complex-valued MS, complex-valued
abstinence and complex-valued NMS grades with a condition that
the sum of real-valuedMS (imaginary-valued MS), real-valued abstin-
ence (imaginary-valued abstinence) and real-valued NMS (imaginary-
valued NMS) grades is less than or equal to 3+. Recently, Ali et al.
[41] initiated interval complex NS. Further, the generalised dice simi-
larity measures (GDSMs) for picture FS is originally proposed by Wei
and Gao [42]. The similarity and distance measures of CNSs are
defined to discriminant the information conveyed by different
CNSs. The notion of distance and similarity measures is complemen-
tary. They can be regarded as two different aspects of the discrimin-
ation measure. The similarity measure quantifies the closeness
degree between CNSs, while the measure of distance is defined to
depict the difference between CNSs.
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Basically, complex neutrosophic set (CNS) is an extension of
complex IFS to deal with uncertain and unpredictable information
in FS theory. The constraint of the CNS is that the sum of positive,
abstinence and negative grades is less than or equal to three. They
provide a wide range to cope with uncertain and vagueness.
Keeping the advantages of the generalised dice similarity and CNS,
firstly we reviewed the notion of CNS and their basic operational
law such as union, intersection and so on. Then the novel dice simi-
larity measures and generalised dice similarity for CNS are developed.
The special cases of the investigated methods are discussed with the
help of some remarks. Moreover, the distance measures for CNS are
also proposed in this manuscript. Then, we applied the GDSMs and
WGDSMs between CNSs to pattern recognition. The advantages of
found approaches and the compression between proposed methods
with existing methods are initiated. The proposed measures are com-
pared with the following existing approaches. At last, an illustrative
numerical example is provided to demonstrate the efficiency and ef-
fectiveness of the proposed approaches.

The reminder of this manuscript is set as follows. In Section 2, we
briefly review the background of IFSs, CIFSs, NSs, CNSs and their
properties. In Section 3, the novel dice similarity measures and
generalised dice similarity for CNS are developed. The special
cases of the investigated measures are discussed with the help of
some remarks. Moreover, the distance measures for CNS are also
proposed in this manuscript. In Section 4, we applied the GDSMs
and WGDSMs between CNSs to the pattern recognition. The
advantages of found approaches and the compression between
proposed measures with existing measures are initiated. At last, a
numerical example is provided to illustrate the validity and
applicability of the presented distance measures. The conclusion is
discussed in Section 5. The graphical interpretation of the explored
work in this manuscript is discussed in Fig. 1.

2 Preliminaries

In this section, we discuss basic notions of IFSs, CIFSs, NSs, CNSs,
DSMs and their properties.

Definition 1: The notion of IFS is taken from [13] and given by

S = a′
S y
( )

, b′
S y
( )( )

:y [ X
{ }

(1)

where a′
S , b

′
S :X � 0, 1[ ] represent the degree of membership

(MS) and the degree of non-membership (NMS), with a condition
0 ≤ a′

S + b′
S ≤ 1.

Definition 2: The notion of CIFS is taken from [24] and given by

S = a′
S y
( )

, b′
S y
( )( )

:y [ X
{ }

(2)

where a′
S = aSe

i2p(daS
)
and b′

S = bSe
i2p(dbS

)
represent the degree of

complex-valued MS and the degree of complex-valued NM, with
conditions 0 ≤ aS + bS ≤ 1 and 0 ≤ daS + dbS ≤ 1. The CIFS is
denoted by CIFS X( ).

Definition 3: The notion of NS is taken from [30] and given by

S = a′
S y
( )

, g′S y
( )

, b′
S y
( )( )

:y [ X
{ }

(3)

where a′
S , g

′
S , b

′
S :X � 0−, 1+

[ ]

represents the degree of MS,
abstinence (AB) and the degree of NM, with a condition
0− ≤ a′

S + g′S + b′
S ≤ 3+.

Definition 4: The notion of CNS is taken from [40] and given by

S = a′
S y
( )

, g′S y
( )

, b′
S y
( )( )

:y [ X
{ }

(4)

where a′
S = aSe

i2p daS

( )

, g′S y
( )

= gSe
i2p dgS

( )

and

b′
S = bSe

i2p dbS

( )

represented the degree of complex-valued
MS, complex-valued AB and the degree of complex-valued NM,

with conditions 0− ≤ aS + gS + bS ≤ 3+ and 0− ≤ daS + dgS+

dbS
≤ 3+. The CNS is denoted by CNS X( ). Where S =

aS y
i

( )

e
i2p daS

y
i( )

( )

, gS y
i

( )

e
i2p dgS

y
i( )

( )

,bS y
i

( )

e
i2p dbS

y
i( )

( )

( )

represents the complex neutrosophic number (CNN).

Definition 5: These operational laws are taken from [40]. Let
S, T [ CNS X( ), then the following hold:

(i) Sc
= bS(yi

)e
i2p(dbS

(y
i
))
, gS(yi

)e
i2p(dgS

(y
i
))
,aS(yi

)e
i2p(daS

(y
i
))

( )

;

(ii) S # T iff aS(yi
) ≤ aT (y

i
), daS (yi

) ≤ daT (yi
), gS(yi

) ≤
gT (y

i
), dgS (yi

) ≤ dgT
(y

i
), bS(yi

) ≥ bT (y
i
) and dbS (yi

) ≥

dbT
(y

i
);

(iii) S = T iff S # T and S $ T

Definition 6: The notion of DSM is taken from [42]. Considered the
two vectors X = (y

1
, y

2
, . . . , y

n
) and Y = (Y1, Y2, . . . , Yn),

then the DSM is denoted and defined by

d M X , Y( ) =
2X .Y

‖X‖22 + ‖Y‖22
=

2
∑n

i=1 yi
Yi

∑n
i=1 y2

i
+

∑n
i=1 Y

2
i

(5)

where X .Y =
∑n

i=1 yi
Yi represents the inner products and

X‖ ‖22=
∑n

i=1 y
2

i
, Y‖ ‖22=

∑n
i=1 Y

2
i represents the Euclidean norm

of vectors X and Y . If y
i
= Yi = 0, so the DSM is undefined.

3 Dice similarity measures for complex q-rung
orthopair fuzzy sets

In this section, we propose the notion of DSM andWDSM for CNSs.
The special cases of the proposed approaches are also discussed
in detail. The distance measures for CNSs are also discussed
in some remarks. Throughout this paper, the weight vector is
given by: v = {v1, v2, . . . , vn}, vi [ 0, 1[ ] with a condition
∑n

i=1 vi = 1. Similarly, the CNN is denoted and defined by:

S = aS(yi
)e

i2p(daS
)
, gS(yi

)e
i2p(dgS

)
, bS(yi

)e
i2p(dbS

)
( )

on a finite

universal set X.

Definition 7: A DSM d M1
Cq−ROF S, T

( )

for CNSs is given by

(see (6))

which satisfy the following conditions:

(i) 0 ≤ d M1
CNS(S, T ) ≤ 1

(ii) d M1
CNS(S, T ) = d M1

CNS(T , S)
(iii) d M1

CNS(S, T ) = 1 ⇔ S = T

d M1
CNS S, T

( )

=
1

n

∑

n

i=1

2
aS y

i

( )

aT y
i

( )

+ gS y
i

( )

gT y
i

( )

+ bS y
i

( )

bT y
i

( )

+

daS y
i

( )

daT
y

i

( )

+ dgS y
i

( )

dgT
y

i

( )

+ dbS
y

i

( )

dbT
y

i

( )

( )

a2
S y

i

( )

+ g2S y
i

( )

+ b2
S y

i

( )

+

d2aS y
i

( )

+ d2gS y
i

( )

+ d2bS
y

i

( )

( )

+
a2
T y

i

( )

+ g2T y
i

( )

+ b2
T y

i

( )

+

d2aT
y

i

( )

+ d2gT
y

i

( )

+ d2bT
y

i

( )

( )

⎛

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎠

(6)
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Proof: We will consider (6), and prove the following conditions:

(i) Let

d M1
CNS

S, T
( )

=
1

n

∑

n

i=1

2

aS yi

( )

aT yi

( )

+ gS yi

( )

gT yi

( )

+ bS yi

( )

bT yi

( )

+

daS
yi

( )

daT
yi

( )

+ dgS
yi

( )

dgT
yi

( )

+ dbS
yi

( )

dbT
yi

( )

⎛

⎜

⎝

⎞

⎟

⎠

a2S yi

( )

+ g2S yi

( )

+ b2S yi

( )

+

d2aS
yi

( )

+ d2gS
yi

( )

+ d2bS
yi

( )

⎛

⎜

⎝

⎞

⎟

⎠+

a2
T

yi

( )

+ g2
T

yi

( )

+ b2
T

yi

( )

+

d2aT
yi

( )

+ d2gT
yi

( )

+ d2bT
yi

( )

⎛

⎜

⎜

⎝

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

It is clear that d M1
CNS(S, T ) ≥ 0, and

a2
S y

i

( )

+ g2S y
i

( )

+ b2
S y

i

( )

+

d2aS
y

i

( )

+ d2gS y
i

( )

+ d2bS y
i

( )

( )

+

a2
T y

i

( )

+ g2T y
i

( )

+ b2
T y

i

( )

+

d2aT
y

i

( )

+ d2gT
y

i

( )

+ d2bT
y

i

( )

( )

⎛

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎠

≥ 2
aS y

i

( )

aT y
i

( )

+ gS y
i

( )

gT y
i

( )

+ bS y
i

( )

bT y
i

( )

+

daS y
i

( )

daT
y

i

( )

+ dgS y
i

( )

dgT
y

i

( )

+ dbS y
i

( )

dbT
y

i

( )

( )

According to the inequality a2 + b2 ≥ 2ab. Thus, 0 ≤

d M1
CNS(Si, T i) ≤ 1, so from (6), we get 0 ≤ d M1

CNS(S, T ) ≤ 1.
(ii) Equation (6) easily verified condition (ii).
(iii) If S = T , i.e. aS y

i

( )

= aT (y
i
), daS

(y
i
) = daT

(y
i
), gS(yi

) =
gT (y

i
), dgS (yi

) = dgT
(y

i
),bS(yi

) = bT (y
i
) and dbS

(y
i
) =

dbT
(y

i
), we have

d M1
CNS

S,T
( )

=
1

n

∑

n

i=1

2

aS yi

( )

aT yi

( )

+ gS yi

( )

gT yi

( )

+ bS yi

( )

bT yi

( )

+

daS
yi

( )

daT
yi

( )

+ dgS
yi

( )

dgT
yi

( )

+ dbS
yi

( )

dbT
yi

( )

⎛

⎜

⎝

⎞

⎟

⎠

a2S yi

( )

+ g2S yi

( )

+ b2S yi

( )

+

d2aS
yi

( )

+ d2gS
yi

( )

+ d2
bS

yi

( )

⎛

⎜

⎝

⎞

⎟

⎠+

a2
T

yi

( )

+ g2
T

yi

( )

+ b2
T

yi

( )

+

d2aT
yi

( )

+ d2gT
yi

( )

+ d2
bT

yi

( )

⎛

⎜

⎜

⎝

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=
1

n

∑

n

i=1

2
aS yi

( )

aS yi

( )

+ gS yi

( )

gS yi

( )

+ bS yi

( )

bS yi

( )

+

daS
yi

( )

daS
yi

( )

+ dgS
yi

( )

dgS
yi

( )

+ dbS
yi

( )

dbS
yi

( )

⎛

⎝

⎞

⎠

a2S yi

( )

+ g2S yi

( )

+ b2S yi

( )

+

d2aS
yi

( )

+ d2gS
yi

( )

+ d2bS
yi

( )

⎛

⎜

⎝

⎞

⎟

⎠+

a2S yi

( )

+ g2S yi

( )

+ b2S yi

( )

+

d2aS
yi

( )

+ d2gS
yi

( )

+ d2bS
yi

( )

⎛

⎜

⎝

⎞

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=
1

n

∑

n

i=1

2 a2S yi

( )

+ g2S yi

( )

+ b2S yi

( )

+ d2aS yi

( )

+ d2gS yi

( )

+ d2bS
yi

( )( )

2 a2S yi

( )

+ g2S yi

( )

+ b2S yi

( )

+ d2aS yi

( )

+ d2gS
yi

( )

+ d2
bS

yi

( )

( )

⎛

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎠

= 1

The proof is completed. □

Definition 8: A WDSM d Mw1
CNS S, T

( )

for CNSs is given by

(see (7))

Fig. 1 Structure of this paper in the form of flowchart

d Mw1
CNS S, T

( )

=
∑

n

i=1

vi

2
aS y

i

( )

aT y
i

( )

+ gS y
i

( )

gT y
i

( )

+ bS y
i

( )

bT y
i

( )

+

daS y
i

( )

daT
y

i

( )

+ dgS y
i

( )

dgT
y

i

( )

+ dbS y
i

( )

dbT
y

i

( )

( )

a2
S y

i

( )

+ g2S y
i

( )

+ b2
S y

i

( )

+

d2aS
y

i

( )

+ d2gS y
i

( )

+ d2bS y
i

( )

( )

+
a2
T y

i

( )

+ g2T y
i

( )

+ b2
T y

i

( )

+

d2aT
y

i

( )

+ d2gT
y

i

( )

+ d2bT
y

i

( )

( )

⎛

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎠

(7)
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which satisfy the following conditions:

(i) 0 ≤ d Mw1
CNS(S, T ) ≤ 1

(ii) d Mw1
CNS(S, T ) = d Mw1

CNS(T , S)
(iii) d Mw1

CNS(S, T ) = 1 ⇔ S = T

Example 1: Let S = y
1
,

0.3ei2p(0.33),

0.6ei2p(0.45), 0.3ei2p(0.56)

〈 〉( )

and S =

y
1
,

0.34ei2p(0.39),

0.22ei2p(0.13), 0.13ei2p(0.22)

〈 〉( )

be two CNNs. Then, we

use (6) such that

(see (equation below))

Remarks 1: If we take v = 1
n
, 1
n
, . . . , 1

n

( )T
then the WDSM for

CNS reduced to DSM for CNS, i.e. d Mw1
CNS(S, T ) =

d M1
CNS(S, T ). Moreover, we proposed the other form of DSM

and WDSM for CNS.

Remarks 2: The dice distance measure (DDM) and weighted dice
distance measure (WDDM) for CNSs are as follows:

d Md M1
CNS S, T

( )

= 1− d M1
CNS S, T

( )

(8)

d Md Mw1
CNS S, T

( )

= 1− d Mw1
CNS S, T

( )

(9)

Definition 9: A DSM d M3
CNS S, T

( )

for CNSs is given by

(see (10))

which satisfy the following conditions:

(i) 0 ≤ d M3
CNS(S, T ) ≤ 1

(ii) d M3
CNS(S, T ) = d M3

CNS(T , S)
(iii) d M3

CNS(S, T ) = 1 ⇔ S = T

Definition 10: A WDSM d Mw3
CNS S, T

( )

for CNSs is given by

(see (11))

which satisfy the following conditions:

(i) 0 ≤ d Mw3
CNS(S, T ) ≤ 1

(ii) d Mw3
CNS(S, T ) = d Mw3

CNS(T , S)
(iii) d Mw3

CNS(S, T ) = 1 ⇔ S = T

Remarks 3: If we take v = 1
n
, 1
n
, . . . , 1

n

( )T
then the WDSM for CNS

reduced to DSM for CNS, i.e. d Mw3
CNS(S, T ) = d M3

CNS(S, T ).

3.1 Generalised dice similarity measures for CNSs

In this section, we propose the notion of GDSM and WGDSM for
CNSs. The special cases of the proposed approaches are also
discussed in detail. The distance measures for CNSs are also
discussed in some remarks.

Definition 11: A GDSM d MG1
CNS S, T

( )

for CNSs is given by

(see (12))

which satisfy the following conditions:

(i) 0 ≤ d MG1
CNS(S, T ) ≤ 1

(ii) d MG1
CNS(S, T ) = d MG1

CNS(T , S)
(iii) d MG1

CNS(S, T ) = 1 ⇔ S = T .
If we consider the value of Y = 0, then

d MG1
CNS S, T

( )

=
1

n

∑

n

i=1

aS yi

( )

aT yi

( )

+ gS yi

( )

gT yi

( )

+ bS yi

( )

bT yi

( )

+

daS yi

( )

daT
yi

( )

+ dgS yi

( )

dgT
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( )
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( )

dbT
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( )
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⎠
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( )
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⎜
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⎠
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⎜
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⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(13)

d Mw1
CNS S, T

( )

=
2 0.3× 0.34+ 0.6× 0.22+ 0.3× 0.13+ 0.33× 0.39+ 0.45× 0.13+ 0.56× 0.22( )

0.32 + 0.62 + 0.32 + 0.332 + 0.452 + 0.562
( )

+ 0.342 + 0.222 + 0.132 + 0.392 + 0.132 + 0.222
( )

( )

=
1.167

1.156+ 0.40

( )

= 0.75

d M3
CNS S, T

( )

=

∑

n

i=1

2
aS y

i

( )

aT y
i

( )

+ gS y
i

( )

gT y
i

( )

+ bS y
i

( )

bT y
i

( )

+
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i
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y

i
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+ dgS y
i
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∑
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+ d2bS y
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( )

+
∑
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a2
T y

i
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+ g2T y
i

( )

+ b2
T y

i
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+
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y
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( )

+ d2gT
y

i
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+ d2bT
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i
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⎜

⎜
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⎟
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⎟
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(10)

d Mw3
CNS S, T

( )

=

2
∑

n

i=1

v2
i

aS y
i

( )

aT y
i

( )
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i
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+ d2gS y
i
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( )
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+
∑
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i
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T y

i
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+ g2T y
i

( )
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T y

i

( )

+
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y

i

( )

+ d2gT
y
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( )

+ d2bT
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i
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( )

⎛

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎠

(11)

d MG1
CNS S, T

( )

=
1

n

∑

n

i=1

aS y
i

( )

aT y
i

( )

+ gS y
i

( )

gT y
i

( )

+ bS y
i

( )

bT y
i

( )

+

daS y
i

( )

daT
y

i

( )

+ dgS y
i

( )

dgT
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( )
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( )

dbT
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Y
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( )
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( )
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S y

i

( )

+

d2aS
y
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( )
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( )

+ d2bS y
i

( )

( )

+ 1− Y( )
a2
T y

i

( )

+ g2T y
i

( )

+ b2
T y

i

( )

+
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y
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( )

+ d2gT
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( )
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⎛

⎜

⎜

⎜

⎜
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⎞
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⎟

⎟

⎟
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(12)
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If we consider the value of Y = 1, then

d MG1
CNS S, T

( )

=
1

n

∑

n

i=1

aS yi

( )

aT yi

( )

+ gS yi

( )

gT yi

( )

+ bS yi

( )

bT yi

( )

+

daS
yi

( )

daT
yi

( )

+ dgS
yi

( )

dgT
yi

( )

+ dbS
yi

( )

dbT
yi

( )

⎛

⎜

⎝

⎞

⎟

⎠

a2S yi

( )

+ g2S yi

( )

+ b2S yi

( )

+

d2aS
yi

( )

+ d2gS
yi

( )

+ d2bS
yi

( )

⎛

⎜

⎝

⎞

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(14)

is called asymmetric similarity measures or projection similarity
measures.

Example 2: Let S = y
1
,

0.3ei2p(0.33),

0.6ei2p(0.45), 0.3ei2p(0.56)

〈 〉( )

and S =

y
1
,

0.34ei2p(0.39),

0.22ei2p(0.13), 0.13ei2p(0.22)

〈 〉( )

be two CNNs with parameter

Y = 0.3. Then, we use (12) such that

(see (equation below))

Definition 12: A WGDSM d MwG1
CNS S, T

( )

for CNSs is given by

(see (15))

which satisfy the following conditions:

(i) 0 ≤ d MwG1
CNS S, T

( )

≤ 1

(ii) d MwG1
CNS S, T

( )

= d MwG1
CNS T , S

( )

(iii) d MwG1
CNS S, T

( )

= 1 ⇔ S = T
If we consider the value of Y = 0, then

d MwG1
CNS S, T

( )

=
∑

n

i=1

vi

aS yi

( )

aT yi

( )

+ gS yi

( )

gT yi

( )

+ bS yi

( )

bT yi

( )

+

daS yi

( )

daT
yi

( )

+ dgS yi

( )

dgT
yi

( )

+ dbS
yi

( )

dbT
yi

( )

⎛

⎜

⎝

⎞

⎟

⎠

a2T yi

( )

+ g2T yi

( )

+ b2T yi

( )

+

d2aT
yi

( )

+ d2gT
yi

( )

+ d2bT
yi

( )

⎛

⎜

⎝

⎞

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(16)

If we consider the value of Y = 1, then

d MwG1
CNS S, T

( )

=
∑

n

i=1

vi

aS yi

( )

aT yi

( )

+ gS yi

( )

gT yi

( )

+ bS yi

( )

bT yi

( )

+

daS yi

( )

daT
yi

( )

+ dgS yi

( )

dgT
yi

( )

+ dbS
yi

( )

dbT
yi

( )

⎛

⎜

⎝

⎞

⎟

⎠

a2S yi

( )

+ g2S yi

( )

+ b2S yi

( )

+

d2aS yi

( )

+ d2gS yi

( )

+ d2bS
yi

( )

⎛

⎜

⎝

⎞

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(17)

is called asymmetric similarity measures or projection similarity
measures.

Remarks 4: Where the value of 0 ≤ Y ≤ 1. By changing Y = 0.5,
(12) and (15) are reduced into (6) and (7).

Remarks 5: If we take v = 1
n
, 1
n
, . . . , 1

n

( )T
, then the WGDSM

for CNS reduced to GDSM for CNS, i.e.

d MwG1
CNS S, T

( )

= d MG1
CNS S, T

( )

.

Remarks 6: The generalised dice distance measure (GDDM) and
weighted generalised dice distance measure (WGDDM) for
Cq-ROFSs are as follows:

d Md MG1
CNS S, T

( )

= 1− d MG1
CNS S, T

( )

(18)

d Md MwG1
CNS S, T

( )

= 1− d MwG1
CNS S, T

( )

(19)

Definition 13: A GDSM d MG3
CNS S, T

( )

for Cq-ROFSs is given by

(see (20))

which satisfy the following conditions:

(i) 0 ≤ d MG3
CNS S, T

( )

≤ 1

(ii) d MG3
CNS S, T

( )

= d MG3
CNS T , S

( )

(iii) d MG3
CNS S, T

( )

= 1 ⇔ S = T

d MG1
CNS S, T

( )

=
0.3× 0.34+ 0.6× 0.22+ 0.3× 0.13+ 0.33× 0.39+ 0.45× 0.13+ 0.56× 0.22( )

0.3( ) 0.32 + 0.62 + 0.32 + 0.332 + 0.452 + 0.562
( )

+ 1− 0.3( ) 0.342 + 0.222 + 0.132 + 0.392 + 0.132 + 0.222
( )

( )

=
0.58

0.3× 1.156+ 0.7× 0.40

( )

= 0.93

d MwG1
CNS S, T

( )

=
∑

n

i=1

vi

aS y
i

( )

aT y
i

( )
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+ d2gS y
i

( )

+ d2bS y
i

( )

( )

+ 1− Y( )
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⎠

(15)

d MG3
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( )

=

∑
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(20)
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If we consider the value of Y = 0, then
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If we consider the value of Y = 1, then
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is called asymmetric similarity measures or projection similarity
measures.

Definition 14: A WGDSM d MwG3
CNS S, T

( )

for CNSs is given by

(see (23))

which satisfy the following conditions:

(i) 0 ≤ d MwG3
CNS S, T

( )

≤ 1
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CNS S, T

( )
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CNS T , S

( )

(iii) d MwG3
CNS S, T

( )

= 1 ⇔ S = T
If we consider the value of Y = 0, then
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If we consider the value of Y = 1, then
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is called asymmetric similarity measures or projection similarity
measures.

Remarks 7: Where the value of 0 ≤ Y ≤ 1. By changing Y = 0.5,
(20) and (23) are reduced into (10) and (11).

Remarks 8: If we take v = 1
n
, 1
n
, . . . , 1

n

( )T
then the WGDSM for

CNS reduced to GDSM for CNS, i.e. d MwG3
CNS S, T

( )

=

d MG3
CNS S, T

( )

.

In this section, if we consider the abstinence part will be zero,
then the proposed work is converted for IFS. The proposed work
is more generalised than existing drawbacks due to its condition.
Basically, CNS deals with two-dimensional information in a single
element. The CNS is characterised by complex-valued MS,
complex-valued abstinence and complex-valued NMS grades with
a condition that the sum of real-valued MS (imaginary-valued
MS), real-valued abstinence (imaginary-valued abstinence) and
real-valued NMS (imaginary-valued NMS) grades is less than or
equal to 3+.

4 Apply the generalised dice similarity measures
between CNSs to pattern recognition

To examine the reliability and effectiveness of the pioneered work,
we compared the established work with some existing works
which is investigated by Ali and Samarandache [40], applied to
pattern recognition with the help of numerical example. The
proposed measures are also compared with the following notions,
which is explained in [43].

Example 3: For any four known patterns S1, S2, S3 and S4 with
respect to unknown pattern T in the form of CNNs based on
finite universal sets X = y

1
, y

2
, y

3
, y

4

{ }

defined below:

S1 =

y
1
, 0.8ei2p 0.77( ), 0.78ei2p 0.56( ), 0.56ei2p 0.55( )

( )

,

y
2
, 0.9ei2p 0.87( ), 0.88ei2p 0.76( ), 0.76ei2p 0.65( )
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,
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3
, 0.6ei2p 0.67( ), 0.58ei2p 0.86( ), 0.46ei2p 0.75( )
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,
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, 0.7ei2p 0.57( ), 0.68ei2p 0.93( ), 0.36ei2p 0.85( )
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S2 =

y
1
, 0.8ei2p 0.77( ), 0.78ei2p 0.56( ), 0.56ei2p 0.55( )

( )

,

y
2
, 0.9ei2p 0.87( ), 0.88ei2p 0.76( ), 0.76ei2p 0.65( )

( )

,

y
3
, 0.6ei2p 0.67( ), 0.58ei2p 0.86( ), 0.46ei2p 0.75( )

( )

,

y
4
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S3 =
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, 0.8ei2p 0.77( ), 0.78ei2p 0.56( ), 0.56ei2p 0.55( )

( )

,

y
2
, 0.9ei2p 0.87( ), 0.88ei2p 0.76( ), 0.76ei2p 0.65( )

( )

,

y
3
, 0.6ei2p 0.67( ), 0.58ei2p 0.86( ), 0.46ei2p 0.75( )

( )

,

y
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, 0.7ei2p 0.57( ), 0.68ei2p 0.93( ), 0.36ei2p 0.85( )
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S4 =

y
1
, 0.8ei2p 0.77( ), 0.78ei2p 0.56( ), 0.56ei2p 0.55( )
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y
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, 0.9ei2p 0.87( ), 0.88ei2p 0.76( ), 0.76ei2p 0.65( )
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y
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y
3
, 0.6ei2p 0.67( ), 0.58ei2p 0.86( ), 0.46ei2p 0.75( )

( )
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y
4
, 0.7ei2p 0.57( ), 0.68ei2p 0.93( ), 0.36ei2p 0.85( )
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⎧
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⎪
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∑
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+
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⎛

⎜

⎜

⎜

⎜
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We compute the GDSM between known and unknown patterns
by using (20). The comparison of the proposed measures
with existing measures, whose detail is that the notion introduced
by Li et al. [44] based on similarity measures between IFS,
and the notion initiated by Chen [45] based on similarity
measures between vague set and between elements, and the
concept pioneered by Chen et al. [15] based on similarity
measures between IFS, and the idea found by Hung and Yang [21]
based on similarity measures between IFS using Hausdroff
distance, and the idea found by Hong and Kim [46] based
on similarity measures between vague set and their elements,
and the idea found by Li and Cheng [14] based on similarity
measures for IFS and their application to pattern recognition,
and the idea found by Li and Xu [47] based on measures of
similarity between vague sets, and the idea found by Liang and
Shi [48] based on similarity measures on IFS, and the idea
found by Mitchell [49] based on similarity measures and its
application to pattern recognition, and the idea found by Ye [50]
based on cosine similarity measures for IFS and their applications,
and the idea found by Wei and Wei [51] based on similarity
measures based on PFS, and the idea found by Zhang [52]
based on similarity measures for pythagorean fuzzy multi-criteria
group decision making, and the idea found by Peng et al. [53]
based on information measures for PFS, and the idea found
by Boran and Akay [54] based on parametric similarity
measures for IFS, and the idea found by Peng and Liu [43]
based on information measures for q-rung orthopair FSs are
discussed in Table 1 for the values of weight vectors is
0.3, 0.4, 0.1, 0.2( )T.
The graphical representation of the explored work with existing

work which is mention in Table 1 is discussed in Fig. 2.

4.1 Advantages and comparative analysis of the CNSs

In the following, some comparisons of the initiated methods with
drawback ideas are discussed to examine the validity and
superiority of the proposed methods. Further, we will compare our
proposed dice similarity measures to 21 other existing measures,
and we will consider the following drawbacks to solve with the
help of example, including the notion introduced by Li et al. [44]
based on similarity measures between IFS, and the notion initiated
by Chen [45] based on similarity measures between vague set and
between elements, and the concept pioneered by Chen et al. [15]
based on similarity measures between IFS, and the idea found by
Hung and Yang [21] based on similarity measures between IFS

using Hausdroff distance, and the idea found by Hong and
Kim [46] based on similarity measures between vague set and
their elements, and the idea found by Dengfeng and Chuntian [14]
based on similarity measures for IFS and their application to
pattern recognition, and the idea found by Li and Xu [47] based
on measures of similarity between vague sets, and the idea found
by Liang and Shi [48] based on similarity measures on IFS, and
the idea found by Mitchell [49] based on similarity measures and
its application to pattern recognition, and the idea found by Ye
[50] based on cosine similarity measures for IFS and their
applications, and the idea found by Wei and Wei [51] based on
similarity measures based on PFS, and the idea found by Zhang
[52] based on similarity measures for pythagorean fuzzy
multi-criteria group decision making, and the idea found by Peng
et al. [53] based on information measures for PFS, and the idea
found by Boran and Akay [54] based on parametric similarity
measures for IFS, and the idea found by Peng and Liu [43] based
on information measures for q-rung orthopair FSs. However, all
the existing drawbacks are failed to deal with problems that
involve two-dimensional information/date, i.e. two different types
of information/data pertaining to the problem parameters. The
existing methods (discussed in advantages section below) and
proposed methods are compared with the help of Example 4 and
see the final results in Table 2.

To examine the reliability and effectiveness of the explored work
we solve another example which is taken from [43].

Example 4: [43]: For any four known patterns S1, S2 and S3 with
respect to unknown pattern T in the form of CNNs based on

Fig. 2 Comparison of the proposed measure with existing measures, using

graphical interpretation

Table 1 Comparison of the proposed measure with existing measures

Methods Similarity measures Ranking

SL [44] cannot be classified cannot be classified
SC [45] cannot be classified cannot be classified
SCC [15] cannot be classified cannot be classified
SHY 1 [21] cannot be classified cannot be classified
SHY 2 [21] cannot be classified cannot be classified
SHY 3 [21] cannot be classified cannot be classified
SHK [46] cannot be classified cannot be classified
SLC [14] cannot be classified cannot be classified
SLX [47] cannot be classified cannot be classified
SLS1 [48] cannot be classified cannot be classified
SLS2 [48] cannot be classified cannot be classified
SLS3 [48] cannot be classified cannot be classified
SM [49] cannot be classified cannot be classified
SY [50] cannot be classified cannot be classified
SW [51] cannot be classified cannot be classified
SZ [52] cannot be classified cannot be classified
SP1 [53] cannot be classified cannot be classified
SP2 [53] cannot be classified cannot be classified
SP3 [53] cannot be classified cannot be classified
SBA [54] cannot be classified cannot be classified
S13 [43] cannot be classified cannot be classified
proposed method in this paper ⌈M S1, T

( )

= 0.6723, ⌈M S2, T
( )

= 0.7467, ⌈M S3 , T
( )

= 0.892 S3 ≥ S2 ≥ S1
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finite universal sets X = y
1
, y

2
, y

3
, y

4

{ }

are defined below:

S1 =

y
1
, 0.3ei2p 0.0( ), 0.0ei2p 0.0( ), 0.3ei2p 0.0( )

( )

,

y
2
, 0.4ei2p 0.0( ), 0.0ei2p 0.0( ), 0.4ei2p 0.0( )

( )

,

y
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( )
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y
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We compute the GDSM between known and unknown patterns by
using (20). The comparison of the proposed measures with existing

measures, whose detail is that the notion introduced by Li et al.
[44] based on similarity measures between IFS, and the notion
initiated by Chen [45] based on similarity measures between vague
set and between elements, and the concept pioneered by Chen et al.
[15] based on similarity measures between IFS, and the idea found
by Hung and Yang [21] based on similarity measures between IFS
using Hausdroff distance, and the idea found by Hong and Kim
[46] based on similarity measures between vague set and their
elements, and the idea found by Dengfeng and Chuntian [14] based
on similarity measures for IFS and their application to pattern
recognition, and the idea found by Li and Xu [47] based on
measures of similarity between vague sets, and the idea found by
Liang and Shi [48] based on similarity measures on IFS, and the
idea found by Mitchell [49] based on similarity measures and its
application to pattern recognition, and the idea found by Ye [50]
based on cosine similarity measures for IFS and their applications,
and the idea found by Wei and Wei [51] based on similarity
measures based on PFS, and the idea found by Zhang [52] based on
similarity measures for pythagorean fuzzy multi-criteria group
decision making, and the idea found by Peng et al. [53] based on
information measures for PFS, and the idea found by Boran and
Akay [54] based on parametric similarity measures for IFS, and the
idea found by Peng and Liu [43] based on information measures for
q-rung orthopair FSs are discussed in Table 2.

The graphical representation of the explored work with existing
work which is mention in Table 2 is discussed in Fig. 3.

From Example 3, it can be seen that existing drawbacks are not
able to solve the decision making problem presented, which

Table 2 Comparison of the proposed measure with existing measures

Methods Similarity measures Ranking

SL [44] ⌈M S1, T
( )

= 0.86, ⌈M S2, T
( )

= 0.72, ⌈M S3 , T
( )

= 0.91 S3 ≥ S1 ≥ S2

SC [45] ⌈M S1, T
( )

= 1, ⌈M S2, T
( )

= 1, ⌈M S3 , T
( )

= 0.97 S1 ≥ S2 ≥ S3

SCC [15] ⌈M S1, T
( )

= 0.86, ⌈M S2, T
( )

= 0.74, ⌈M S3 , T
( )

= 0.89 S3 ≥ S1 ≥ S2

SHY 1 [21] ⌈M S1, T
( )

= 0.87, ⌈M S2, T
( )

= 0.75, ⌈M S3 , T
( )

= 0.90 S3 ≥ S2 ≥ S1

SHY 2 [21] ⌈M S1, T
( )

= 0.81, ⌈M S2, T
( )

= 0.65, ⌈M S3 , T
( )

= 0.84 S3 ≥ S2 ≥ S1

SHY 3 [21] ⌈M S1, T
( )

= 0.78, ⌈M S2, T
( )

= 0.60, ⌈M S3 , T
( )

= 0.82 S3 ≥ S2 ≥ S1

SHK [46] ⌈M S1, T
( )

= 0.87, ⌈M S2, T
( )

= 0.75, ⌈M S3 , T
( )

= 0.92 S3 ≥ S2 ≥ S1

SLC [14] ⌈M S1, T
( )

= 1, ⌈M S2, T
( )

= 1, ⌈M S3 , T
( )

= 0.97 S1 ≥ S2 ≥ S3

SLX [47] ⌈M S1, T
( )

= 0.94, ⌈M S2, T
( )

= 0.87, ⌈M S3 , T
( )

= 0.95 S3 ≥ S2 ≥ S1

SLS1 [48] ⌈M S1, T
( )

= 0.87, ⌈M S2, T
( )

= 0.75, ⌈M S3 , T
( )

= 0.92 S3 ≥ S2 ≥ S1

SLS2 [48] ⌈M S1, T
( )

= 0.94, ⌈M S2, T
( )

= 0.87, ⌈M S3 , T
( )

= 0.95 S3 ≥ S2 ≥ S1

SLS3 [48] ⌈M S1, T
( )

= 0.92, ⌈M S2, T
( )

= 0.83, ⌈M S3 , T
( )

= 0.94 S3 ≥ S2 ≥ S1

SM [49] ⌈M S1, T
( )

= 0.87, ⌈M S2, T
( )

= 0.75, ⌈M S3 , T
( )

= 0.92 S3 ≥ S2 ≥ S1

SY [50] ⌈M S1, T
( )

= 1, ⌈M S2, T
( )

= 1, ⌈M S3 , T
( )

= 0.99 S1 ≥ S2 ≥ S3

SW [51] ⌈M S1, T
( )

= 1, ⌈M S2, T
( )

= 1, ⌈M S3 , T
( )

= 0.99 S1 ≥ S2 ≥ S3

SZ [52] ⌈M S1, T
( )

= 1, ⌈M S2, T
( )

= 1, ⌈M S3 , T
( )

= 0.98 S1 ≥ S2 ≥ S3

SP1 [53] ⌈M S1, T
( )

= 0.5, ⌈M S2, T
( )

= 0.5, ⌈M S3 , T
( )

= 0.5 S3 ≥ S2 ≥ S1

SP2 [53] ⌈M S1, T
( )

= 0.5, ⌈M S2, T
( )

= 0.24, ⌈M S3 , T
( )

= 0.62 S3 ≥ S2 ≥ S1

SP3 [53] ⌈M S1, T
( )

= 0.87, ⌈M S2, T
( )

= 0.79, ⌈M S3 , T
( )

= 0.92 S3 ≥ S2 ≥ S1

SBA [54] ⌈M S1, T
( )

= 0.96, ⌈M S2, T
( )

= 0.91, ⌈M S3 , T
( )

= 0.96 S3 ≥ S2 ≥ S1

S13 [43] ⌈M S1, T
( )

= 0.98, ⌈M S2, T
( )

= 0.97, ⌈M S3 , T
( )

= 0.99 S3 ≥ S2 ≥ S1

proposed method in this paper ⌈M S1, T
( )

= 0.858, ⌈M S2, T
( )

= 0.8972, ⌈M S3 , T
( )

= 0.923 S3 ≥ S2 ≥ S1

Fig. 3 The graphical interpretation of the explored work with existing works
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involves two types of complex neutrosophic information (the degree
of the influence and the total time of the influence) since established
measures lacks the phase terms which represent the time frame of
this problem. But when we choose the intuitionistic fuzzy types of
information, the established work can solve easily; see in Example 4.

4.2 Sensitive analysis

The GDSM under the CIFS [34] environment can only handle
situations in which the degree of complex-valued membership and
complex-valued non-membership is provided to the decision
maker. The constraint of CIFS is that the sum of real part (also for
imaginary part) of membership and real part (also for imaginary
part) of non-membership grades are bounded to [0, 1]. This kind
of measure is unable to deal with such kind of information, whose
sum is greater than 1, which commonly occurs in real-life
applications. As CNSs [40] are a successful tool to handle such
kinds of information, which cannot deal effectively by CIFS, the
proposed dice similarity measure in the CNS can effectively be
used in many real applications in decision making. The special
cases of the proposed approaches are discussed below.

(i) By ignoring the imaginary parts in the triplet (aS(yi
)e

i2p(daS
(y

i
))
,

gS(yi
)e

i2p(dgS
(y

i
))
, bS(yi

)e
i2p(dbS

(y
i
))
), then the proposed

approaches based on CNS [40] are reduced for the NSs [30].
(ii) By ignoring the imaginary parts and abstinence degree in the
triplet (aS(yi

)e
i2p(daS

(y
i
))
, gS(yi

)e
i2p(dgS

(y
i
))
, bS(yi

)e
i2p(dbS

(y
i
))
),

then the proposed approaches based on CNS [40] are reduced for
the IFSs [13].
(iii) By ignoring the abstinence degree in the triplet
(aS(yi

)e
i2p(daS

(y
i
))
, gS(yi

)e
i2p(dgS

(y
i
))
, bS(yi

)e
i2p(dbS

(y
i
))
), then the

proposed approaches based on CNS [40] are reduced for the
CIFSs [24].

The proposed measures based on CNSs are more powerful and
more general than existing methods discussed in [43–54]. We are
currently working on developing a more in-depth theoretical
framework concerning the similarity measures, and have plans to
extend this to other types of similarity measures in the future. We
are also motivated by the works presented in [48–50], and look
forward to extend our work to other generalisations of NSs, such
as interval CNSs, and apply the work in medical imaging
problems and recommender systems.

5 Conclusion

CNS is an extension of CFS, to cope with complicated and
inconsistence information in the environment of FS theory. The
CNS is characterised by three functions expressing the degree
of complex-valued membership, complex-valued abstinence and
degree of complex-valued non-membership. The aim of this
manuscript is to initiate the novel dice similarity measures and
generalised dice similarity for CNS. The special cases of the
investigated methods are discussed with the help of some remarks.
Moreover, the distance measures for CNS are also proposed in this
manuscript. Then, we applied the GDSMs and WGDSMs between
CNSs to pattern recognition. The advantages of found approaches
and the compression between proposed methods with existing
methods are initiated. At last, an illustrative numerical example is
provided to demonstrate the efficiency and effectiveness of
the proposed approaches. In future, we use the GDSMs in the
environment of [55–58], neutrosophic generalisations [59–62],
complex q-rung orthopair FSs [63, 64] and decision making [65–70].
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