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Abstract: The unmanned warehouse dispatching system of the ‘goods to people’ model uses a structure mainly based on

a handling robot, which saves considerable manpower and improves the efficiency of the warehouse picking operation.

However, the optimal performance of the scheduling system algorithm has high requirements. This study uses a deep

Q-network (DQN) algorithm in a deep reinforcement learning algorithm, which combines the Q-learning algorithm,

an empirical playback mechanism, and the volume-based technology of productive neural networks to generate target

Q-values to solve the problem of multi-robot path planning. The aim of the Q-learning algorithm in deep reinforcement

learning is to address two shortcomings of the robot path-planning problem: slow convergence and excessive

randomness. Preceding the start of the algorithmic process, prior knowledge and prior rules are used to improve the

DQN algorithm. Simulation results show that the improved DQN algorithm converges faster than the classic deep

reinforcement learning algorithm and can more quickly learn the solutions to path-planning problems. This improves

the efficiency of multi-robot path planning.

1 Introduction

Currently, the most popular direction of development in intelligent
storage systems is the unmanned storage system based on the
‘goods to people’ model [1, 2]. In the picking mode of this model,
the unmanned warehouses include automated intelligent
three-dimensional warehouses where goods are transported by aisle
stackers or shuttles or by automated guided robots based on
movable shelves. The Kiva system, for example, was acquired by
Amazon in 2012 [3–5]. The intelligent robot system produced by
the company is a typical unmanned warehouse system, as shown
in Fig. 1. This system contains thousands of movable storage
shelves and hundreds of handling robots, which are movable
according to the order task. The rack is lifted and transported to
the picking station and handed to the staff for picking, sorting, and
packaging. This technology helps retailers complete online order
processing quickly and with less manpower, thereby greatly
improving the execution of order tasks. The success of Kiva
robots has shown the world that the deployment of handling
robots and reasonable scheduling [6, 7] in warehouses produces
efficiency improvements and has driven a contemporary round of
new warehouse logistics technology [8] that is beginning to
rapidly advance the process of warehouse automation [9]. A large
number of handling robots perform tasks in the warehouse in an
orderly manner with the support of an unmanned warehouse
scheduling system. The research background of this study is based
on movable shelves in basic intelligent warehouses where goods
are transported through logistics-handling robots. The intelligent
mobile robots [automated guided vehicles (AGVs)] with load
capacity used in unmanned storage systems transform the
traditional ‘people-to-goods’ picking mode into the ‘cargo-to-
person’ model. These AGVs can optimise the path planning and
execution of order tasks through optimisation algorithms, greatly
improving the service efficiency and quality of the storage
industry, and can have a profound effect on the operating
efficiency and economic benefits of the entire storage system.

Relevant domestic scholars and companies have carried out much
research on mobile robot path planning under different environments
and different problems. In these studies, the process of calculating

path planning considers coordination and cooperation between
robots and can be roughly divided into two types of solutions:
centralised and distributed. Centralised scheduling is the overall
path planning of all robots by a server to achieve global
optimisation, with emphasis placed on the autonomous learning
and decision-making of robots and robot interaction and
cooperation to achieve a local optimum. Commonly used robot
path-planning methods [10, 11] mainly include the artificial
potential field method [12], the path coding-based genetic
algorithm [13], the random search ant colony algorithm [14],
neural network and reinforcement learning methods based on
learning training [15], grid maps [16], particle swarms [17],
the A* algorithm [18], and models that mix these methods.
For this study, we use the reinforcement learning method based
on the reinforcement learning of a single robot. The ideas
and algorithms in this method are combined by states, actions, and
strategy allocation to achieve a multi-robot continuation and
expansion of learning training. In the path-planning problem
of robots in unknown environments, Hu and Jun [19] and
others added the rolling Q-learning method to improve the
algorithm to a certain extent when a large state space causes
the curse of dimensionality. Fang and Li [20] proposed a heuristic
reinforcement learning method based on state backtracking for the
time-consuming problem of reinforcement learning algorithm
strategy selection; this method improved action selection strategies,
introduced cost functions, and integrated heuristic functions.
The reinforcement learning method of cost learning makes the
reward and the cost reach a balanced state and applies the balance
to the robot path-planning experiment, thus verifying the
feasibility and efficiency of the algorithm. The learning algorithm
is combined with [21], and the combined algorithm is applied
to the trajectory tracking problem of the robot in a real
environment. Similarly, Maeda et al. also used the fitting ability
of neural networks and the decision-making ability of
reinforcement learning to conduct robot path planning in specific
environments [22]. The Q-learning algorithm in reinforcement
learning does not require prior knowledge of the environment, and
thus, the agent can autonomously build a complex dynamic
environment and an interactive relationship; in short, path
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planning is becoming an important research focus in the field of
algorithms [23, 24].

This study builds a multi-robot path-planning model based on an
improved deep Q-network (DQN) algorithm. The study first notes
that when multi-robot systems perform path planning, it is
necessary to consider not only how a single robot can have the
shortest optimal route but also how all the robots can work in
overall coordination with each other. Therefore, a deep
reinforcement learning (DRL) algorithm is used. However, due to
the special nature of the problem at hand, the DQN algorithm
suffers from the disadvantages of slow convergence and excessive
randomness during training. Therefore, a priori knowledge is
introduced into this algorithm, and a priori rules are formulated.
The improved algorithm is more applicable to the problem
addressed in this study and improves overall learning efficiency.

2 Analysis of multi-robot path-planning problems
and optimisation methods

2.1 Analysis of multi-robot path-planning problems

This study considers the environment map as a concrete exemplar of
the reinforcement learning problem. The first reason for the
applicability of this map is that the blueprint of the warehouse has
been rasterised, the locations are relatively fixed, and the map size
is limited, which is consistent with the general requirements of
reinforcement learning [i.e. a Markov decision process (MDP)].
The second reason is that the learned knowledge can be shared in
the database, saving on the resource consumption of path
calculation when the system is running. The Q-learning algorithm
in reinforcement learning is used as the main learning problem
because the method does not require an accurate environment
model. In addition, the method is an off-policy algorithm in its use
of different policies, facilitating full search without affecting the
generation of optimal policies and utilising experience to a greater
extent than on-policy algorithms. These two points clarify the
appropriateness of the Q-learning algorithm for learning in the
path-planning problem.

Since the state information of the set environment changes with
the respective actions of multiple robots, it is inevitable that the
complexity of the learning strategy increases exponentially as the
dimensions of the state and action increase. There are two
problems: one is that the computational complexity is increased,
and the other is that the learning efficiency is reduced. The process
of AGV path planning must consider avoidance of collisions with
static obstacles (shelves, workbenches etc.) and dynamic obstacles
(other AGVs) and try to get as close to the target point as possible
while covering the shortest distance at the fastest speed. Therefore,
this study combines the current motion information of all AGVs
into an action vector and uses this combined action to ensure that
the robots of the entire system reach their respective target points
in a coordinated manner. To ensure that the environmental
information is constantly changing, the state information of all
AGVs is also incorporated in a state vector. In this way, in the
entire system, the Q-value tables of each AGV are all merged into

combined action vectors and combined state vectors mapped to
Q-values so that the actions and states of other AGVs in the
system can be taken into account when the current AGV makes
decisions.

2.2 DQN algorithm principle and path-planning
problem analysis

DRL, which is the product of the combination of deep learning
algorithms and reinforcement learning algorithms, integrates the
strong understanding of perceptual problems of deep learning
algorithms with the ability to fit learning results of reinforcement
learning algorithms. These features make it suitable for large-scale
and complex problems in real-world scenarios. The Q-learning
algorithm selects the optimal strategy by constructing a Q-value
table. However, most problems occur in practical environments
where the state space is excessively large and the dimensions
become large, making it impossible to use tables to record and
index, which leads to the curse of dimensionality, i.e. due to the
weak perception ability of the Q-learning algorithm, robots or
agents cannot process Q-learning inputs because the output of a
control value function in a high-dimensional state is difficult to
generalise to large state space. Therefore, in the spatial learning of
large-scale states, a convolutional neural network is added to the
algorithms feature extraction and reinforcement learning capability.
This combination of decision-making capabilities, i.e. DRL
algorithms and using a Q-network to fit the results and obtain the
output or decision, allows the agent to perceive and establish
action strategies in more complex environments, thereby
improving the convergence and generalisation capabilities of the
algorithm, increasing the learning speed, and enabling agents to
perform good path planning in unknown and complex
environments. For these reasons, this study uses the DQN
algorithm in the DRL algorithm, which combines the Q-learning
algorithm, an empirical playback mechanism, and the method of
generating the target Q-value based on a convolutional neural
network.

The DQN algorithm is a method of DRL. The rationale for using
the DQN algorithm is that it can combine deep learning and
reinforcement learning algorithms. The Q-learning algorithm
constructs an objective function that can be used for deep learning.
The convolutional neural network generates the target Q-value,
evaluates the Q-value of the next state based on the target Q-value
in this state, and adds an empirical playback mechanism and the
target network to break the association between the data. In other
words, the DQN algorithm can use the value function to
approximate the Q-value. It uses a function, f (s, a, v), to represent
the Q-value, Q s, a( ) = f (s, a, v).

Here, the function f represents any type of function and represents
the function, f (s, a, v). Since the dimension is reduced to a single
Q-value through matrix operations, the dimension of the state s
represented by the function is irrelevant, which is the basic idea of
the value function approximation.

Take state s as the input, and then output the Q-value of each
action, i.e. output a Q-value vector containing all actions
[(Q(s, a1)), (Q(s, a2)), Q(s, a3) (Q(s, a4)), (Q(s, a5))]. As long as
state s is input, the Q-value including all actions can be obtained.
In this way, it is more convenient to select the action and update
the Q-value through Q-learning. In summary, the core idea of the
DQN algorithm is that when the state and action space are
high-dimensional and continuous, deep learning is used to build
both a value network that solves reinforcement learning tasks and
a loss function [25], which is the objective function in the
reinforcement learning method that calculates labels and networks.
The deviation of the output minimises the loss function. To train
the Q-network, one needs to provide labelled samples for it. The
updated formula of the Q-learning algorithm is (1)

q St , At

( )

� q St , At

( )

+ a Rt+1 + gmax q St+1, At

( )

− q St , At

( )[ ]

(1)

Fig. 1 Kiva system intelligent storage system
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Thus, define the loss function as (2)

L v( ) = E[(Rt+1 + gmax q St+1, At ; v
−

( )

− q St; At; v)
2

( ]

(2)

During the training of the value network, historical data are
continuously collected as training labels and stored in the
experience pool, and then the value network is trained on the data
in the experience pool by using a small batch of random gradient
descent methods to optimise the weight matrix to solve the
Q-value function.

2.3 Disadvantages of the DQN algorithm

The advantage of the DQN algorithm in solving high-dimensional,
large-scale, and continuous state-space problems is that it can use
the results of neural networks to approximately replace the
Q-value function, effectively reducing the dimensionality of the
input data. However, the algorithm has two shortcomings: one is
the slow convergence speed, and the other is excessive randomness.

(i) Slow convergence: In the process of collision-free path planning
for multiple robots, to ensure that all robots perform tasks in
coordination with each other, the states of all robots are combined
into state vectors s = s1, s2, s3, . . . , sn

[ ]

. All actions make up an
action vector a = a1, a2, a3, . . . an

[ ]

. Therefore, in the entire
system, the Q-value table of each robot is mapped to the combined
action vector and combined state vector so that the robot’s
decision-making can take into account the actions and states of
other robots in the system. However, the DQN algorithm is a
combination of deep learning and reinforcement learning. It has
the basic characteristics of reinforcement learning; i.e. it needs to
learn from scratch in an unknown environment and explore step
by step. This means each path of the path planning for the robots
needs to be explored and the entire map learned incrementally
from scratch, which greatly increases the amount of calculation
and makes the convergence rate very slow.
(ii) Excessive randomness: For the Q-learning algorithm, the balance
between exploration and utilisation is a very basic and important
concept. Exploration is the collection of information, and
utilisation is the execution of actions that can produce the
maximum value. Exploration can yield the best but also the worst
reward value. Utilisation involves adopting the scheme that yields
the maximum reward value. The action that obtains the maximum
reward value must always be performed to achieve the goal with
the maximum score, but this action is also based on insufficient
samples or empirical information and incomplete exploration of
the environment, resulting in a suboptimal strategy. When using
the DQN algorithm for multi-robot path planning, we must
consider not only how to obtain the solution faster but also
whether the solution is optimal. This study follows the Q-learning
algorithm 1-strategy to solve the path-planning problem. This
strategy is based on probability 1− 1 (choose the action with the
largest action value [greedy action]) or probability 1 (choose
random movements, which generate much useless exploration).

In summary, it can be seen that when training a neural network,
the training data requirements are independent and identically
distributed, but there is a certain correlation between the previous
state data and the latter state data collected through reinforcement
learning. Consequently, by using these related data for training,
it is inevitable that the neural network training results become
unstable, making it difficult for Q-learning algorithms to converge,
and that the loss values fluctuate. To solve the problem of
convergence, the DQN algorithm introduces empirical playback
and the method of establishing a double-layer network structure
to train the reinforcement learning process to better combine
these two algorithms. Therefore, the method employed in this
study combines the Q-learning method with a convolutional neural
network, i.e. the DQN algorithm model, using the strong
fitting ability of a convolutional neural network to process
high-dimensional input information, perform the extraction,

effectively reduce the input dimensions, add experience playback
methods, and then decide the output results to enable collaborative
learning between robots.

3 Multi-robot path-planning model based on
the improved DQN algorithm

3.1 DQN algorithm improvement ideas

To address the two problems that occur during the application of the
DQN algorithm to robot path planning, this study uses the
introduction of prior knowledge to initialise the Q-value table.
Prior knowledge is the knowledge that precedes the experience of
the agent. At the same time, it avoids the exploration of the system
from scratch and reduces useless exploration due to randomness.
Therefore, when performing multi-robot path planning, first let the
AGV run the A* algorithm with a single robot in a static
environment to calculate the collision-free path from the initial
point to the target point, si = si1, s

i
2, s

i
3, . . . , sid

( )

, i.e. the static
obstacle avoidance path on behalf of the ith AGV. The
information obtained is used to guide subsequent path planning.
This allows the AGV to have a certain understanding of the
environment before learning and reduces trial and error from
scratch. The computational complexity of each AGV involves
choosing the optimal strategy for avoiding collisions with static
obstacles using prior knowledge in the next action. When there is
a conflict with other AGV resources, the corresponding Q-value is
updated according to the DQN algorithm to shorten the entire
learning time, and the speed of convergence significantly improves
the efficiency of the algorithm.

When an AGV performs path planning, certain rules or priorities
need to be set; i.e. in some special situations, when the resources of
two AGVs conflict, which AGV waits and which AGV moves
forward is determined by an a priori rule. In this study, some a
priori rules are developed to influence the robot’s decisions in
some special situations because when the 1-greedy strategy is used
to explore the environment, a large exploration factor, 1, is set
since the environment is unknown at the beginning. This in turn
generates useless exploration processes and increases training time,
while prior rules can circumvent this useless learning in some
cases and improve the overall efficiency of the algorithm.

The prior knowledge is set as follows:

(i) Suppose there are n AGVs in the multi-robot storage system, and
the combined state vector is s = s1, s2, s3, . . . , sn

[ ]

.
(ii) The combined action vectors of n AGVs are
a = a1, a2, a3, . . . , an

[ ]

.
(iii) Let m be special state sequences in the prior rule be
j = j1, j2, j3, . . . , jm

[ ]

. When the state jk in the special sequence
appears, the corresponding action strategy ak′ is taken. s and j
both serve as the state inputs of the neural network and satisfy
s> j = ∅.
(iv) The combination vector corresponding to the Q-value of the
prior rule sequence is defined as Q = [Q ja1, Q ja2, Q ja3, . . . , Q jan],
where Q jak is the prior Q-value of action ak′.

The set of a priori rules does not affect the learning results of
system j. The states that appear in the sequence affect or control
the robot’s action choices and do not affect the original action
decisions of the DQN algorithm. According to the above rules, the
state jk appears [ j, according to the combined vector of
corresponding Q-values Q = [Q ja1, Q ja2, Q ja3, . . . , Q jan]. To
select the action, if the sequence does not appear in the prior rule,
the training process makes a normal decision with the 1-greedy
strategy. Conversely, when the sequence jk appears in the a priori
rule, the behaviour of the robot can be controlled according to the
action strategy ak′ to reduce the occurrence of the phenomena of
useless unnecessary exploration phenomena. The 1-greedy strategy
fully explores the environment without affecting the original DQN
learning process. The improved algorithm flow is shown in Fig. 2.
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4 Improved DQN algorithm flow

The following DQN algorithm flow introduces prior knowledge and
prior rules:

(i) Input s, a, j, and Q. Initialise Q(s, a), given parameters a, g,
and 1.
(ii) Initialise the experience playback pool d; the amount of data it
can hold is n.
(iii) Initialise the Q-network and randomly generate weights v.
(iv) Initialise the Q-target network with a weight of v−

= v.
(v) Repeat initialisation state s.

Repeat: If jk appears [ j.
Select the combination vector Q = [Q ja1, Q ja2, Q ja3, . . . , Q jan]

directly corresponding to the Q-value in Ak′.
Otherwise, use the 1-greedy strategy to select action a in state s to

obtain reward value R and the next state st+1. Store experience
samples (s, a, R, st+1) to experience pool D. Randomly sample a
small batch of stored samples (st, at, Rt, st+1) from the experience
pool D.

Assume

yi =
Ri,

Experience trajectory ends

at step i+ 1

Ri + gmaxQ Si + 1, a′, v−
( )

, Non-terminating step

⎧

⎨

⎩

Update the loss function using the gradient descent method
yi − Q St , at , v

( )2
with the middle v.

Update every c steps v−, v−
= v.

5 Simulation experiment of multi-robot path
planning based on the improved DQN algorithm

When performing AGV path planning for a multi-agent-based
unmanned warehouse scheduling system, this study makes the
following assumptions about the overall environment, AGVs etc.
(i) For AGVs, the state of the storage environment is semi-known
and there are structures of static obstacles (such as shelves and
workbenches) as well as mobile obstacles (other AGVs).

(ii) AGVs have sensors that sense environmental information.
(iii) A random task order provides cargo information and only one
AGV extracts the corresponding goods according to the
information of the order task. Finally, (iv) the model,
specifications, and various data of each AGV in the system are
consistent. In the logistics storage system, multiple AGVs can
operate simultaneously, each of the shelves stores the
corresponding items, and the task scheduling agent contains a
large number of pending order tasks. The order-picking process of
an AGV is defined by first processing and assigning outstanding
orders through the task scheduling agent so that each AGV can
receive one or more order tasks. Then, the AGV uses the
intelligent path-planning algorithm to move the shelf of the target
goods to the picking table agent according to the order, and the
staff select the target goods and place them in the corresponding
packing and packaging processing. Then, the AGV returns the
shelves to the original position and continues to move the
shelves specified by the next task order, completing all assigned
tasks in turn.

5.1 MDP tuple

In this study, the Markov process is used to model the improved
DQN algorithm. The MDP consists of tuples (s, a, p, r), which are
defined as follows:

(i) State space: In a rasterised warehouse map, the coordinates of
each grid represent a state of the current system, so the state space
S= ((1,1), (1,2),…, (30, 30)), i.e. st = (xt, yt). The state vector
st = s1t , s

2
t , . . . , snt

( )

, sit [ S, sit represents the state of the ith AGV
at time t.
(ii) Action space: The actions that each AGV can take are up, down,
left, right, and stationary (for low-priority AGVs, to avoid resource
conflicts), so the action space a= 1, 2, 3, 4, 0{ }, the action vector is
at = a1t , a

2
t , . . . , ant

( )

, ait [ A, and ait represents the action taken at
the tth time step by the ith AGV.
(iii) Transfer function: When the AGV selects an action before it
executes, the transfer function moves to the next grid

f xit , y
i
t , 0, x

i
t , y

i
t + 1

( )

=
1, The next grid space does not contain

0, otherwise

{

(3)

f xit , y
i
t , 0, x

i
t , y

i
t − 1

( )

=
1, The next grid space does not contain

0, otherwise

{

(4)

f xit , y
i
t , 0, x

i
t + 1, yit

( )

=
1, The next grid space does not contain

0, otherwise

{

(5)

f xit , y
i
t , 0, x

i
t − 1, yit

( )

=
1, The next grid space does not contain

0, otherwise

{

(6)

(iv) Reward-and-punishment function: The reward-and-punishment
function that guides optimal collision-free path planning for
multiple robots is immediate feedback from the environment to
the mobile robot, and the function is also an evaluation of the
actions performed by the robot in the previous step. Therefore,
this study defines that when the AGV moves in each space on the
grid, it obtains a penalty value of −1. When it reaches the
endpoint, the AGV obtains the maximum reward value of 10. If
the AGV encounters an obstacle or another AGV, it obtains the
maximum penalty value of −10. During the entire process, the
AGV chooses the reward. High-value actions can make the AGV

Fig. 2 Improved algorithm flow
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reach the endpoint faster and eventually maximise the total
reward value.

R st , at , st+1

( )

=

10, st+1 = Target

−10 Encounter an obstacle or robot collision

−1 otherwise

⎧

⎨

⎩

(7)

5.2 Setting the initial Q-value table

Based on the improved DQN algorithm steps, a priori knowledge is
introduced to initialise the Q-value table. In the experiment, the
system is set with eight AGVs, and the collision-free path of each
robot in the static storage system is si = si1, s

i
2, . . . , sin

( )

. First,
initialise the Q-value table to 0. When the robot is in a transition
state, the action-value function is set to a reasonable number >0 so
that the robot first considers a static collision-free path when
exploring the route, reducing random unnecessary exploration.

5.3 Setting a priori rules

Set a priori rules suitable for the problem in this study. When two
robot resources conflict, one of them needs to give way to the
other robot, i.e. choose a stationary action, and the probability of
the two robots choosing a stationary action is 50% sequence
j = j1, j2, j3, . . . , jm

[ ]

is defined as follows.
j1: In a resource conflict between Robot 1 and Robot 2, s1t = s

2
t ,

corresponding to action strategy j1 � a1′. This strategy is to make
Robot 1 choose a stationary action with a probability of 50%;
otherwise, Robot 2 chooses a stationary action.

j2: In a resource conflict between Robot 1 and Robot 3, s1t = s
3
t ,

corresponding to action strategy j1 � a2′. This strategy is to make
Robot 1 choose a stationary action with a probability of 50%;
otherwise, Robot 3 chooses a stationary action.

j3: In a resource conflict between Robot 1 and Robot 4, s1t = s
4
t ,

corresponding to action strategy j1 � a3′. This strategy is to make
Robot 1 choose a stationary action with a probability of 5%;
otherwise, Robot 4 chooses a stationary action. By extension, there
are 28 resource conflict selection strategies; i.e. m = 28 and
j = j1, j2, j3, . . . , j28

[ ]

.

5.4 Hyperparameter setting of the DQN algorithm

The hyperparameters of the DQN algorithm are set as follows: the
learning rate a is 0.0025; the experience pool size n is 1000; and
the choice of the greedy action in the 1-greedy strategy is 1. The
initial exploration value is 1; the final exploration value is not
<0.1; and the attenuation coefficient updated by the Q-learning
algorithm is g. The sample size for batch sampling under
stochastic gradient descent is 32, so the training and parameter
learning begin only when the number of experiences stored
reaches 32. The Q-network updates the parameters at every time
step; the update frequency of the Q-target network is 50 time
steps; and the total number of training steps is 2500.

6 Comparative experimental results and analysis

6.1 Algorithm performance analysis

The simulation experiment was performed using TensorFlow deep
learning tools and the Python language, and a 30×30 grid map
was constructed as shown in Fig. 3. The positions of 45 groups of
shelves (black areas) and five picking tables (orange areas) were
set. Then, eight AGVs (yellow area) and 80 random order tasks
(generated by the unmanned warehouse scheduling system) were
added. The starting points of these AGVs were (0, 29), (2, 29),
(4, 29), (6, 29), (8, 29), (10, 29), (12, 29), and (14, 29).

In this part of the experiment, there were three parts of the code.
The environment model of the robot for DQN, including the
action space and the state space, was written with the maze_env.
py file. The network model in the DQN algorithm was written
with the RL_brain.py file, and run_this.py introduced the
environment model. The network model was trained and the loss
function curve is drawn. The DQN algorithm is composed of a
two-layer network; one layer is the eval_net estimation network,
and the other is the target_net target network. The parameters of
the network were approximated by the action value at each step
update, and the parameters of the target network are updated every
50 steps.

For the DQN algorithm with a priori knowledge and the classic
DQN algorithm, a comparison experiment was performed. To
compare the convergence speed before and after the improvement
of the algorithm, the training times for the loss function value
convergence of the two algorithms were compared. The results are

Fig. 3 Raster map of simulation

Fig. 4 Convergence of the loss function of the classic DQN algorithm and

the improved algorithm

a, b Convergence of the loss function of the classic
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shown in Fig. 4. Fig. 4a shows the results of the original algorithm
and Fig. 4b shows the results of the improved algorithm.

6.2 Picking efficiency

The foregoing confirmed that the improved algorithm boosts the
efficiency of the classic algorithm. The results of the path-planning
problem were then compared in the unmanned warehouse
scheduling system.

Before initialising the Q-value of the AGV, we let the AGV use
the A* algorithm to plan a collision-free path in a static
environment. The obtained path information is used as a priori
knowledge to guide the subsequent path planning, which enables
the robot system to achieve a certain understanding of the
environment before learning, thereby improving the learning
efficiency of the algorithm.

Therefore, regarding the analysis of picking efficiency conducted
in this study, a comparison of the final optimisation result with the
picking efficiency before optimisation is performed, culminating
with the research conclusion that the picking efficiency is improved.

The original system used the A* algorithm for path planning for
AGVs. In terms of the efficiency of the entire system, it is
necessary to take the shortest total picking distance as the goal to
achieve high system efficiency. Therefore, according to different
order size situations, a comparative experimental analysis of the
total picking distances of all AGV-completed order tasks was
performed. The total picking distance was shortened by 32.7% and
34.7% under different path-planning methods as shown in Fig. 5.

7 Summary

This study considered the multi-robot path-planning problem
involving high-dimensional input and analysed why the Q-learning
algorithm is not applicable to this problem and why the
DQN algorithm is used. Next, the improvement process of the
DQN algorithm based on the problem in this study was explained.
First, to address the problem of a too-slow convergence speed, an
improvement of adding prior knowledge was proposed:
specifically, before initialising the Q-value of the AGV, a single
AGV is used in a static environment to plan a collision-free path.
Then, the resulting path information is used to form a priori rules
to guide subsequent path planning. This allows the multi-robot
system to acquire a certain understanding of the environment
before learning, thereby improving the learning efficiency of the
algorithm. Second, to address the problem of excessive
randomness, a certain prior rule method was formulated. When
encountering resource conflicts between AGVs, a priority is set to
affect the current AGV’s action selection. This ensures that the
multi-robot system can fully explore the map during path
planning. The rule does not affect the learning process of the

entire system and can avoid useless exploration and reduce the
randomness of action selection to a certain extent. The
above-improved method adding prior knowledge and prior rules
yields a complete process for the multi-robot path-planning
algorithm.

Finally, simulation experiments were carried out to improve the
path-planning problem of the multi-robot system. The system was
modelled from a multi-agent perspective, and the DQN algorithm
was applied to the AGVs and was improved according to the
actual problem, presenting a learning process that spanned the
entire system. A method was designed to improve the initial
Q-value table with prior knowledge that was added to allow a
single AGV to learn and understand the environment before
training, and special a priori rules were set in a manner equivalent
to giving AGVs a certain priority and making them select a
specific action strategy in these specific states. Based on a
semi-known environment of a 30×30 grid map, the positions of
shelves and workbenches were fixed, and the robot used the
improved DQN algorithm for optimal collision-free path planning.
The performance of the algorithm was compared with the classic
DQN algorithm. After experimental verification, the DRL
algorithm with prior knowledge and prior rules proposed in this
study achieved a good performance improvement in multi-robot
path-planning learning, and both the convergence speed and the
learning efficiency increased. A comparison of the efficiency of
the total picking distance under different order sizes was carried
out in the unmanned warehouse scheduling system. The alterations
described to improve the effectiveness of the method have utility
in certain practical robotic applications. In addition, given that the
A* algorithm has low real-time performance but is suitable for
global path planning, to avoid obstacles dynamically, local path
planning remains to be considered. Such inquiries are expected to
be carried out in-depth in our follow-up research.
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