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Abstract: With the development of network services and location-based systems, many mobile applications begin to use

users’ geographical location to provide better services. In terms of social networks, geographical location is actively

shared by users. In some applications with recommendation services, before the geographical location

recommendation is provided, the authors have to obtain user’s permission. This kind of social network integrated with

geographical location information is called location-based social networks (abbreviate for LBSNs). In the LBSN, each

user has location information when he or she checked in hotels or feature spots. Based on this information, they can

identify user’s trajectory of movement behaviour and activity patterns. In general, if there is friendship between two

users, their trajectories in reality are likely to be similar. In this study, according to user’s geographical location

information over a period of time, they explore whether there exists friendly relationship between two users based on

trajectory similarity and the structure theory of graphs. In particular, they propose a new factor function and a factor

graph model based on user’s geographical location to predict the friendship between two users in the real LBSN.

1 Introduction

The rapid development of the Internet in recent years has promoted
the emergence of various location-based services, which provide
users with more personalised recommendation services based on
their geographical location information, such as food delivery, taxi
hailing, travel etc. More location-based services begin to request
users’ location information directly or indirectly to improve their
experience. Private data protection [1] should not be neglected and
become an important problem of personal privacy security. There
are some research work [2, 3] relevant on private data protection
and some of these techniques have been applied to real-world
systems. The privacy security of mobile devices is related to the
interests or habits of each end user, and the approaches proposed
in [4, 5] on the security of private information have been paid
more attention in recent years. The information shared by these
mobile devices facilitates a plenty of social research. In social
networks, users often share logs or photos having location
information in their social communities, and the friends sharing
their everyday activities are more likely to be in the same position
[6–8], that is to say, everyday interactions between friends make
their activity area have intersection which will partially reflect the
correlation of their locations, i.e. trajectory similarity [9, 10]. If we
can discover the connections of friends from their location
information, then we can improve the accuracy of existing link
prediction algorithms [11], to enhance the performance of
recommendation systems.

Currently, several studies based on location-based social network
(LBSN) are applied to recommendation system, among which the
research on friend suggestion system [7, 12] often clusters users’
home, work, restaurants and other central locations according to
their location information and check-in records, which aims to
calculate the similarity of check-in locations between two users.
In addition, the author described the types of locations via
information entropy [13], and then treated the intersection of

locations with respect to two users as the similarity between users.
Li and Chen [14] employed the method of multi-layer network
combination to combine more information into the network to
build a friend model. Other state-of-the-art recommendation
[15–17] models do not explore the connection between users’
location information. For example, the model proposed by Bagci
and Karagoz [15] combined users’ historical location and current
location for the recommendation, which is helpful for improving
the user’s experience. Most link prediction methods focus on the
importance of location to visitors, ignoring the strength [18, 19] of
the relationships between those visitors. The drawbacks of these
approaches lie in that: they are lack of extensibility, and each
approach does work in a specific area. In addition, relevant
research generally retrieve features [12, 20, 21] from geographical
location information without taking into consideration the
correlation between location information. Since different networks
have different characteristics, we need to find the connections
of users’ geographical locations in the LSBN, and this connection
is also applicable to most LBSN, that is to say, the model
established based on connections between users is scalable in
the LBSN.

The factor graph model is a probability graph model, which plays
a very important role in link prediction. Tang et al. [22] and Cen
et al. [23] proposed a partially labelled pairwise factor graph
model, where the relation prediction method not only obtains good
performance but also has good scalability. However, for LBSN,
the geographical location information shows the similar behaviour
of users. In this study, the relationship between users will be
extracted to build as a factor function, and we design a factor
graph model to predict whether there is friendly relationship
between two users.

Original contributions: The main contribution of this study is that
we propose a friendly relationship learning and prediction model
based on geographical location information and factor graph
model in LBSN. In the proposed model, the geographic location
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information contained in these social networks is retrieved from
user’s trajectory data in LBSN, and the factor function is
established based on the similarity of trajectories to learn these
features. In addition, we use two real data sets in experiments, i.e.
Brightkite and Gowalla, and the results show that our proposed
model outperforms the state-of-the-art classification methods.

The rest of the paper is organised as follows. Section 2 introduces
the problem statement and graph theory. Section 3 presents the
calculation method, the definition of trajectory similarity and the
analysis of trajectory similarity in the factor graph with multiple
correlation. Section 4 gives the theoretical fundamentals of the
factor graph and the learning and prediction phases in the factor
graph. Section 5 shows the experimental results of the proposed
model by comparing it with other methods. Lastly, Section 6
concludes this paper and discusses the relationship prediction
approach in machine learning.

2 Problem formulations

Generally speaking, we define a user in the social network as a node
v in the graph, and the relationship between users is defined as an
edge e in the graph, where e [ v× v. Therefore, a social network
is described by G = (V , E), where V and E represent the set of
nodes and edges in the network, respectively. In addition to these
two basic components, different heterogeneous networks include
other additional information. For example, there are many
unlabelled nodes EU in social networks, and each node v has a
different parameter x. Based on the aforementioned concepts, we
give the definition of social networks.

Definition 1: [Partially labelled attribute location-based networks]
In this network, only partial nodes are labelled, and each node
contains five-tuple attribute information, the network is denoted by
G = (V , EU, EL, RL, C, X ), where EL represents a tagged edge set
which is associated with RL, E = EL

< EU, C represents the
location information retrieved from users’ check-ins, and X is a
property matrix associated with the set of users V, in which each
row corresponds to a user, and each column is an attribute, one of
the elements xid in X denotes the dth attribute of user vi.

From the above definition of a graph, we can further formulate the
problem. For predicting the friendship of users in LBSNs, given a
partially labelled attribute network, the prediction of friendship in
the network can be defined by the following function:

f :G = V , EL, EU, RL, C, X
( )

� Y (1)

where Y is the output set of friendship which is predicted by the
proposed model, and we can predict the tag type yi of all E

U.
Presently, most of the research studies on relationship mining in

LBSNs aim to collect more features and improve the classification
accuracy by proving that this information is more effective and
valid. However, most of the existing approaches do not have good
expansibility and cannot be applied to LBSNs.

The check-in information of users is uploaded over a period of
time and the users’ location information is very limited, for
example, 1145 users uploaded less than five location information
in Brightkite, while the complete information is 221. Therefore, to
balance the number of trajectories between users, all uploaded
location information is grouped by day, and then partitioned into
time slices. The time of one day from 0:00 AM to 24:00 PM is
divided into h time periods for location merging.

Definition 2: [Users daily activity trajectory] To distinguish between
weekdays and weekends, these two kinds of trajectories are
collected, respectively. The definition is given as follows:

Tritype = {L1, L2, . . . , Lh}, i [ V , type [ {work, week} (2)

3 Trajectory similarity measurement and
multivariate correlation analysis

There are many geographical correlations between users, such as
the distance [24] between home, work, restaurant and so on.
However, trajectory similarity [25] can best reflect the relationship
between users, because the activity trajectories of users with a
close relationship will affect each other, and their activities have
similarity, including working, entertainment and eating. The
similarity of the trajectories of the user’s social activities was high
between two users who are friends. Then, we show how trajectory
similarity is measured, and then explore the distribution of binary
and ternary similarity.

3.1 Trajectory similarity measurement

Each person has his or her own activity trajectory every day, and
there are certain similarities between people who are close to
each other [26]. Therefore, the measure of similarity is of great
help in determining the relationship between two persons. The
trajectory measurement approaches can be divided into several
categories, such as common point-based measurement methods
edit distance on real sequence (EDR) [27], LCSS, DTW etc. In the
shape-based method, Frechet distance [28] is often applied. In the
point-based measurement method, EDR not only considers
the influence of noise, but also the common substring. For the
activity trajectories of two users, when the distance of users with
respect to a point is less than a threshold, we can regard this point
as a point in a mutual sub-trajectory, which is a similar trajectory
point.

In regard of the LSBN data, Gowalla and Brightkite have
thousands of check-in records of users and it is time consuming to
calculate the similarity of trajectories. In terms of trajectory
modelling, Mazumdar et al. [29] proposed a method to use
entropy matrix to model the user’s historical data. Generally
speaking, the activity trajectory of weekday users is mostly the
same, while the trajectory of weekend users are often different.
Therefore, before measuring similarity, we need to retrieve the
user’s trajectories. The weekday trajectory is the general activity
track, denoted by Trwork, and the weekend track is expressed by
Trweek. In addition, noise [30] may appear in the user’s trajectory,
which shows a big bias in latitude and longitude. So, in this study,
the data satisfying d(xi, xmean) . v are removed. In the phase of
trajectory sampling, a position mean value in a certain interval is
viewed as the representative point during this period. It is
worthwhile to note that in a certain period of time, the user’s
behaviour is mostly the same. For example, before 8 AM, the user
is likely to be at home, from 8 AM to 12 PM and from 14 PM to
18 PM, the user is likely to be at work. From 12 PM to 14 PM
and from 19 PM to 24 PM, and the user is likely to be in a
restaurant or outdoors. Based on the above discussion, we should
take into full consideration these factors in the phase of trajectory
sampling. After both trajectories of two users are obtained, the
similarity of their trajectories can be calculated based on the EDR
(edit distance on real sequence) similarity algorithm given as
follows.

Definition 3: [Edit distance on real sequence(EDR)] Given two
trajectory sequence of moving objects Q = {q1, q2, . . . , qm} and
R = {r1, r2, . . . , rn}, Sim(Q, R) is used to recursively calculate
whether each point in the sequence is similar to the others, it is
defined as follows:

Sim(Q, R) = min

Sim(Rest(Q), Rest(R))+ subcost,

Sim(Rest(Q), R)+ 1,

Sim(Q, Rest(R))+ 1

⎧

⎪

⎨

⎪

⎩

(3)

where m = 0 or n = 0, Sim(Q, R) = n or m, , m and n represent the
lengths of the sequences Q and R, respectively, Rest(Q) and Rest(Q)
indicate that pointers in the sequence Q and R move back one bit,
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i.e. Rest(Q) = {q2, q3, . . . , qm}, and subcost is formalised as
follows:

subcost =
0 if Dist(Head(Q), Head(R)) , e

1 otherwise

{

(4)

where Dist(Head(Q), Head(R)) is the actual distance between the
first point of Q and R. If Dist(·) is less than e, we view it as 0.
When we calculate the trajectory similarity of users, we will
calculate the similarity of the two trajectories by the following
equation:

Sim(Tri, Trj) = min (Sim(Triwork, Tr
j
work), Sim(Triweek, Tr

j
week)).

(5)

EDR can reduce noise points by quantifying distances to 0 and 1, and
edit distance can improve the local time behaviour, especially if local
time-shifting is not a big deal. The EDR results may be biased when
local time trends are large. To make the result more accurate, we can
calculate the similarity after normalising the trajectory.

As shown in Fig. 1, in terms of two LBSNs, with the improvement
of trajectory similarity, the probability of friendship between these
two users will also increase. However, in the actual case, the
proportion after estimating the similarity of trajectories is greater
than 4 is very small.

3.2 Multivariate correlation analysis

Here, we will introduce the binary and ternary associations [31]
based on the trajectory similarity algorithm in Section 3.1, and
analyse the similarity distribution under different relationship
combinations.

In the network, we call the common connection of two edges of
the same user as a binary relationship [31]. Another special
structure is that three users form a triangle relationship, which is
regarded to a basic ring. Because there are three relationships, a
factor is often used to represent them in a factor graph, which is
viewed as a ternary relationship. Different edges in these
combinations may have different similarity, so we can statistically
analyse the distribution under different relationships and different
combinations of similarities. From the distribution of similarity
and friendship probability shown in Fig. 1, with the increase of
similarity, the probability of friendship also increases significantly.
Binary and ternary relationship in a factor graph is given in Fig. 2.
We use the functions h(·) and g(·) to represent the factor functions
of binary and ternary correlations, and we treat the trajectory
similarity as the measurement to establish the features under
different relationship combinations.

As shown in Fig. 3, the similarity distribution of the two edges
with respect to a random node is different from the distribution of
friend nodes. With regard to the Brightkite data, the similarity
distribution of the edges with a friendly relationship aggregates

mostly around 3, while the similarity distribution of the randomly
combined edges is mostly around 1, having a difference of 2. For
the Gowalla data, the similarity of friends is obviously higher, and
the random edges also concentrate, with a gap of 3. In terms of
binary relation, the similarity of two edges is used to calculate the
difference, which can show the difference in the similarity of two
edges. In terms of ternary relation, the difference of three
similarity combinations are calculated, respectively, and their mean
values are used to represent the feature.

4 New trajectory similarity factor graph model

The proposed model is based on the track similarity relationship of
users in the network mined on LBSN, and the factor function is
established and added into the factor graph model based on the
geographical location characteristics. Before we input the original
network into the model, we need to transform the original
node-oriented network into an edge-oriented network. The nodes
of the binary relationship in the original network are represented
by a binary factor node. In addition, we need to add a triple factor
function to the ternary relationship. In the proposed model, the
factor functions used by binary and triadic factor nodes use the
trajectory information of the adjacent nodes, while node vi
contains the tag information and attribute feature vectors. Then, we
propose the global probability distribution of the factor graph
model as follows:

p(Y |G) =
1

Z

∏

ei

f (yi, xi)
∏

^ij

h(yi|Si, yj|Sj)

×
∏

Dijk

g(yi|Si, yj|Sj, yk |Sk),

(6)

where f (yi, xi) is the factor function associated with edges in the
network. In a factor graph, each node is connected with an
independent factor node. yi in the function represents the type of a
tag, and xi is the attribute corresponding to the node, so the factor
function represents the functional relation between the node feature

Fig. 1 Trajectory similarity of Brightkite and Gowalla, where the x-axis

represents similarity calculated by (5)

Fig. 2 Binary and ternary relationship in a factor graph

Fig. 3 Similarity of trajectory correlation. The x-axis represents different

EDR. We randomly select nodes to calculate similarity of users’ trajectories
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and the tag. The function h(yi|Si, yj|Sj) represents the functional
relation between trajectories of three users in a binary relationship,
and only the similarity of two pairs of users is compared.
The trajectories of users can be partitioned into weekdays
and weekends. Additionally, the function g(yi|Si, yj|Sj, yk |Sk)
represents the relation between the trajectories of three users in
a ternary relation, but we need to compare the trajectories of
three pairs of users. In the factor graph, the total probability
distribution can be figured out by the product of each factor
function. In (7), Z represents the normalised constant which is
defined as follows:

Z =
∑

Y

∏

ei

f (yi, xi)
∏

^ij

h(yi|Si, yj|Sj)
∏

Dijk

× g(yi|Si, yj|Sj, yk |Sk )

(7)

Equation (7) is used to calculate the normalised factor of the global
distribution in a factor graph, which can be derived from the
normalised factor of each function in the global distribution. These
normalised factors are used to express the calculation results as a
probability in the phase of probability calculation.

The definition of the factor function in the factor graph is very
important. We define two different factor functions based on the
similarity of trajectories. Here, we will define the factor function in
detail.

The factor function is defined as follows. First, it is the factor
function f (·) which is independent of node and represents the
relation between the node attribute and the relation tag:

f (yi, xi) =
1

Zl
exp lTf(yi, xi)

{ }

, (8)

where Z is also a normalised constant, lT represents the parameter
vector with the same dimension as xi. The function f(yi, xi) is an
attribute vector function associated with the label yi. In (9), F
represents the friendship label and S represents the stranger label
(not friends). Equation (9) implies that the basic feature of a node
is represented by a vector, which is used for the point product
calculation with the parameter vector

f(yi, xi) = 1yi=Fxi, 1yi=Sxi

( )T

, (9)

The factor function h(·) in the binary relation represents the relation
between two adjacent nodes with real values having the trajectory
similarity. There are three users in the binary relation, so there are
three trajectories. Here, only the relation between these two
similarity conditions and the label y of the node is considered,
which are yi|Si and yj|Sj, respectively. According to the
aforementioned trajectory similarity measurement function, the
factor function can be formulated as follows:

h(yi|S(i), yj|S(j)) =
1

Za
exp aT

h(yi|S(i), yj|S(j))
{ }

(10)

where aT is used to represent a parameter vector, and a new function
h(·) is used to obtain the new vector associated with the node label
and trajectory similarity. After multiplying these two equal
dimensions, a new function distribution is formed by using the
power function e. As for the function h(·), the detail is given as
follows:

h(yi|S(i), yj|S(j)) = w(yi, yj) ·H(S(i), S(j))T (11)

where function w(·) generates a vector for the combination of labels,
so dimw(·) = dim Y 2. The notation abs(S(i)− S(j)) is taking the

absolute value. w(·) can defined as follows:

wa,b(yi, yj) =
1 yi = Y a, yj = Y b;

0 otherwise,

{

(12)

where a and b represent the labels of two nodes, which means that
when nodes are labelled Y a and Y b with a valid value at the
corresponding position of the vector. Equation (12) represents the
characteristics of the node label combination.

S(·) in (11) and the previous equation represents the
trajectory similarity of the users on both sides, and S(·) is defined
as follows:

Sa,b(i) = Sim Tra, Trb
( )

(13)

where Sim Tra, Trb
( )

is used to calculate the similarity of trajectories
Tra and Trb. We define a threshold value 1, when the similarity is
greater than 1, we consider them to be similar, and then we assign
a valid value. Actually, the setting of this threshold will affect the
experimental results. An appropriate value can be found by
analysing different algorithms through experiments.

Similar to the definition of the factor function of the binary
relation, the definition of the ternary relation takes into account the
third user’s trajectory and the label of an newly added edge, so the
dimension of the parameter vector is not the same as that of
the binary relation. The detailed definition is given as follows:

g({yv|S(v)}) =
1

Za
exp {bT

g({yv|S(v)})}

=
1

Za
exp bT 6({yv})

T
· G({S(a)})

( ){ }

(14)

where v [ {i, j, k} and the function G(·) in the above equations are
defined as follows:

H s({S(v)}) =
1 abs(S(i)− S(j)) = s;

0 otherwise,

{

(15)

Gs({S(v)}) =
1 min (S(i), S(j), S(k)) = s;

0 otherwise,

{

(16)

Equations (15) and (16) indicate the generation of features based on
trajectories’ similarity, which means that we set the constant value 1
at the corresponding position in the vector. These two factor
functions represent the non-linear feature representation of the
similarity of the input. In reality, the number of parameters defined
in a factor graph is directly related to the number of labels and the
range of similarity.

Model learning: In the factor function, we define a parameter
vector for each factor function, that is, (l, a, b). In the phase of
model learning, we need to learn these parameters, so here we use
the maximised logarithmic similarity function to calculate the
gradient of the parameters. For relationship nodes with labels

O(l, a, b) = log p Y L
|G

( )

= log
∑

Y |YL

p(Y |G) (17)

To facilitate understanding, we define the parameter as follows:
u = {l, a, b}

s(yi) = (f(yi, xi), h(yi|S(i), yj|S(j)),

× g(yi|S(i), yj|S(j), yk |S(k)))
T

(18)
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So we can redefine joint probability of (6) as follows:

p(Y |G) =
1

Z

∏

i

exp uTs(yi)
{ }

=
1

Z
exp uT

∑

i

s(yi)

{ }

=
1

Z
exp uTS

{ }

(19)

Put (19) into (17) to obtain that:

O(u) = log p Y L
|G

( )

= log
∑

Y |YL

1

Z
exp uTS

{ }

= log
∑

Y |YL

exp uTS
{ }

− log Z

= log
∑

Y |YL

exp uTS
{ }

− log
∑

Y

exp uTS
{ }

(20)

So here we can use the gradient descent method to solve this
function. Firstly, we need to take the partial derivative of this
log-likelihood objective function. Here, we solve the parameter u
and the following equation can be obtained:

∂O(u)

∂u
=

∂ log
∑

Y |YL exp uTS
{ }

− log
∑

Y exp uTS
{ }

( )

∂u

=

∑

Y |YL exp u
TS · S

∑

Y |YL exp uTS
−

∑

Y exp u
TS · S

∑

Y exp u
TS

= E p
u
Y |YL ,G( )S − E p

u
(Y ,G)S

(21)

where E p
u
Y |YL ,G( )S is the expectation if the graph is labelled, and

E p
u
Y ,G( )S is the expectation if the label is unknown. So, we need

to calculate the global distribution of the factor graph with and
without labels. The expectation given in (21) is the key step to
calculate each parameter’s gradient in the learning process, so we
need to calculate the probability distribution of each node with and
without labels in order to figure out the expectation.

An efficient method for calculating the probability distributions in
factor graphs is loopy belief propagation (LBP) [31]. In the phase of
learning, LBP is used to calculate the probability distribution and
marginal probability of (Y |Y L, G) with labels, and then (Y , G)
without labels. The first propagation of the message is different in
the above two cases. In the first round of calculation, the gradient
can be fuzzy and the parameters can be uniformly initialised.
When the message propagation in LBP runs after a finite number
of iterations, the probability distribution tends to be stable. When
the change of gradient becomes smaller and less than a threshold,
the algorithm converge, then we can calculate the marginal
distribution of each node.

Inferring unlabelled friendly relationships: In the learning
process, after a certain number of iterations, the algorithm
converges, the unlabelled node V can be predicted based on the
parameters u obtained in the phase of training according to the
maximum and propagation algorithm by the following equation:
Y ∗

= argmaxY |YL p(Y |G, u).

5 Experiment

5.1 Datasets

In this study, we use two real location-based services network data,
i.e. Brightkite and Gowalla. These two data sets also include a large
amount of check-in data besides the basic edge and node
information. The description of these two data sets are given as
follows:

Gowalla – the data set contains 196,591 nodes, 950,327 edges,
and 6442,890 check-in data corresponding to each user.

Brightkite – the data set contains 58,228 nodes, 214,078 edges,
and 449,1143 check-in data for each user.

We compared the predicted results with the edge provided in the
data where two users are ground-truth friends. The negative samples
in the data set are generated by using the random sampling method,
and the actual connections are established in the network and
labelled. In the phase of sampling, we try to balance the number
of positive and negative samples, but in the real network, negative
samples will not be labelled.

5.2 Comparison methods

Inferring the friendship relation can be regarded as a classification
problem, so we use the commonly-used classification methods,
such as SVM and LP [32]. In experiments, we extracted many
topological features and geographical location features for
classification. Topological features include common neighbours
(CNs), Degree, JC, PA etc. Geographical location features mainly
include distance and trajectory similarity of three representative
locations (home, work and restaurant). As for the effectiveness of
these special detection, Bayrak and Polat [33] gives a detailed
description of the link prediction on the LBSN. Some of the
attributes are given as follows (Table 1):

SVM: This is a supervised learning method. The data set is
partitioned into the training set and testing set. SVM uses the
attribute vector xi of each relational label to train the model, and
its decision boundary is the maximum-margin hyperplane to
classify the learning samples. The learned parameters are used for
quantitative classification. We implemented this algorithm by
using the SVM-light package. We mainly focused on the penalty
factor C and g in SVM. In the phase of training, we tested each
parameter with the grid search method to determine the optimal
parameter values. In addition, we used ten-fold cross validation to
group the data sets for training to avoid overfitting.
LP: is a semi-supervised learning. Label propagation (LP) [32]
spreads labels based on proximity to the relation. Using the
relation between samples, a complete graph model is established,
which is suitable for undirected graph. Each node label is
propagated to the adjacent node according to trajectory similarity.
At each step of node propagation, each node updates its label
according to the label of its adjacent node. In the phase of LP,
keep the label of labelled data unchanged so that it can transmit
the label to unlabelled data. Lastly, when the iteration terminates,
the probability distribution of similar nodes tends to be similar and
can be grouped into a class. LP does not require tuning parameters
because the phase of LP is based on the network structure. In
order to obtain the best classification results, the edge weight is
specified according to the topological similarity and is used to
distinguish the propagation priority.
The proposed method (TS-FGM): Our proposed model on factor
graphs includes binary and ternary factors. In addition, we
combine the factor graph model with the common binary and
ternary factors, which is called the multivariate correlation factor

Table 1 Summarisation of the attributes used in the basic classification
method and our model. where u and v represent nodes, and the
neighbours of node u are represented by G(u)

Attribute Equation Example

CN Fu,v = G(u)< G(v) CommonFriend_ Fu,v
[ ]

degree Du = count(G(u)) Degree_U_ Du

[ ]

— Dv = count(G(v)) Degree_U_ Dv

[ ]

JC Ju,v =
|G(u)> G(v)|

|G(u)< G(v)|
JaccardsCoefficient_ Ju,v

[ ]

PA pu,v = |G(u)| · |G(v)| PreferenceAttachment_ Pu,v

[ ]

TS Su,v = Sim(Tru , Trv ) TrajectorySimilarity_ Su,v

[ ]

Dist(home) Dh
u,v = Dist(Lhu , L

h
v ) DistanceHome_ Dh

u,v

[ ]

Dist(work) Dw
u,v = Dist(Lwu , Lwv ) DistanceHome_ Dw

u,v

[ ]
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graph model (MC-FGM). By comparing the effectiveness of the two
methods as factor functions, it is proved that the proposed similarity
multivariate correlation can achieve better results in LBSN. In
experiments, we only divided the data set into training set and
testing set. We do not use the cross-validation method, because the
data used in a factor graph is a complete network and the phase of
calculating the probability distribution is based on the information
transferred between nodes. The learning and prediction processes
of these two methods are similar. In the phase of gradient descent,
the proposed methods will predict the unknown labels in each
iteration of calculation. The parameter gradient can be as small as
possible after convergence. We use the method of dynamically
changing the step size to make the models converge fast. The
definition of the factor function of MC-FGM is similar to (10),
which is given as follows:

h(yi, yj) =
1

Za
exp aTw(yi, yj)

{ }

(22)

g({yv}) =
1

Za
exp bT 6({yv})

( ){ }

(23)

5.3 Performance analysis

5.3.1 Accuracy performance analysis: According to Table 2,
the proposed TS-FGM method has a great improvement in the
prediction accuracy by comparing with SVM, achieving around
24% improvement in Brightkite data set and 15% improvement in
Gowalla data set, respectively. When compared with the LP
method, the precision is improved by about 7%, and the prediction
accuracy of positive and negative samples is also higher than that
of LP. The method MC-FGM is a simplified version of TS-FGM,
where the similarity of trajectories is not taken into account in
feature extraction. In general, no more features are generated for
multivariate correlation. In terms of the prediction performance,
the TS-FGM method still improves the accuracy by about 5%
compared with the MC-FGM method. In the Brightkite as well as
the Gowalla datasets, the predicted performance of the Brightkite
data was generally superior to that of Gowalla. According to the
topological analysis of these two networks, the topology structure
of Brightkite is more complex than that of Gowalla, so there are
more multivariate correlations, e.g. ternary correlations. The best
prediction accuracy value of our method in Gowalla reached to
88.75%. In contrast, the performance of SVM is the worst and LP
was stable.

5.3.2 Factor contribution analysis: In the section, we will
analyse the factor contribution and we analyse the predictive
performance of the model by removing certain factors and
combining some factor functions. As shown in Table 3, we added
three factor functions one by one to compare the prediction
accuracy. We can see that the prediction accuracy is very low with
only attribute feature factor functions, and the prediction
performance is greatly improved by adding the binary correlation
factors in both data sets, i.e. Brightkite( + 6%) and Gowalla
( + 10%). According to the performance by adding ternary factors
in these two data sets, the ternary correlation in Brightkite data
greatly improved the prediction accuracy, making the prediction

results reach to 93.65%, but the improvement in Gowalla was less
obvious than that in binary correlation. In summary, the proposed
similarity factor does play an important role in prediction.

5.3.3 Analysis of feature function: In terms of our proposed
factor function, H(·) and G(·) are used to represent the similarity
feature functions under binary and ternary correlations,
respectively. Generally speaking, the feature function needs to
express two input variables as a valid feature value. In our model,
we used the definitions of these two feature functions that can
achieve the best prediction results.

According to Fig. 4, the feature functions of the binary
correlations performed the best for ‘abs’ (absolute value of
difference in {Su, Sv}), where Si(i [ {u, v}) represents the
trajectory similarity between two users in both Brightkite and
Gowalla, and better for ‘min’ (minimum value in {Su, Sv}) than
for ‘max’ (maximum value in {Su, Sv}) and ‘abs’ in the ternary
association. It is worthwhile to note that we can also use the
Sigmod function to define the threshold to represent features if we
do not consider the time complexity.

6 Conclusion

In this paper, we mainly studied how to extract users’ geographical
location connections and build a model to predict the friend
relations in social networks based on the hidden information and
factor graphs, and we conduct experiments on two real LBSNs,
i.e. Brightkite and Gowalla. The cardinality of Gowalla data is five
times that of Brightkite, so we used a sampling method for
Gowalla to remove most nodes with no check-in information and
the ones with very little information. Based on trajectory
similarity, we studied the representation of binary and ternary
network associations. Based on these preliminaries, we propose
the TS-FGM model. According to the experimental results, our
method is better than other classification algorithms in predicting
accuracy. In terms of efficiency, Gowalla has a larger number of
data, which is time consuming. In our future research, we will
focus on reducing the time complexity of the message propagation
process in the factor graph [23]. In addition, our experiment has
also proved that the location information is indeed effective in
improving the accuracy. So, if we can extract more effective

Fig. 4 Prediction performance of binary and ternary correlation factor

functions on different datasets

Table 3 Contribution of different factor functions in prediction
accuracy (%)

Dataset Factors used Pre. Rec. F1 Acc.

Brightkite Attributes 81.06 54.04 64.85 77.34
+TS|Binarycor. 85.11 55.25 66.94 83.03( + 6%)
+TS|Ternarycor. 91.53 56.88 70.16 93.65( + 10%)

Gowalla Attributes 78.64 61.71 69.16 75.97
+TS|Binarycor. 85.37 62.35 72.06 85.70( + 10%)
+TS|Ternarycor. 87.35 62.08 72.57 88.78( + 3%)

Table 2 Performance of friend prediction with different approaches (%)

Data set Method Precision Recall F1 Acc.

Brightkite SVM 70.43 54.98 61.76 66.54
LP 84.91 55.25 66.94 83.03

MC-FGM 85.84 56.01 67.79 85.12
TS-FGM 91.53 56.88 70.16 93.65

Gowalla SVM 74.84 64.36 69.20 73.06
LP 82.93 59.57 69.33 79.41

MC-FGM 84.04 59.86 69.92 81.24
TS-FGM 87.35 62.08 72.57 88.78
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location information, we can further improve the performance of the
proposed algorithm.
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