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Abstract: We study Hardy-type integral inequalities with remainder terms for smooth compactly-
supported functions in convex domains of finite inner radius. New L1- and Lp-inequalities are obtained
with constants depending on the Lamb constant which is the first positive solution to the special equation
for the Bessel function. In some particular cases the constants are sharp. We obtain one-dimensional
inequalities and their multidimensional analogs. The weight functions in the spatial inequalities contain
powers of the distance to the boundary of the domain. We also prove that some function depending
on the Bessel function is monotone decreasing. This property is essentially used in the proof of the
one-dimensional inequalities. The new inequalities extend those by Avkhadiev and Wirths for p = 2 to
the case of every p ≥ 1.
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Introduction

This article is devoted to the variational Hardy-type inequalities with remainder terms. The classical
one-dimensional Hardy inequality for an absolutely continuous function f : [0,∞) → R such that f(0) = 0
and f ′ ∈ L2(0,∞) looks as follows:

∞∫

0

|f(x)|2
x2

dx ≤ 4

∞∫

0

|f ′(x)|2 dx.

The constant 4 is unimprovable, even though there exists no extremal function f �≡ 0 at which equality
is attained (see, for instance, [1]). The sharp constant in this inequality is the norm of the corresponding
linear operator and, as it is well known, the norm of an operator is an upper bound for its spectrum. For
instance, if we rewrite the latter inequality in terms of operators; i.e., if we put

h(x) = f ′(x) and (Hh)(x) = x−1

x∫

0

h(t) dt,

then we find that H is a bounded linear operator in L2(0,∞) and the following equality is valid for its
norm:

‖H‖2 = ‖H : L2(0,∞) → L2(0,∞)‖2 = 4.

Moreover, the spectrum of H lies in the disk of radius ‖H‖.
The classical Hardy inequality has been generalized and modified in various ways, and the bibliog-

raphy on this topic is rather extensive (see [1–46]), because Hardy’s inequalities have a wide range of
applications in mathematics and mathematical physics (see [2–7, 46]). Let us give several examples of ap-
plications of the inequalities. For instance, Sobolev [2] used the Hardy-type inequalities in the embedding
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theory of function spaces; thus, the estimates of the form are perceived as the tools of function theory
which are used in proofs of the corresponding assertions (see also [3]). In [4] Avkhadiev applied Hardy’s
inequalities to estimate the torsional rigidity of a beam with cross-section for arbitrary simply connected
domains. Dubinskii showed in [6] that the well-posedness of the problem for the Poisson equation with
a special normalization condition is equivalent to the validity of the corresponding two-sided scales of
Hardy’s inequalities (see also [7, 45]).

The spatial Hardy inequalities are extensively studied. Multidimensional Hardy-type inequalities in
convex domains [8–11], in domains whose boundaries meet some special conditions [12–14], and even in
arbitrary open sets of the Euclidean space [15–18] are well known. In the case of Hardy’s inequality in
a spatial domain Ω, the function f and its derivative f ′ are replaced with a smooth function f : Ω → R
compactly-supported in Ω and its gradient ∇f = (∂f/∂x1, . . . , ∂f/∂xn), and the powers of x are replaced
with the powers of the distance δ = δ(x) = dist(x, ∂Ω) from a point to the boundary of Ω. Moreover, the
Hardy-type inequalities with weight functions depending on the hyperbolic radius (see [19–24]) are well
studied in the spectral theory of the Laplace–Beltrami operator on Riemannian manifolds of constant
negative curvature.

As was already mentioned, in this article we consider Hardy’s inequalities with remainder terms.
Mazya [3] was the first to prove such inequalities in the case when the integration domain is the upper
half-plane. Later some interesting results on Hardy’s inequalities with remainder terms followed the
article by Brezis and Marcus [10] in which they proved that

∫

Ω

|∇f |2 dx ≥ 1

4

∫

Ω

|f |2
δ2

dx+
1

4(diamΩ)2

∫

Ω

|f |2 dx ∀f ∈ H1
0 (Ω), (1)

where Ω is a convex bounded domain, H1
0 (Ω) is the closure of the space C1

0 (Ω) of smooth functions
f : Ω → R with the finite Dirichlet integral and compact support in Ω, and diamΩ is the diameter of Ω.

Note that the constant in (1) depends on the diameter diamΩ of Ω. Similar inequalities are obtained
in [11, 25] with the constant depending on the volume of Ω. For instance, M. Hoffmann-Ostenhof,
T. Hoffmann-Ostenhof, and Laptev proved in [11] the inequality

∫

Ω

|∇f(x)|2 dx ≥ 1

4

∫

Ω

|f |2
δ(x)2

dx+
1

4

K(n)

|Ω|2/n
∫

Ω

|f(x)|2 dx (2)

for every f ∈ H1
0 (Ω), where Ω is a convex domain in Rn (n ≥ 2), |Sn−1| is the surface area of the unit

sphere Sn−1 in Rn, while |Ω| is the volume of Ω, and

K(n) = n

( |Sn−1|
n

)2/n

.

The constant 1/4 is sharp. Later, Evans and Lewis in [26] improved the constant in the remainder term
of (2), and Tidblom in [25] obtained an Lp-analog of this inequality in the corresponding Sobolev spaces
for p > 1.

It is clear that if diamΩ or |Ω| tends to infinity, then (1) and (2) do not contain remainder terms.
Observe also that (1) and (2) are different as classes of extremal problems. Inequality (1) is proven

in domains of finite diameter; inequality (2), of finite volume. The class of extremal problems in domains
of finite inner radius

δ0 = δ0(Ω) = sup
x∈Ω

δ(x)

is also well known; i.e., the inequalities that are proven in the domains with δ0 < ∞ (see, e.g., [8, 9, 18, 39]).
The class of extremal problems in domains of finite interior radius is wider than the class of problems with
finite volume or diameter, since there exist domains of finite interior radius whose volume or diameter
are not bounded (for instance, a strip).
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In the authors’ opinion, among these inequalities in domains of finite inner radius, the sharp inequality
of [8] plays a significant role constituting a bridge between Hardy’s and Poincaré’s inequalities. Namely,
it was demonstrated there that if q > 0, 0 < ν ≤ 1/q, and Ω is a convex domain such that δ0(Ω) < ∞,
then ∫

Ω

|∇f(x)|2 dx ≥ 1− ν2q2

4

∫

Ω

|f(x)|2
δ(x)2

dx+
C2q2

4δ0(Ω)q

∫

Ω

|f(x)|2
δ(x)2−q

dx for all f ∈ C1
0 (Ω),

where C1
0 (Ω) is the space of smooth functions compactly-supported in Ω and the constant C = Cν(q) is

the first positive root of the following equation for the Bessel function Jν of order ν:

Jν(C) + CqJ ′
ν(C) = 0.

Later, in [9] this result was generalized to the case of more general weights. Namely, it was proven that

∫

Ω

|∇f(x)|2
δ(x)s−1

dx ≥ s2 − ν2q2

4

∫

Ω

|f(x)|2
δ(x)s+1

dx+
C2q2

4δ0(Ω)q

∫

Ω

|f(x)|2
δ(x)s+1−q

dx (3)

for every f ∈ C1
0 (Ω), where s > 0, q > 0, ν ∈ [0, s/q], and now the constant C = Cν(s, q) is the first

positive root of the more general equation

sJν(C) + CqJ ′
ν(C) = 0.

The aim of this article is to obtain analogs of (3) in Lp for p ≥ 1. We prove one-dimensional inequal-
ities and their multidimensional analogs in domains of finite inner radius; i.e., the extremal problem of
the third kind is considered. It is well known that in Lp for p ∈ (0, 1) Hardy’s inequalities do not hold for
arbitrary nonnegative measurable functions; although they are valid, for instance, for nonnegative nonin-
creasing functions; cp. [27, 28] (see also [29, 43]). Emphasize that we managed to obtain L1-inequalities.
Hardy’s inequalities in L1 are of a special interest (see, for instance, [30]), because they are connected
with partial differential equations with the so-called 1-Laplacian, an analog of the usual Laplace operator
and p-Laplacian for p > 1.

In the inequalities considered here, the constants depend on the first positive root of the following
equation for the Bessel function:

(s− qμ)Jν(λν) + qλνJ
′
ν(λν) = 0, (4)

where s > 0, q > 0, and μ ∈ [
0, s+νq

q

)
. Observe that we could include the case of μ = s+νq

q into the latter

interval for μ; but, as we will show later, λν → 0 in that case.
Equations (4) are considered in [31] (see also [32, p. 502]); therefore, in line with [8, 9, 33–36], we

call λν the Lamb constant; and (4), the parametric Lamb equation.
Solving the parametric Lamb equation directly is relatively difficult, because it is necessary to consider

particular cases and make preliminary transformations. For instance, since

νJν(λν) + λνJ
′
ν(λν) = λνJν−1(λν),

equation (4) can be rewritten in simpler form:

λνJν−1(λν) = 0

for s > νq and μ = (s− νq)/q. Clearly, the Lamb constant λν is equal to jν−1 in this case, where jν−1 is
the first positive root of the Bessel function Jν−1 of order ν − 1.

If we consider (4) for ν = 1/2, i.e., for J1/2(x) =
√

2
π
sinx√

x
; then we obtain the following equation for

the Lamb constant λ1/2:
2qλ1/2 cosλ1/2 + (2s− 2qμ− q) sinλ1/2 = 0.
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Some interesting approach to solving Lamb equations in general form was found by Avkhadiev and Wirths
in [9]. Namely, they proved that the Lamb constant z = λν(r) defined as the first positive root of the
equation

rJν(z) + 2zJ ′
ν(z) = 0

for r can be found as a solution to the following Cauchy problem for which numerical methods are well
developed:

dz

dr
=

2z

r2 − 4ν2 + 4z2
.

Usually, the differential equations connecting the weight functions in the integral inequalities are used
to prove the inequalities in L2 and Lp for p > 1 (see, for instance, [8, 9, 37, 38]). We are unaware of any
other articles in which differential equations are applied to prove the Hardy-type L1-inequalities.

The present article is structured as follows: In Section 1 we obtain the one-dimensional L1- and
Lp-inequalities. At that, the monotonicity is essential of the specially introduced function depending
on the Bessel function. In particular, the following inequality is proven for every absolutely continuous
function f on [0, 1] such that f(0) = 0 and

(s2 − ν2q2)

1∫

0

|f(x)|
xs+1

dx+ q2λ2
ν

(
2s

q

) 1∫

0

|f(x)|
xs−q+1

dx

≤
1∫

0

|f ′(x)|
xs

(
2(s+ νq)− q2μ2

s
+ qμ

(
qμ

s
− 2

)
xs
)
dx

for s, q > 0, where μ ∈ [
0; s+νq

q

)
and the constant z = λν(r) is the first positive root of the equation

(r − 2μ)Jν(z) + 2zJ ′
ν(z) = 0.

As a consequence of this result for s > 0, q > 0, and μ = s−νq
q > 0, for every absolutely continuous

f : [0, 1] → R such that f(0) = 0, we obtain

(s− νq)

1∫

0

|f(x)|
xs+1

dx+
q2j2ν−1

s+ νq

1∫

0

|f(x)|
xs−q+1

dx

≤
(
2− (s− νq)2

s(s+ νq)

) 1∫

0

|f ′(x)|
xs

dx− s− νq

s

1∫

0

|f ′(x)| dx,

where jν−1 is the first positive root of the Bessel function Jν−1.

Section 2 is devoted to multidimensional inequalities in convex domains in Rn of finite inner radius.
To prove these assertions, we use Avkhadiev’s approach from [16, 17] which bases on the classical approxi-
mation of a domain by cubes. This method makes it possible to extend the corresponding one-dimensional
inequalities to the case of spatial domains.

Remark. The proof of sharpness of the constants in the one-dimensional inequalities is a very
difficult problem, all the more so in the multidimensional case. As a consequence of our estimates, we
obtain the available sharp inequalities or inequalities comparable with the well-known sharp inequalities
(see, for instance, Examples 1–3 below). Therefore, we only claim that, in particular cases, the constants
in the proven inequalities are sharp.
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1. One-Dimensional Inequalities

Henceforth we need the function

y = Fν,s,q(x) = x
s
2Jν(λν(2s/q)x

q
2 ),

where Jν is the Bessel function of order ν defined as follows:

Jν(x) =
∞∑
k=0

(−1)kx2k+ν

22k+νk!Γ(k + 1 + ν)
, ν > 0.

Recall that the Lamb constant z = λν(r) is determined as the first positive root of the equation

rJν(z) + 2zJ ′
ν(z) = 0, ν ≥ 0.

It is well known (see [47, p. 440; 8, 9]) that y = Fν,s,q(x) is a solution to the differential equation

x2y′′ + (1− s)xy′ +
(
s2 − ν2q2

4
+

q2λ2
ν(2s/q)

4x−q

)
y = 0, x ∈ [0, 1], (5)

and

lim
t→0+

tF ′
ν,s,q(t)

Fν,s,q(t)
=

s+ νq

2
> 0.

The reader can learn more details about the properties and examples of using y = Fν,s,q(x) in [8, 9].

1.1. Auxiliary assertions. Obtain some new properties of the Bessel function which will be used
henceforth.

Lemma 1. Let s > 0, q > 0, ν ≥ 0, and λν(2s/q) ∈ [0, jν), where jν is the first positive root of

the Bessel function Jν of order ν. If x ∈ [0, 1] and y = Fν,s,q(x) = x
s
2Jν(λν(2s/q)x

q
2 ), then the function

xy′(x)/y(x) decreases and

sup
x∈[0,1]

xy′(x)
y(x)

= lim
x→0

xy′(x)
y(x)

=
s+ νq

2
,

inf
x∈[0,1]

xy′(x)
y(x)

=
y′(1)
y(1)

=
s

2
+ qλν(2s/q)

J ′
ν(λν(2s/q))

2Jν(λν(2s/q))
.

Proof. To prove the decrease of xy′(x)/y(x), show that its first derivative is negative. Let z =

λν(2s/q)x
q/2, x ∈ [0, 1], and

A :=
d

dx

(
xy′(x)
y(x)

)
=

y′(x)
y(x)

+ x

(
y′′(x)
y(x)

−
(
y′(x)
y(x)

)2)
.

It is obvious that z ∈ [0, jν) and
y′(x)
y(x)

=
1

2x

(
s+ qz

J ′
ν(z)

Jν(z)

)
.

Using (1), we obtain

A =
1

2x

(
s+ qz

J ′
ν(z)

Jν(z)

)
−
(
s2 − ν2q2

4x
+

q2λ2
ν(2s/q)

4x1−q

+
1− s

2x

(
s+ qz

J ′
ν(z)

Jν(z)

))
− 1

4x

(
s+ qz

J ′
ν(z)

Jν(z)

)2

=
1

2x

(
s2 + sqz

J ′
ν(z)

Jν(z)
− s2 − ν2q2

2
− q2λ2

ν(2s/q)

2x−q
− 1

2

(
s+ qz

J ′
ν(z)

Jν(z)

)2)

=
1

2x

(
s2

2
− s2 − ν2q2

2
− q2λ2

ν(2s/q)

2x−q
− q2z2

2

(
J ′
ν(z)

Jν(z)

)2)

=
q2

4x

(
ν2 − λ2

ν(2s/q)

x−q
− z2

(
J ′
ν(z)

Jν(z)

)2)
=

q2

4x

(
ν2 − z2 − z2

(
J ′
ν(z)

Jν(z)

)2)
.
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Consider the two cases:
Case 1: ν = 0. Obviously,

A = − q2

4x

(
z2 + z2

(
J ′
0(z)

J0(z)

)2)
≤ 0.

Case 2: ν > 0. Clearly,

A =
q2

4x

(
ν2 − z2 − z2

(
J ′
ν(z)

Jν(z)

)2)
=

q2ν2

4x

(
1− z2

ν2
− z2

ν2

(
J ′
ν(z)

Jν(z)

)2)
.

Using the relations (see [32, p. 17])

J ′
ν(z) =

1

2
(Jν−1(z)− Jν+1(z)), Jν(z) =

z

2ν
(Jν−1(z) + Jν+1(z)),

we derive

A =
q2ν2

4x

(
1−

(
Jν−1(z)− Jν+1(z)

Jν−1(z) + Jν+1(z)

)2

− z2

ν2

)

=
q2ν2

4x

(
4Jν+1(z)

Jν−1(z) + Jν+1(z)
−
(

2Jν+1(z)

Jν−1(z) + Jν+1(z)

)2

− z2

ν2

)

=
q2ν2

4x

(
z2

ν(ν + 1)

Jν(z) + Jν+2(z)

Jν(z)
− z2

ν2
J2
ν+1(z)

J2
ν (z)

− z2

ν2

)

=
q2z2

4x

(
2ν

z

Jν+1(z)

Jν(z)
− J2

ν+1(z)

J2
ν (z)

− 1

)
=

q2z2

4x

(
− 1 +

Jν+1(z)Jν−1(z)

J2
ν (z)

)
.

It is well known that the following equality is valid for the Bessel function (see [32, p. 152]):

1

4
z2(J2

ν−1(z)− Jν−2(z)Jν(z)) =
∞∑
n=0

(ν + 2n)J2
ν+2n(z).

Applying it obviously yields

A =
q2z2

4xJ2
ν (z)

(
Jν+1(z)Jν−1(z)− J2

ν (z)
)
= − q2

xJ2
ν (z)

∞∑
n=0

(ν + 2n+ 1)J2
ν+2n+1(z) ≤ 0.

Thus, xy′(x)/y(x) decreases; therefore, its supremum is attained at the left endpoint of [0, 1] and the
infimum, at the right endpoint. �

Corollary 1. Let s > 0, q > 0, and ν ≥ 0. If μ → s+νq
q then λν → 0.

1.2. L1-inequalities on an interval. Let us derive the one-dimensional Hardy-type L1-inequalities.
They are used later to obtain Lp-inequalities. As examples, we also give here several particular cases of
general inequalities.

Lemma 2. Suppose that s > 0, q > 0, ν ≥ 0, and f is an absolutely continuous function on [0, 1]
such that f(0) = 0 and f ′(x)/xs ∈ L1[0, 1]. If μ ∈ [

0; s+νq
q

)
, then

s2 − ν2q2

4

1∫

0

|f(x)|
xs+1

dx+
q2λ2

ν

(
2s
q

)
4

1∫

0

|f(x)|
xs−q+1

dx

≤
(
s+ νq

2
− q2μ2

4s

) 1∫

0

|f ′(x)|
xs

dx+

(
q2μ2

4s
− qμ

2

) 1∫

0

|f ′(x)| dx;
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and if μ ≤ 0, then

(s2 − ν2q2)

1∫

0

|f(x)|
xs+1

dx+ q2λ2
ν(2s/q)

1∫

0

|f(x)|
xs−q+1

dx ≤ 2(s+ νq)

1∫

0

|f ′(x)|
xs

dx− 2qμ

1∫

0

|f ′(x)| dx,

where the constant z = λν(r) is the first positive solution to the equation

(r − 2μ)Jν(z) + 2zJ ′
ν(z) = 0, z ∈ (0, jν).

Proof. Using the inequality |f(x)| ≤ ∫ x
0 |f ′(t)| dt and changing the order of integration in the

repeated integral, we obtain

1∫

0

|f(x)|
xs+1

(
s2 − ν2q2

4
+

q2λ2
ν(2s/q)

4x−q

)
dx ≤

1∫

0

|f ′(t)|T (t) dt,

where

T (t) =

1∫

t

(
s2 − ν2q2

4xs+1
+

q2λ2
ν(2s/q)

4xs−q+1

)
dx.

By (5), we get

T (t) = −
1∫

t

1

xs+1

(
x2y′′(x)
y(x)

+
(1− s)xy′(x)

y(x)

)
dx = −

1∫

t

(
y′(x)

xs−1y(x)

)′
+

1

xs−1

(
y′(x)
y(x)

)2

dx,

where the obvious relation

d

dx

(
y′(x)

xs−1y(x)

)
=

y′′(x)
xs−1y(x)

+
(1− s)y′(x)

xsy(x)
− 1

xs−1

(
y′(x)
y(x)

)2

was used.
Consider the two cases.
Case 1: xy′(x)/y(x) ≥ 0, x ∈ [0, 1]. Since xy′(x)/y(x) is decreasing by Lemma 1, we obtain

inf
x∈[0,1]

x
y′(x)
y(x)

=
y′(1)
y(1)

and inf
x∈[0,1]

(
x
y′(x)
y(x)

)2

=

(
y′(1)
y(1)

)2

≥ 0;

hence,

T (t) = −
1∫

t

(
y′(x)

xs−1y(x)

)′
+

1

xs−1

(
y′(x)
y(x)

)2

dx

≤ y′(t)
ts−1y(t)

− y′(1)
y(1)

−
(
y′(1)
y(1)

)2
1∫

t

dx

xs+1
=

y′(t)
ts−1y(t)

− y′(1)
y(1)

+
1

s

(
y′(1)
y(1)

)2

− 1

sts

(
y′(1)
y(1)

)2

.

By Lemma 1, the equality

sup
x∈[0,1]

xy′(x)
y(x)

=
s+ νq

2
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is also valid. Consequently,

T (t) ≤ 1

ts
sup
t∈[0,1]

ty′(t)
y(t)

− y′(1)
y(1)

+
1

s

(
y′(1)
y(1)

)2

− 1

sts

(
y′(1)
y(1)

)2

=

(
s+ νq

2
− 1

s

(
y′(1)
y(1)

)2) 1

ts
+

1

s

(
y′(1)
y(1)

)2

− y′(1)
y(1)

.

Note that by the condition of Lemma 2, we chose z = λν(2s/q) as a constant meeting the conditions

2

q

y′(1)
y(1)

=
s

q
+ z

J ′
ν(z)

Jν(z)
= μ and z ∈ (0, jν).

Thus,

1∫

0

|f(x)|
xs+1

(
s2 − ν2q2

4
+

q2λ2
ν(2s/q)

4x−q

)
dx ≤

(
s+ νq

2
− q2μ2

4s

) 1∫

0

|f ′(x)|
xs

dx+

(
q2μ2

4s
− qμ

2

) 1∫

0

|f ′(x)| dx.

Case 2: there exists x0 ∈ (0, 1) such that x0y
′(x0)/y(x0) = 0. In this case, since xy′(x)/y(x)

decreases, we obtain

inf
x∈[0,1]

x
y′(x)
y(x)

=
y′(1)
y(1)

and inf
x∈[0,1]

(
x
y′(x)
y(x)

)2

= 0;

hence,

T (t) = −
1∫

t

(
y′(x)

xs−1y(x)

)′
+

1

xs−1

(
y′(x)
y(x)

)2

dx ≤ y′(t)
ts−1y(t)

− y′(1)
y(1)

.

By computations as in Case 1, we derive

1∫

0

|f(x)|
xs+1

(
s2 − ν2q2

4
+

q2λ2
ν(2s/q)

4x−q

)
dx ≤

1∫

0

|f ′(x)|
xs

(
s+ νq

2
− qμ

2
xs
)
dx,

which concludes the proof of Lemma 2. �
Observe that in [9] the authors considered the Lamb equation under the condition μ = 0. In that

case, Lemma 2 takes the following form:

Corollary 2. Suppose that s, q > 0, ν ≥ 0, and f is an absolutely continuous function on [0, 1] such
that f(0) = 0 and f ′(x)/xs ∈ L1[0, 1]. Then

(s2 − ν2q2)

1∫

0

|f(x)|
xs+1

dx+ q2λ2
ν(2s/q)

1∫

0

|f(x)|
xs−q+1

dx ≤ (2s+ 2νq)

1∫

0

|f ′(x)|
xs

dx,

where the constant z = λν(r) is the first positive solution to the equation

rJν(z) + 2zJ ′
ν(z) = 0, z ∈ (0, jν).
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Corollary 3. Suppose that s > 0, q > s, ν ≥ 0, and f is an absolutely continuous function on [0, 1]
such that f(0) = 0 and f ′(x)/xs ∈ L1[0, 1]. If μ ∈ (

0; 2sq
]
and ν ∈ [

0, sq
]
, then

(s2 − ν2q2)

1∫

0

|f(x)|
xs+1

dx+

(
q2λ2

ν

(
2s

q

)
+ qμ(q − s)

(
2− qμ

s

)) 1∫

0

|f(x)|
xs−q+1

dx

≤
(
2s+ 2νq − q2μ2

s

) 1∫

0

|f ′(x)|
xs

dx,

where the constant z = λν(r) is the first positive solution to the equation

(r − 2μ)Jν(z) + 2zJ ′
ν(z) = 0, z ∈ (0, jν).

Proof. It is well known that if σ < 1 and f is an absolutely continuous function on [0, 1] such that
f(0) = 0, then the following sharp inequality from [18, Lemma 1] is valid:

(1− σ)

1∫

0

|f(x)|
xσ

dx <

1∫

0

|f ′(x)| dx,

which leads to the sought assertion after inserting σ = s− q + 1 and using Lemma 2. �
Establish the inequalities on an arbitrary interval [a, b].

Theorem 1. Suppose that s, q > 0, ν ≥ 0, and f is an absolutely continuous function on [a, b] such
that f(a) = f(b) = 0 and f ′(x)/xs ∈ L1[0, 1]. If μ ∈ (

0; s+νq
q

)
, then

(s2 − ν2q2)

b∫

a

|f(x)|
δ(x)s+1

dx+
q2λ2

ν(2s/q)

δq0

b∫

a

|f(x)|
δ(x)s−q+1

dx

≤
(
2s+ 2νq − q2μ2

s

) b∫

a

|f ′(x)|
δ(x)s

dx+

(
q2μ2

sδs0
− 2qμ

δs0

) b∫

a

|f ′(x)| dx;

and if μ ≤ 0, then

(s2 − ν2q2)

b∫

a

|f(x)|
δ(x)s+1

dx+
q2λ2

ν(2s/q)

δq0

b∫

a

|f(x)|
δ(x)s−q+1

dx ≤ 2(s+ νq)

b∫

a

f ′(x)
δs(x)

dx− 2
qμ

δs0

b∫

a

|f ′(x)| dx,

where δ(x) = min {b− x, x− a}, δ0 = b−a
2 , and the constant z = λν(r) is the first positive solution to

the equation
(r − 2μ)Jν(z) + 2zJ ′

ν(z) = 0, z ∈ (0, jν).

Proof. Given ρ > 0, execute the change of variable x = ρτ in the first inequality of Lemma 2 and
get

(s2 − ν2q2)

ρ∫

0

|f(x)|
xs+1

dx+
q2λ2

ν(2s/q)

ρq

ρ∫

0

|f(x)|
xs−q+1

dx

≤
(
2s+ 2νq − q2μ2

s

) ρ∫

0

|f ′(x)|
xs

dx+

(
q2μ2

sρ
− 2qμ

ρ

) ρ∫

0

|f ′(x)| dx.
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Applying the latter to f(x) = g(x+ a) and f(x) = g(b− x) c ρ = δ0 = (b− a)/2 yields

(s2 − ν2q2)

(a+b)/2∫

a

|g(t)|
(t− a)s+1

dt+
q2λ2

ν(2s/q)

ρq

(a+b)/2∫

a

|g(t)|
(t− a)s−q+1

dt

≤
(
2s+ 2νq − q2μ2

s

) (a+b)/2∫

a

|g′(t)|
(t− a)s

dt+

(
q2μ2

sρ
− 2qμ

ρ

) (a+b)/2∫

a

|g′(t)| dt,

(s2 − ν2q2)

b∫

(a+b)/2

|g(t)|
(b− t)s+1

dt+
q2λ2

ν(2s/q)

ρq

b∫

(a+b)/2

|g(t)|
(b− t)s−q+1

dt

≤
(
2s+ 2νq − q2μ2

s

) b∫

(a+b)/2

|g′(t)|
(b− x)s

dt+

(
q2μ2

sρ
− 2qμ

ρ

) b∫

(a+b)/2

|g′(t)| dt.

By summing up the last two inequalities, we derive the sought assertion. The second inequality of the
theorem is obtained similarly. This concludes the proof of Theorem 1. �

Corollary 4. Suppose that s, q > 0, ν ≥ 0, and f is an absolutely continuous function on [a, b] such
that f(a) = f(b) = 0 and f ′(x)/(1− |x|)s ∈ L1[0, 1]. Then

s2 − ν2q2

s+ 2νq

1∫

−1

|f(x)|
(1− |x|)s+1

dx+
q2j′ν

2

s+ 2νq

1∫

−1

|f(x)|
(1− |x|)s−q+1

dx ≤
1∫

−1

|f ′(x)|
(1− |x|)s dx− s

s+ 2νq

1∫

−1

|f ′(x)| dx,

where j′ν is the first positive root of the derivative J ′
ν of the Bessel function of order ν.

Proof. It is obvious that if μ = s/q and r = 2s/q, then the equation r
2 + zJ ′

ν(z)/Jν(z) = μ takes
the form

zJ ′
ν(z)/Jν(z) = 0.

Consequently, the Lamb constant λν(2s/q) is equal to j′ν in this case, where j′ν is the first positive root of
the derivative of the Bessel function of order J ′

ν . Thus, the sought inequality follows from the assertion
of Theorem 1 for a = −1, b = 1, and μ = s/q. �

Give several particular cases of the inequality from Theorem 1.

Example 1. Let j′1 be the first positive root of the derivative J ′
1 of the Bessel function. It is well

known that j′1 ≈ 1.8412. If a = −1, b = 1, s = 2, q = 2, μ = 1, and ν = 1, then

2

3
j′1

2

1∫

−1

|f(x)|
1− |x| dx ≤

1∫

−1

|f ′(x)|
(1− |x|)2 dx− 1

3

1∫

−1

|f ′(x)| dx.

The latter inequality is comparable with the sharp inequality from [18], which we can rewrite as

2e

1∫

−1

|f(x)|
1− |x| dx ≤

1∫

−1

|f ′(x)|
(1− |x|)2 dx.
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Example 2. Let a = −1, b = 1, s = 1, q = 1, μ = 1, and ν > 0. Then

(1− ν2)

1∫

−1

|f(x)|
(1− |x|)2 dx+ j′ν

2

1∫

−1

|f(x)|
(1− |x|) dx ≤ (1 + 2ν)

1∫

−1

|f ′(x)|
(1− |x|) dx−

1∫

−1

|f ′(x)| dx,

where j′ν is the first positive root of the derivative J ′
ν of the Bessel function of order ν.

The latter inequality for ν = 1 is comparable with the following sharp inequality from [18]:

e

1∫

−1

|f(x)|
1− |x| dx ≤

1∫

−1

|f ′(x)|
1− |x| dx.

Example 3. If a = −1, b = 1, ν = 0, s > 0 and μ → s+νq
q , then it follows from Theorem 1 that

s

1∫

−1

|f(x)|
(1− |x|)s+1

dx ≤
1∫

−1

|f ′(x)|
(1− |x|)s dx−

1∫

−1

|f ′(x)| dx,

which is comparable with the sharp inequality from [17, Formula 3], that can be rewritten in the one-
dimensional case as

s

1∫

−1

|f(x)|
(1− |x|)s+1

dx ≤
1∫

−1

|f ′(x)|
(1− |x|)s dx−

1∫

−1

|f ′(x)|(1− |x|) dx.

1.3. Lp-inequalities on a segment. Here we obtain the one-dimensional Lp-inequalities. For
their proof we use the above-proved inequalities in L1.

Theorem 2. Suppose that p ≥ 1, r ∈ [1, p], and f is an absolutely continuous function on [a, b] such
that f(a) = f(b) = 0. Let s > 0, q > s, μ ∈ (

0; 2sq
]
, and ν ∈ [

0, sq
]
. Then

(s2 − rν2q2)

b∫

a

|f(x)|p
δ(x)s+1

dx+
qr

δq0

(
qλ2

ν(2s/q) + μ(q − s)

(
2− qμ

s

)) b∫

a

|f(x)|p
δ(x)s−q+1

dx

≤ prs2(1−r)

(
2s+ 2νq − q2μ2

s

)r
b∫

a

|f(x)|p−r · |f ′(x)|r
δ(x)s−r+1

dx,

where δ(x) = min {b− x, x− a}, δ0 = b−a
2 , and the constant z = λν(r) is the first positive solution to

the equation
(r − 2μ)Jν(z) + 2zJ ′

ν(z) = 0, z ∈ (0, jν).

Proof. Let g belong to C1[0, 1]. Then f(x) = |g(x)|p belongs to C1[0, 1], since

d

dx
|g(x)|p = p|g(x)|p−1g′(x) sign g(x)

and |g(x)|p−1 sign g(x) is continuous for p > 1.
Applying Corollary 3 to f(x) = |g(x)|p ∈ C1[0, 1], we obtain

(s2 − ν2q2)

1∫

0

|g(x)|p
xs+1

dx+

(
q2λ2

ν

(
2s

q

)
+ qμ(q − s)

(
2− qμ

s

)) 1∫

0

|g(x)|p
xs−q+1

dx

≤ p

(
2s+ 2νq − q2μ2

s

) 1∫

0

|g′(x)| · |g(x)|p−1

xs
dx.

1112



Using the elementary inequality (see [1, p. 37])

ap1bp2 ≤
(
p1a+ p2b

p1 + p2

)p1+p2

(6)

with

a = s2
|g(x)|p
xs+1

, b = prs2−2r

(
2s+ 2νq − q2μ2

s

)r |g(x)|p−r|g′(x)|r
xs+1−r

,

p1 = 1− 1
r , and p2 =

1
r , we derive

(s2 − rν2q2)

1∫

0

|g(x)|p
xs+1

dx+ qr

(
qλ2

ν(2s/q) + μ(q − s)

(
2− qμ

s

)) 1∫

0

|g(x)|p
xs−q+1

dx

≤ prs2(1−r)

(
2s+ 2νq − q2μ2

s

)r
1∫

0

|g(x)|p−r · |g′(x)|r
xs−r+1

dx. (7)

We obtained the inequalities on [0, 1]. The passage to the interval [a, b] is similar to that of the proof of
Theorem 1. Thus, we arrive at the sought assertion. �

Theorem 3. Suppose that p ≥ 1, r ∈ [1, p], and f is an absolutely continuous function on [a, b] such
that f(a) = f(b) = 0. Let s > 0, q > s, μ ∈ (

0; 2sq
]
, and ν ∈ [

0, sq
]
. Then

b∫

a

|f(x)|p
δ(x)s+1

dx+
qr

δq0

(
qλ2

ν(2s/q) + μ(q − s)

(
2− qμ

s

)) b∫

a

|f(x)|p
δ(x)s−q+1

dx

≤ pr

sr

(
2s

s− νq
− q2μ2

s2 − ν2q2

)r
b∫

a

|f(x)|p−1 · |f ′(x)|r
δ(x)s−r+1

dx,

where δ(x) = min {b− x, x− a}, δ0 = b−a
2 , and the constant z = λν(r) is the first positive solution to the

equation
(r − 2μ)Jν(z) + 2zJ ′

ν(z) = 0, z ∈ (0, jν).

Proof. We argue as in the proof of Theorem 2. Inserting

a =
|g(x)|p
xs+1

, b = pr
(

2

s− νq
− q2μ2

s3 − sν2q2

)r |g(x)|p−r|g′(x)|r
xs+1−r

,

p1 = 1− 1
r , and p2 =

1
r in (6), we derive the sought inequality. �

Theorem 4. Suppose that s, q > 0, ν ≥ 0, and f is an absolutely continuous function on [a, b] such
that f(a) = f(b) = 0. If μ ∈ [

0; s+νq
q

)
, then

(s2 − ν2q2)

b∫

a

|f(x)|s+1

δ(x)s+1
dx+

q2λ2
ν(2s/q)

δq0

b∫

a

|f(x)|s+1

δ(x)s−q+1
dx

≤ (s+ 1)s+1

ss

(
2s+ 2νq − q2μ2

s

) b∫

a

|f ′(x)|s+1 dx+
(s+ 1)

δs0

(
q2μ2

s
− 2qμ

) b∫

a

|f ′(x)| · |f(x)|s dx;
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if μ ≤ 0, then

(s2 − ν2q2)

b∫

a

|f(x)|s+1

δ(x)s+1
dx+

q2λ2
ν(2s/q)

δq0

b∫

a

|f(x)|s+1

δ(x)s−q+1
dx

≤ 2
(s+ 1)s+1

ss
(s+ νq)

b∫

a

|f ′(x)|s+1 dx− 2
(s+ 1)qμ

δs0

b∫

a

|f ′(x)| · |f(x)|s dx,

where δ(x) = min {b− x, x− a}, δ0 = b−a
2 , and the constant z = λν(r) is the first positive solution to

the equation
(r − 2μ)Jν(z) + 2zJ ′

ν(z) = 0, z ∈ (0, jν).

Proof. By Lemma 2,

(s2 − ν2q2)

1∫

0

|g(x)|s+1

xs+1
dx+ q2λ2

ν(2s/q)

1∫

0

|g(x)|s+1

xs−q+1
dx

≤ (s+ 1)

(
2s+ 2νq − q2μ2

s

) 1∫

0

|g′(x)| · |g(x)|s
xs

dx+ (s+ 1)

(
q2μ2

s
− 2qμ

) 1∫

0

|g′(x)| · |g(x)|s dx

for f(x) = gs+1(x) ∈ C1[0, 1]. Using the Opial inequality (see [38, p. 313])

b∫

a

|u(x)|p · |u′(x)|
(x− a)p

dx ≤
(

p

p+ 1

)−p
b∫

a

|u′(x)|p+1 dx, p > 0,

we derive

(s2 − ν2q2)

1∫

0

|g(x)|s+1

xs+1
dx+ q2λ2

ν(2s/q)

1∫

0

|g(x)|s+1

xs−q+1
dx

≤ (s+ 1)s+1

ss

(
2s+ 2νq − q2μ2

s

) 1∫

0

|g′(x)|s+1 dx

+(s+ 1)

(
q2μ2

s
− 2qμ

) 1∫

0

|g′(x)| · |g(x)|s dx. (8)

Acting similarly in the case μ < 0 yields

(s2 − ν2q2)

1∫

0

|g(x)|s+1

xs+1
dx+ q2λ2

ν(2s/q)

1∫

0

|g(x)|s+1

xs−q+1
dx

≤ (s+ 1)s+1

ss

(
2s+ 2νq

) 1∫

0

|g′(x)|s+1 dx− 2(s+ 1)qμ

1∫

0

|g′(x)| · |g(x)|s dx. (9)

To obtain the sought assertion, we need to pass from [0, 1] to the arbitrary interval [a, b] in (8) and (9). �
Now prove the inequalities for L2.
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Theorem 5. Suppose that f is an absolutely continuous function on [a, b] such that f(a) = f(b) = 0.
If q > 0, ν ≥ 0, and μ ∈ [

0; s+νq
q

)
, then

(1− ν2q2)

1∫

0

|f(x)|2
δ(x)2

dx+
q2λ2

ν(2/q)

δq0

1∫

0

|f(x)|2
δ(x)2−q

dx ≤ (8 + 8νq − 3q2μ2 − 2qμ)

1∫

0

|f ′(x)|2 dx;

if q > 0, ν ≥ 0, and μ ≤ 0, then

(1− ν2q2)

1∫

0

|f(x)|2
δ(x)2

dx+
q2λ2

ν(2/q)

δq0

1∫

0

|f(x)|2
δ(x)2−q

dx ≤ (8 + 8νq − 2qμ)

1∫

0

|f ′(x)|2 dx;

if q > 1, ν ∈ [
0, sq

]
and μ ∈ (

0; 2sq
]
, then

1− ν2q2

q

b∫

a

|f(x)|2
δ(x)2

dx+
qλ2

ν(2/q) + μ(q − 1)(2− qμ)

δq0

b∫

a

|f(x)|2
δ(x)2−q

dx ≤ 8 + 8νq − 4q2μ2

q

b∫

a

|f ′(x)|2 dx.

Proof. To obtain the result for μ ∈ [
0; s+νq

q

)
, put s = 1 in (8), and get

(1− ν2q2)

1∫

0

|f(x)|2
x2

dx+ q2λ2
ν(2/q)

1∫

0

|f(x)|2
x2−q

dx

≤ (8 + 8νq − 4q2μ2)

1∫

0

|f ′(x)|2 dx+ (2q2μ2 − 4qμ)

1∫

0

|f ′(x)| · |f(x)| dx.

Then use the Opial inequality (see [38])

ρ∫

0

|f(x)| · |f ′(x)| dx ≤ ρ

2

ρ∫

0

|f ′(x)|2 dx; (10)

hence,

(1− ν2q2)

1∫

0

|f(x)|2
x2

dx+ q2λ2
ν(2/q)

1∫

0

|f(x)|2
x2−q

dx ≤ (8 + 8νq − 3q2μ2 − 2qμ)

1∫

0

|f ′(x)|2 dx.

In the case μ < 0, inserting s = 1 in (9) and applying (10) yields

(1− ν2q2)

1∫

0

|f(x)|2
x2

dx+ q2λ2
ν(2/q)

1∫

0

|f(x)|2
x2−q

dx ≤ (8 + 8νq − 2qμ)

1∫

0

|f ′(x)|2 dx.

Put s = 1, r = 1, and p = 2 in (7). Then

1− ν2q2

q

1∫

0

|f(x)|2
x2

dx+
(
qλ2

ν(2/q) + μ(q − 1)(2− qμ)
) 1∫

0

|f(x)|2
x2−q

dx

≤ 4 + 4νq − 2q2μ2

q

1∫

0

|f(x)||f ′(x)|
x

dx.
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Using the Opial inequality (see [38])

ρ∫

0

|f(x)| · |f ′(x)|
x

dx ≤ 2

ρ∫

0

|f ′(x)|2 dx

leads to

1− ν2q2

q

1∫

0

|f(x)|2
x2

dx+
(
qλ2

ν(2/q) + μ(q − 1)(2− qμ)
) 1∫

0

|f(x)|2
x2−q

dx

≤ 8 + 8νq − 4q2μ2

q

1∫

0

|f ′(x)|2 dx.

It only remains to pass to [a, b] in these three cases. �

2. Inequalities in the Convex Domains of the Euclidean Space Rn

Here we present the multidimensional analogs of the inequalities obtained above. Assume that Ω is
a convex domain of finite inner radius. We use Avkhadiev’s method from [16] (see also [17, 18]) to prove
the inequalities which is based on a special approximation of Ω by cubes. In the case of convex sets, the
proof of the multidimensional inequalities reduces to application of the one-dimensional inequalities.

Let Ω be an open convex set in Rn of finite inner radius

δ0 = δ0(Ω) = sup
z∈Ω

δ(x),

where δ(x) = dist(x, ∂Ω). Denote by C1
0 (Ω) the well-known space of smooth functions f : Ω → R

compactly-supported in Ω.
As we mentioned above, the situation is rather simple for convex domains, and the one-dimensional

inequalities extend straightforwardly to the spatial case. Namely, Avkhadiev’s method is reduced to the
following assertion:

Theorem A. Let Ω be an open compact set in Rn of finite inner radius δ0 = δ0(Ω). If

α∫

0

|f ′(t)|p
ts−p

dt ≥ b2
α∫

0

|f(t)|p
ts

dt+
c2

δm0

α∫

0

|f(t)|p
ts−m

dt, f ∈ C1
0 (0, 2α),

for every α ∈ (0, δ0] and nonnegative b and c, then

∫

Ω

∇|f(x)|p
δ(x)s−p

dx ≥ b2
α∫

0

|f(x)|p
δ(x)s

dx+
c2

δm0

α∫

0

|f(x)|p
δ(x)s−m

dx, f ∈ C1
0 (Ω).

2.1. L1-inequalities. Combining Theorems A and 1 yields

Theorem 6. Let Ω be an open convex set in Rn of finite inner radius δ0 = δ0(Ω). Suppose that
s, q > 0, ν ≥ 0, f ∈ C1

0 (Ω), and f ′(x)/δs(·) ∈ L1(Ω). If μ ∈ (
0; s+νq

q

)
, then

(s2 − ν2q2)

∫

Ω

|f(x)|
δ(x)s+1

dx+
q2λ2

ν(2s/q)

δq0

∫

Ω

|f(x)|
δ(x)s−q+1

dx

≤
(
2s+ 2νq − q2μ2

s

)∫

Ω

|∇f(x)|
δ(x)s

dx+

(
q2μ2

sδs0
− 2qμ

δs0

)∫

Ω

|∇f(x)| dx;
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if μ ≤ 0, then

(s2 − ν2q2)

∫

Ω

|f(x)|
xs+1

dx+
q2λ2

ν(2s/q)

δq0

∫

Ω

|f(x)|
δ(x)s−q+1

dx

≤ 2(s+ νq)

∫

Ω

|∇f(x)|
δs(x)

dx− qμ

δs0

∫

Ω

|∇f(x)| dx,

where the constant z = λν(r) is the first positive solution to the equation

(r − 2μ)Jν(z) + 2zJ ′
ν(z) = 0, z ∈ (0, jν).

Combining Theorem A and Corollary 3 leads to

Theorem 7. Let Ω be an open convex set in Rn of finite inner radius δ0 = δ0(Ω). Suppose that
s > 0, q > s, and f ∈ C1

0 (Ω) is such that |∇f(x)|/δs(x) ∈ L1(Ω). If μ ∈ (
0; 2sq

]
and ν ∈ [

0, sq
]
, then

(s2 − ν2q2)

∫

Ω

|f(x)|
δ(x)s+1

dx+
q

δq0

(
qλ2

ν

(
2s

q

)
+ μ(q − s)

(
2− qμ

s

))∫

Ω

|f(x)|
δ(x)s−q+1

dx

≤
(
2s+ 2νq − q2μ2

s

)∫

Ω

|∇f(x)|
δ(x)s

dx,

where z = λν(r) is a constant satisfying the condition

(r − 2μ)Jν(z) + 2zJ ′
ν(z) = 0, z ∈ (0, jν).

2.2. Lp-inequalities. Combining Theorems A, 2, and 3, we obtain

Theorem 8. Let Ω be an open convex set in Rn of finite inner radius δ0 = δ0(Ω). Suppose that
p ≥ 1, r ∈ [1, p] and f ∈ C1

0 (Ω). If s > 0, q > s, μ ∈ (
0; 2sq

]
, and ν ∈ [

0, sq
]
, then

(s2 − rν2q2)

∫

Ω

|f(x)|p
δ(x)s+1

dx+
qr

δq0

(
qλ2

ν(2s/q) + μ(q − s)

(
2− qμ

s

))∫

Ω

|f(x)|p
δ(x)s−q+1

dx

≤ prs2(1−r)

(
2s+ 2νq − q2μ2

s

)r ∫

Ω

|f(x)|p−r · |∇f(x)|r
δ(x)s−r+1

dx;

if s > 0, q > s, μ ∈ (
0; 2sq

]
, and ν ∈ [

0, sq
]
, then

∫

Ω

|f(x)|p
δ(x)s+1

dx+
qr

δq0

(
qλ2

ν(2s/q) + μ(q − s)

(
2− qμ

s

))∫

Ω

|f(x)|p
δ(x)s−q+1

dx

≤ pr

sr

(
2s

s− νq
− q2μ2

s2 − ν2q2

)r ∫

Ω

|f(x)|p−r · |∇f(x)|r
δ(x)s−r+1

dx,

where the constant z = λν(r) is the first positive solution to the equation

(r − 2μ)Jν(z) + 2zJ ′
ν(z) = 0, z ∈ (0, jν).

To prove the inequalities in Lp, we can use the Lp-Lemma from [48] (see also [17, 18]).
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23. Fernández J. L. and Rodŕıguez J. M., “The exponent of convergence of Riemann surfaces. Bass Riemann

surfaces,” Ann. Acad. Sci. Fenn. Ser. A. I. Math., vol. 15, 165–183 (1990).
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