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Abstract: Federated learning aims to collaboratively train a machine learning model with possibly geo-distributed workers,

which is inherently communication constrained. To achieve communication efficiency, the conventional federated

learning algorithms allow the worker to decrease the communication frequency by training the model locally for

multiple times. Conventional federated learning architecture, inherited from the parameter server design, relies on

highly centralised topologies and large nodes-to-server bandwidths, and convergence property relies on the stochastic

gradient descent training in local, which usually causes the large end-to-end training latency in real-world federated

learning scenarios. Thus, in this study, the authors propose the adaptive partial gradient aggregation method, a

gradient partial level decentralised federated learning, to tackle this problem. In FedPGA, they propose a partial

gradient exchange mechanism that makes full use of node-to-node bandwidth for speeding up the communication

time. Besides, an adaptive model updating method further reduces the convergence rate by adaptive increasing the

step size of the stable direction of gradient descent. The experimental results on various datasets demonstrate that the

training time is reduced up to 14× compared to baselines without accuracy degrade.

1 Introduction

Recent years have witnessed a significant improvement in the
Internet of Things. Edge/Remote devices, such as phones,
vehicles, and wearable sensors are connected with networks and
generate a wealth of data each day. Federated learning [1–3] has
emerged as an attractive paradigm to take advantage of
decentralised data. In such settings, the goal is to learn a global
shared deep neural network (DNN) model using distributed data.
Different from conventional distributed machine learning, the
participants in federated learning are connected across the wide
area network (WAN), where the bandwidth constraints, and
statistical heterogeneity in the user datasets present significant
challenges. Of current federated learning solvers, FedAvg [1] has
become the de facto scheme for non-convex federated learning. As
illustrated in Fig. 1a, the central server selects a subset of all
devices to send the global shared model to devices; after that, the
device conducts multiple stochastic gradient descent (SGD) using
local samples based on the received shared model. Then, the
server randomly selects a subset of devices to upload their local
updates. The global model is updated based on the averaging of
received updates, and sends to the selected devices.

Although the local updating and low participation of FedAvg
reduce the communication overhead, the end-to-end training time
still faces the inevitable latency in network bottleneck of
centralised server and the convergence rate of SGD. The millions
of over WAN devices involved share one or a set of central
servers to exchange local updates, leading to the non-negligible
communication latency in exchanging updates. Mostly, the high
latency is caused by the following reasons:

(i) Scarce WAN bandwidth: The devices in federated learning are
geo-distributed, that is, the data is transmitted over WAN.
However, as measured in [4, 5], the WAN bandwidth is a quite
scarce resource. First, the bandwidth within a data centre is 15×
larger than the WAN bandwidth on average, 60× in the worst
case. Secondly, the WAN bandwidth is different significantly
between different regions, i.e. up to 12× difference. Thirdly, the

WAN bandwidth varies over time. The large variance is larger
than 4× in a day. The unbalanced and scare WAN bandwidth
may cause a high latency in federated learning.
(ii) Bottleneck in centralised topology: In FedAvg, all the chosen
devices have to transmit the updates to the central server at each
iteration (for a synchronised scheme). Network congestion often
occurs on the server-side. Although it could set more servers for
scaling, the congestion is not radically solved. The congestion may
slow down the transmission time of updates.
(iii) Large DNN models: To achieve higher performance in accuracy,
the DNNs’ models become larger and larger, i.e. the model size of
BERTLARGE, which is the state-of-the-art model in NLP, can be
up to 1360 MB. Besides, the primal goal of federated learning is
to train a large model using more decentralised data. Obviously,
the large data size needs more time to transmit.

Thus, to further decrease the end-to-end training time, some
advanced decentralised optimisation methods [6, 7] have been
proposed, instead of All-Reduce [8] scheme, devices send local
updates to only one or a group of selected devices. In real-world
federated learning scenarios, the network capacities between nodes
are highly uniformly distributed and smaller than that in a
datacenter [9]. Thus, it is still extremely bandwidth costly when
workers send the full model updates (e.g. the size can be up to
1360MB in BERTLARGE [10]). To exchange partial updates is an
intuitive way to tackle the network unbalance and bottleneck. Ako
method in [11] exchanges partial gradient with all the peer
devices, while Combo method in [12] exchanges partial model
weights instead. Although these methods reduce the
communication time, their simple averaging scheme still faces the
convergence rate limitation of SGD.

To address the problems above, in this paper, we proposed novel
decentralised, federated learning design as shown in Fig. 1b,
introducing an adaptive partial gradient aggregation scheme, which
not only makes full utilisation of sufficient node-to-node
bandwidth by transmitting accumulated local gradient slice, called
Partial t-Difference Gradients in a peer-to-peer manner but also
takes advantage of ‘Adam’ algorithm to speed up the convergence
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rate. In particular, the details of the design and the contributions are
summarised as follows:

† First, we propose a decentralised partial gradient exchange
mechanism. We ‘split’ a gradient into a set of slices – subsets that
contain the same number of gradients that are not overlapped with
each other. Devices perform slice level updates by aggregating a
local slice with the corresponding slice from k other peer devices
and merging into a full size mixed gradient.
† Secondly, to speed up the convergence rate further, we propose an
adaptive updating method, which borrows the idea from the ‘Adam’

algorithm to adaptively set the learning rate according to the stability
of the gradient direction. Besides, instead of the ‘one-step’ gradient,
our ‘Adam-like’ method utilises the accumulated local gradient,
called t-Difference Gradients, to capture the cumulative gradient
direction.
† Finally, we implement our adaptive partial gradient aggregation
strategy into a prototype called FedPGA, and design experiments
to evaluate its performance (in the non-i.i.d settings). Our results
show that our design significantly reduces (upto 14× ) the training
time in practical network topology and bandwidth setup, without
accuracy degrade.

2 Related work

Many distributed optimisation methods have been proposed to
overcome the challenges in large scale distributed machine
learning, such as primal methods [13–15] and primal-dual methods
[16–18], while, in federated learning settings, the communication
cost often becomes dominant compared to the computation cost.

By introducing the local updating and partial devices
participating to balance the communication and computation in
the large networks [1, 3, 19–22], these methods have shown
significant improvements over traditional distributed optimisation

approaches. For instance, Smith et al. [3] proposed a
communication-efficient primal-dual optimisation method that
trains separate but related models for each client and captures the
relationship among clients through their relationship matrix.
Although it has a theoretical convergence guarantee, it still faces
the challenge of non-convex objectives, e.g. deep learning.
FedAvg [1] tackles the non-convex problem by averaging local
SGD updates, and has been shown to work well empirically.
However, it suffers slow convergence when the training data is not
identically distributed [23] and the centralised architecture will
bring the network congestion in the global server. To reduce the
network congestion, the decentralised methods [11, 12, 24] are
proposed, every device is connected over WAN, and there is no
global server to aggregate the updates. The former work
exchanged the partial gradients with all the other devices, while
the method in [12] exchanges the partial model weights with a
subset of total devices. Jiang et al. [24] further proposed a
bandwidth-aware device selection method to reduce the
communication latency. Although their improvement in
communication efficiency, these methods are based on the local
updating (SGD) and simply global averaging, leading to the limits
of the convergence rate of SGD.

To break the limits of local updating, Leroy et al. [25] proposed
adaptive averaging methods inspired by Adam optimiser to reduce
the number of communication rounds required. However, in this
paper, we propose a general framework focus on optimisation in
aggregation by exchanging average cumulative gradients instead of
parameters or gradients.

3 Proposed framework: FedPGA

In this section, we first formally define the classical federated
learning objective and methods, and describe the details of our
proposed method, FedPGA. Then we analyse the performance of
communication efficiency.

3.1 Preliminaries: federated learning

Federated learning aims to collaborate the samples from a large
amount of geo-distributed devices (i.e. hundreds to millions), and
communicate with a parameter server periodically to train a shared
global model. Instead of exchanging private data, devices
exchange the local updates for protecting data privacy. Formally,
the objective function of federated learning is to minimise the
following function:

min
w

F w( ) =
∑

K

k=1

pkFk w; Dk

( )

, (1)

where K is the total number of devices, w is the global model
weights, pk ≥ 0 and

∑

k pk = 1. We could set pk to be nk/n,
where n =

∑

k nk is the total number of samples of all the devices.
The Fk is the local objective function of device k on its local
available dataset Dk , i.e. the empirical risk could be used:
Fk = 1/nk

( )
∑nk

jk=1 f jk w; Dk

( )

, where nk = Dk

∣

∣

∣

∣ is the number of
total samples on device k.

To solve the above problem (1), the main optimisation
methodology is parallel SGD in distributed machine learning,
where the model is updated iteratively using average gradients of
the workers, as follows:

wt+1 � wt − h
∑ nk

n
gkt , (2)

where wt+1 and wt are the model weights at the t + 1( )th and tth
iterations, respectively. h is a constant of step size, and gkt =
∇wt

Fk wt; Dk

( )

is an one-step stochastic gradient of the objective
function evaluated on the mini-batch of dataset for device k.

Despite the ease of implementation, the parallel SGD suffers from
the large communication overhead in practice settings in terms of
rounds of communications and the amount of data to exchange. In

Fig. 1 Federated learning architecture

a FedAvg

b FedPGA
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order to reduce the rounds of communications, Local SGD
approaches [19, 26, 27] increase the interval of global aggregation,
that is, each device conducts multiple SGD using local data before
global model synchronisation. To further decrease the
communication overhead in federated learning settings, FedAvg
[1], the leading algorithm, has demonstrated its empirical
performance. it selects a subset St of devices to aggregate local
updates (model weights) at each global synchronisation rounds,
and the details are summarised as Algorithm 1 (see Fig. 2).

Although FedAvg shows good convergence in practice and
theory, it suffers from the communication bottleneck because of
the resource allocation problem in an inherent centralised architec-
ture. We will discuss the limitation of centralised architecture in
communication and the simple averaging aggregation.

3.2 FedPGA methods

Instead of a centralised architecture, we consider a decentralised
solution, the network topology with N devices, each device has a
network connection among the other N − 1 devices. Instead of
training a shared global model, each device trains its own model
in the decentralised federated learning. The goal of each device i is
to minimise the following objective function Fi wi

( )

:

min
wi

Fi wi

( )

=
∑

N

k=1

pkFk wk ; Dk

( )

. (3)

To solve the problem (3), and reduce the end-to-end latency, we
propose partial gradient exchange and adaptive aggregation
scheme. Next, we will present the details.

3.2.1 Partial gradient exchange: Different from FedAvg, the
devices in FedPGA exchange partial gradients rather than full
model weights. The partial gradient exchange consists of two
schemes, pulling and merging.

We suppose that each local update (We use gradient in this paper)
splits into S slices. Each slice is called a Partial Gradient. Formally,
it is defined as follows:

Definition 1: (Partial Gradients): We define a full gradient is git for
device i at communication rounds t. We split the git into S slices, each
slice s [ S[ ] is called a partial gradients and denoted as git s( )

git := git 1( ), git 2( ), ..., git S( )
( )

. (4)

Device i uniform randomly selects a subset Si of devices, where
Si

∣

∣

∣

∣ = S. The k th chosen device provides k th partial gradient
gkt k( ), k [ Si.

Fig. 3a illustrates the pulling procedure which we name it partial
gradients pulling. In the aggregation phase, the device needs to
receive the model update from others. While the FedAvg requires
the device to collect the whole model updates, partial gradients
pulling allows the device to pull a different slice of the updates
from different devices and rebuild a mixed update for aggregation.

After pulling the partial gradients, each device i will merge the
partial gradients into the mixed gradient, as shown in Fig. 3b.

Definition 2: (Mixed Partial Gradients): We define a mixed partial
gradient is ĝit s( ) for device i at communication rounds t at s th
slice. The mixed partial gradient is the weighted averaging of
received partial gradient ĝit,recv s( ) and local partial gradient
ĝit,local s( ) at sth slice

ĝit s( ) :=
Drecv

∣

∣

∣

∣ĝit,recv s( ) + Dlocal

∣

∣

∣

∣ĝit,local s( )

Drecv +| |Dlocal

∣

∣

∣

∣

(5)

where Drecv

∣

∣

∣

∣ and Dlocal

∣

∣

∣

∣ are the number of samples of the pulled
peer device and the local device.

Definition 3: (Mixed Gradients): We define a mixed gradient is ĝit s( )
for device i at communication rounds t. The mixed gradient is jointed
by S mixed paritial gradients in order

ĝit := ĝit 1( ), ĝit 2( ), . . . , ĝit S( )
( )

. (6)

After the merging phase, each device will conduct an adaptive
updating, and we will present the details in the next section.

Fig. 2 Algorithm 1: Federated averaging (FedAvg)

Fig. 3 Partial gradients merging

a Partial gradients

b Mixed gradients
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3.2.2 Adaptive updating: FedAvg relies on the ‘delayed
communication’ to reduce the network overhead and end-to-end
training latency. The number of communication rounds in FedAvg
to achieve convergence is determined by local training results, and
FedAvg is extremely vulnerable to the devices’ data distributions.
To solve the problem, we use the idea of adaptive gradient from
RMSProp and Adam [28] and propose an adaptive updating
method for federated learning, which accelerates the training with
‘adaptive updating’ instead of simple model averaging. Next, we
present the detailed design of FedPGA in a bottom-up way.

Next, we present our adaptive updating approach. In our design,
we propose a quasi-Adam aggregator on the top of FedAvg to
boost the aggregation quality. Intuitively, in the SGD algorithm,
the gradient provides descent direction for updating the model, and
the learning rate controls the descent speed. The Adam algorithm
achieves fast convergence by adaptively setting the learning rate
according to the stability of the gradient direction. For example, if
the gradient does not change much for a few iterations, the
algorithm knows a larger learning rate can be applied. On the
contrary, the learning rate decreases if the gradient fluctuates
drastically.

Definition 4: (t-Difference Gradient): We denote dit as the weighted
difference of local model weights after t times SGD for device i at
communication rounds t

dit :=
1

h
wi t( )
t − wi 0( )

t

( )

(7)

where wi 0( )
t and wi t−1( )

t are the model weights at the beginning SGD
training and the t th SGD training for device i at communication
rounds t. h is the learning rate of SGD. Notice that, wi 0( )

t is equals
to wi

t .

From (7), we could find out that we treat the t-Difference Gradient dit
as a ‘gradient’. It is the update contributed by the device to be applied
to wi

t , which also indicates the descent direction and the learning rate
for updating the model.

As we discussed in the previous section, the devices exchange the
partial gradient. Further, combining the insight of t-Difference
Gradient dit , the devices will exchange the partial t-Difference
Gradient. After the device merges the partial t-Difference Gradient
and reconstructs them into a mixed t-Difference Gradient d̂ i

t .
FedPGA then processes it in an Adam manner as follows:

ut � b1ut−1 + 1− b1

( )

d̂ i
t

vt � b2vt−1 + 1− b2

( )

(d̂ i
t )

2

ût �
ut

1− (b1)
t

v̂t �
vt

1− (b2)
t .

(8)

The decay parameters b1, b2 [ 0, 1[ ]; and the model wi
t is finally

updated as follows:

wi
t+1 � wi

t − a
ût
��

v̂t
√

+ e
(9)

where a is the upper bound of the update range of wt , and e is a small
value to avoid zero division. In the Adam algorithm ût/

��

v̂t
√

represents the signal-to-noise ratio [28]. The ratio approximates to
1 when d is stable, and the model parameters can be updated with
a large learning rate close to the upper bound a. If d fluctuates,
the learning rate becomes smaller to detect the right direction
carefully.

3.2.3 FedPGA algorithm: The details of the aggregation
algorithm are presented in Algorithm 2 (see Fig. 4), and the

hyper-parameters are adopted from the recommended parameters
provided by [28]. In our design, each model starts from the same
initial model weights w0 and trains their own model in T times
communication rounds. Each device conducts the training process
in a parallel way. Note that, we only consider a synchronisation
scheme for exchanging updates. At first, the device conducts the t
times local training using samples their own, and then calculates
t-Difference Gradient dit , and then exchange the dit in a partial
way. After the device achieves the mixed gradient d̂ i

t , it updates
their local weight wi

t using ‘Adam’ to obtain wi
t+1.

3.3 Performance analysis

In this section, we will analyse the communication efficiency of
FedPGA.

For each update i, the communication latency Li consists of
waiting time in the sending device and receiving device, denoted
as Lis and Lrr , respectively, and the transmission latency Litrans. We
assume that the arrive rate of updates pulling requests at the device
is li according to a Poisson process. We denote the port
bandwidth of sending device and receiving device is Bi

s and Bi
r,

respectively. The data size of update is d. Thus, the data transfer
time in the port of the sending device and receiving device is

denoted as mi
s = Bi

s/d and mi
r = Bi

r/d, respectively. The advantage
of the Queuing Theory, we model the queuing and transfer process
at the each port as M/D/1 model. Thus we have:

Lis =
1

mi
s

+
li

2mi
s mi

s − li
( )

=
d

Bi
s

+
dli

2Bi
s Bi

s − dli
( )

(10)

Lir =
1

mi
r

+
li

2mi
r m

i
r − li

( )

=
d

Bi
r

+
dli

2Bi
r B

i
r − dli

( )

(11)

Litrans =
d

Bi
trans

(12)

where the Bi
trans is the link bandwidth between the sending and

receiving device. Notice that, we also assume that the li/mi
r

( )

, 1
and li/mi

s

( )

, 1.
Thus, combining (10), (12) and (11), the communication latency

Li for update i is:

Li = Lis + Lir + Litrans. (13)

Fig. 4 Algorithm 2: FedPGA
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Finally, the latency of each device select S peer devices L is:

L = Ljs + Ljr + L
j
trans

=
d

B
j
s

+
dlj

2B
j
s B

j
s − dlj

( )

+
d

B
j
r

+
dlj

2B
j
r B

j
r − dlj

( )+
d

B
j
trans

(14)

where j = argmax Li
( )

, i [ S[ ].

g =
a+ dlj/2Bj

s Bj
s − dlj

( )

+ dlj/2Bj
r Bj

r − dlj
( )

a/S + d/S
( )

lj/2B
j
s B

j
s − d/S

( )

lj
( )

+ d/S
( )

lj/2B
j
r B

j
r − d/S

( )

lj
( )

≤
a+ dlj/2Bj

s Bj
s − dlj

( )

+ dlj/2Bj
r Bj

r − dlj
( )

a/S + 1/S dlj/2B
j
s B

j
s − dlj

( )

+ dlj/2B
j
r B

j
r − dlj

( )( )

≤ S

(15)

where a = d/Bj
s

( )

+ d/Bj
r

( )

+ d/B
j
trans

( )

. Notice that, for the
convergence performance, we prove the FedPGA through
empirical experiments in Section 4.

4 Performance evaluation

4.1 Experiments setup

4.1.1 Datasets and models: We use datasets and models from
LEAF [29], an open-source benchmarking framework for federated
settings, including six tasks. We summarised the statistics of datasets
in Table 1. Additional details on the models and datasets are
presented as follows:

† Federated extended MNIST (FEMNIST): We study an image
classfication problem on EMNIST dataset [30], which has
62-class. The federated version of EMNIST, called FEMNIST,
split the dataset into different workers, i.e. each worker has a
corresponding writer of digits/characters in EMNIST. We create
the FEMNIST dataset in LEAF by using command./
preprocess.sh -s iid –sf 0.05 -k 100 -t sample –

tf 0.8. The model used takes as input a 28× 28 image,
followed with two convolution layers and two dense layers, and
the output is a class label between 0 and 61.
† Synthetic: We create a diverse set of synthetic datasets, with
different task numbers, class numbers, and worker numbers. This
dataset follows a similar set up in [1, 31]. The logistic regression
model takes as input a 60 dimension feature. (i)
Synthetic-C5-W40: We generate the whole dataset with 1000
tasks, and sample the dataset using command./preprocess.sh
-s iid –sf 1.0 -k 5 -t sample –tf 0.8 -iu 0.001, to
have a 5 prediction classes model and 40 workers dataset. (ii)
Synthetic-C5-W80: We generate a 5 prediction classes model and
80 workers dataset.

4.1.2 Experiment implementation details:

† Hardware device: We simulate the distributed federated learning
(each device performs local training and aggregation) on a server
with 2 Intel(R) Xeon(R) E5-2650 v4 @ 2.20 GHz CPUs and 4
Nvidia 1080Ti GPUs.
† Libraries: We implement all code in TensorFlow 1.14.0. The full
details could be found at https://github.com/ginger0106/BACombo.
† Hyperparameters:We split each dataset randomly on each worker
into 80% training set and 20% testing set. The learning rates for all
the datasets are 0.004; the batch sizes for all the datasets are 10. For
the FedPGA, the default number of slices S is 8, Each worker uses
SGD as a local solver, and the default number of mibi-batch SGD
t is 16. The bandwidth capacity of each worker is set to
100Mb/s. The link bandwidth (Mb/s) among workers are
uniformly sampled from 0.2, 0.4, 0.8, . . . , 7.8, 8{ }.

4.1.3 Baselines: We compare FedPGA with several baselines
distributed federated learning methods:

† Gossip:Gossip is a distributed version of FedAvg, i.e. each device
act as an aggregation server and a local update worker at the same
time. At each communication round, each device randomly
samples S peer workers and pull the complete model weights, then
conduct the weight averaging using updates transmitted and local
updates as FedAvg.
† GossipPGA: GossipPGA is a special case of FedPGA. At each
communication round, each device randomly samples S peer
devices and pull S complete t-Difference Gradients, then merges
them using the weighted averaging method as Definition 2 and
conducts the ‘Adam-like’ adaptive updating.

4.1.4 Metrics:

† Time: To evaluate the convergence speed, we measure the average
time to achieve 75% accuracy of all devices, which consists of local
training time, updates (model weights, gradients, partial gradients)
synchronising time, and updates transmission time.
† Accuracy: We also measure the average test accuracy of all
devices at each synchronising iteration.

4.2 Experiment result

We now present the empirical results for FedPGA, we first
investigate the performance of convergence of our proposed
approach and compare the end-to-end convergence speed with
other baselines, and demonstrate the superior performance of
FedPGA. Then we present the impact of hyper-parameters in
FedPGA.

4.2.1 Convergence property: We first investigate the
performance of convergence about FedPGA compared with
baselines. We present the whole training process over time, as
illustrated in Fig. 5, FedPGA shows a good convergence
performance as the traditional methods, FedPGA will convergence
at the same test accuracy (78, 83, and 84%, respectively) among
all the datasets (FEMNSIT in Fig. 5a, Synthetic-C5-W40 in
Fig. 5b and Synthetic-C5-W80 in Fig. 5c, respectively) At the
same time, FedPGA exhibits an obvious speedup (14× , 13× ,
and 13× , respectively, compared to Gossip) in the convergence
among all the datasets (FEMNSIT, Synthetic-C5-W40, and
Synthetic-C5-W80) as shown in Fig. 5d.

Compared with the Gossip and GossipPGA, we could find that the
adaptive updating method could increase the convergence rate by
(1.7× , 1.5× , and 1.4× , respectively, compared to Gossip)
among all the datasets (FEMNSIT, Synthetic-C5-W40, and
Synthetic-C5-W80) while the partial exchange could reduce the
communication latency significantly (8.2× , 8.5× , and 9.3× ,
respectively, compared to GossipPGA). As we discussed in

Table 1 Statistics of datasets

Dataset Workers Param. Samples/worker

Mean Std

FEMNIST 35 26,414,840 1144.89 392.77
Synthetic-C5-W40 40 1220 2688.82 0.38
Synthetic-C5-W80 80 1220 1344.41 0.49
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Section 3, the theoretical speedup ratio in reducing communication
bottleneck is less then the slice number, while the real end-to-end
latency speedup is larger then slice number may be caused by the
larger convergence rate aggregating more partial gradients.

4.2.2 Impact of partial numbers: The speedup of decentralised
approaches comes from the removal of the bottleneck of the
centralised server, and the advantage of FedPGA comes from the
benefit of partial exchange. We measure convergence time with a
different partial number of gradients S (S [ 2, 4, 8{ }) to
investigate how it affects the training performance. Figs. 6a–c
show that the accuracy of the partial results at each
synchronisation iterations is not affected by the partition at all.
Partitioning the model into eight slices (S = 8) has the same
convergence trend as that without partition. While the
synchronisation time is significantly reduced. As illustrated in
Fig. 6d, by simply splitting the gradients into four slices can
reduce the synchronisation time by half. This is because when
S = 4, the original transmission quantity is divided into two parts
and fed into 2× more links. When the bandwidth is not

exhausted, the sending and receiving time can be reduced almost
proportionally.

4.2.3 Impact of number of local training passes: In this
section, we investigate the impact of the number of local training
passes. The t is the number of local training passes. From
Figs. 7a–c, we could observe that a larger number of local training
passes could speed up the convergence, for instance, when t = 16,
the time to achieve milestone accuracy is reduced by 1.7× ,
4.7× , and 4.9× , respectively, compared to t = 2 among all the
datasets (FEMNSIT, Synthetic-C5-W40, and Synthetic-C5-W80).

From Fig. 7a, we could observe that the accuracy shows a slight
fluctuation when t is small, especially in the bigger model. It is
because the direction of t-Difference Gradients is not stable when
t is too small, leading to the accuracy degradation in the training
process.

4.2.4 Impact of the learning rate of adaptive
updating: Since a in (9) sets magnitude of steps in parameter
space in Adam, we investigate the learning rate a of adaptive
updating as shown in Fig. 8. We could observe that different a

Fig. 5 Convergence property

a FEMNIST

b Synthetic-C5-W40

c Synthetic-C5-W80

d Convergence time

Fig. 6 Impact of partial numbers

a FEMNIST

b Synthetic-C5-W40

c Synthetic-C5-W80

d Convergence time

Fig. 7 Impact of number of local training passes

a FEMNIST

b Synthetic-C5-W40

c Synthetic-C5-W80

d Convergence time
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affect the convergence rate greatly. The larger a means a larger
effective step-size, which leads to non-convergence or accuracy
fluctuations. In Fig. 8a, when a = 0.1, the model does not
converge at all, and when a = 0.01, it shows a great fluctuations
in the accuracy curve. While the model of synthetic datasets is
small and easy to train, the a affects the convergence slightly,
especially when a = 0.01 and a = 0.001. However, when the
number of participants becomes larger, a large step-size will bring
more noise, resulting in worse convergence.

5 Conclusion

To avoid the drawback of network congestion in centralised
parameter servers architecture in real-world federated learning
scenarios, we explore the possibility of decentralised FL solution,
called FedPGA. Taking the insight of philosophy in Adam, we
design an adaptive model updating strategy. Our method also
reduces the communication overhead by exchanging the partial
gradient. The experiments show that FedPGA significantly reduces
the training time and maintains a good convergence performance.
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