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LACKING ANY INDEPENDENT BASES OF QUASI-IDENTITIES
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Abstract: Let Rpk be the variety of 2-nilpotent groups of exponent pk with commutator subgroup of
exponent p (p is a prime). We prove the infinity of the set of the subquasivarieties of Rpk (k ≥ 2)
generated by a finite group and lacking any independent bases of quasi-identities.
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Introduction

We consider the question of the existence of the independent bases of quasi-identities of groups and
address the complexity of the lattices of quasivarieties of groups. Significantly many papers are devoted
to studying the independent bases of quasi-identities of groups is the contents. Here are some of them. We
proved in [1] that if some quasivariety of groups contains an infinite cyclic group and lacks infinitely many
groups of prime order then it has an independent basis of quasi-identities. Therefore, we consider the
problem of the existence of an independent basis of quasi-identities in the class of torsion-free groups for
quasivarieties of torsion-free groups. In [2], the conditions are found for the existence of an independent
basis of quasi-identities in the class of torsion-free groups. In particular, it turned out that some widely
studied quasivarieties (for example, the quasivariety generated by a free nonabelian soluble group or
the quasivariety of all linearly ordered groups) have independent bases of quasi-identities in the class
of torsion-free groups. It is shown in [3] that the set of the quasivarieties of the soluble groups which
lack any independent bases of quasi-identities in the class of torsion-free groups has cardinality of the
continuum. In [4], some continuous series are constructed of the quasivarieties of nilpotent groups which
lack any independent bases of quasi-identities. In [1], we constructed a quasivariety of groups which lacks
any independent basis of quasi-identities that can be defined by an independent system of ∀-formulas.

Fedorov proved in [5] that a free 2-nilpotent group of rank n ≥ 2 has no independent basis of quasi-
identities in the class of torsion-free groups. He also demonstrated in [6] that the analogous property is
possessed by the quasivariety generated by a nonabelian group of order p3, with p a prime and p �= 2.
Let Rpk be the variety of 2-step nilpotent groups of exponent pk with commutator subgroup of exponent p
(p is a prime and k ≥ 2). It follows from [7] that the quasivariety generated by a free nonabelian Rpk -group
lacks any independent bases of quasi-identities.

In the process of the development of quasivariety theory, it became known rather quickly that the
lattices of quasivarieties have a very complicated structure. For example, the articles [8–11] point out the
complexity of the lattices of quasivarieties. Information on the complexity of the lattices of quasivarieties
of groups can be found in [7, 12–15]. Let us mention the articles [13, 14, 16] in which it is proved that only
one nonabelian quasivariety of torsion-free 2-nilpotent groups of exponent pk with commutator subgroup
of prime exponent has a finite lattice of subquasivarieties.

We obtain the theorem that characterizes the complexity of the lattice of the subquasivarieties of
the quasivariety Rpk (k > 1); namely, we prove that there exists an infinite set of the subquasivari-
eties M ⊆ Rpk generated by a finite group such that the interval [M ,N ] of the lattice of quasivarieties
has cardinality of the continuum for every quasivariety N (M � N ⊆ Rpk). Basing on this result, we
show that the set of the quasivarieties generated by a finite group which are contained in Rpk (k ≥ 2)
and lack any independent bases of quasi-identities is infinite.
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1. Preliminaries

Note that the needed information on quasivarieties can be found in [16, 17]. We introduce the
following definitions and notations:

〈S〉 is the group generated by a set S, 〈a〉 is the cyclic group generated by an element a, G′ is the
commutator subgroup of a group G, Z(G) is the center of G, and kerϕ is the kernel of a homomorphism ϕ.
If x and y are elements of a group then [x, y] = x−1y−1xy. As usual, if A and B are subgroups of G then
[A,B] = 〈[a, b] | a ∈ A, b ∈ B〉.

Rpk (p is a prime, k ≥ 2) is the variety defined by the identities

(∀x)(∀y)(∀z)([x, y, z] = 1), (∀x)(xpk = 1), (∀x)(∀y)([x, y]p = 1);

qG is the quasivariety generated by a group G;
M (G) is the least normal subgroup of G the quotient group by which belongs to a quasivariety M ;
[M ,N ] = {R | M ⊆ R ⊆ N } is a closed interval in the lattice of quasivarieties of groups;
∨ is the lattice sum;
F2 is a free Rpk -group with free generators a and b;

and
Zpn is a cyclic group of order pn.
We will use the fact that the following identities hold in every nilpotent group of class 2:

(∀x)(∀y)(∀z)([xy, z] = [x, z][y, z]), (∀x)(∀y)(∀z)([x, yz] = [x, y][x, z]).

We say that commutation on the noncentral elements of a group G is transitive if [x, y] = 1, [x, z] = 1
implies [y, z] = 1 for all x, y, z ∈ G not contained in the center of G.

Suppose that some groups A and B have the representations

A = 〈{xi | i ∈ I1}; {tj = 1 | j ∈ J1}〉, B = 〈{yi | i ∈ I2}; {rj = 1 | j ∈ J2}〉,

in Rpk with the disjoint sets of generating symbols. Then the group having in Rpk the representation

〈{xi | i ∈ I1} ∪ {yi | i ∈ I2}; {tj = 1 | j ∈ J1} ∪ {rj = 1 | j ∈ J2}〉

is called the free product in Rpk of A and B and is denoted by A ∗R
pk
B. We will often write A ∗ B

instead of A ∗R
pk
B, omitting the index Rpk . Note that the set of the generating symbols of A ∗R

pk
B

coincides with the union of the sets of the generating symbols of A and B, and the set of the defining
relations of A ∗R

pk
B coincides with the union of the sets of defining relations of A and B.

We will use Dyck’s Theorem [18, Subsection 11.2, Theorem 5].

Lemma 1. Suppose that a group A has the representation

A = 〈{xi | i ∈ I}; {rj(xj1 , . . . , xjl(j)) = 1 | j ∈ J}〉

in a given quasivariety M . Suppose that H ∈ M and H includes some set of elements {gi | i ∈ I}
such that rj(gj1 , . . . , gjl(j)) = 1 is true in H for each j ∈ J . Then the mapping xi → gi (i ∈ I) extends
to a homomorphism of A to H.

Below we will need the following test for the membership of a finitely-defined group G in the subva-
riety qR generated by a class R [16, Theorem 2.3.9; 17, Corollary 2.1.21].

Lemma 2. A group G finitely-defined in a quasivariety N belongs to the quasivariety generated
by a class R (R ⊆ N ) if and only if for every g ∈ G (g �= 1) there exists a homomorphism ϕg of G
into some group of class R such that gϕg �= 1.
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Lemma 3. Let G ∈ Rpk be a nontrivial finite group. Then G is representable in Rpk as

G =
〈
x1, . . . , xn;x

pn1

1 c1 = 1, . . . , xp
nl

l cl = 1, cl+1 = 1, . . . , cs = 1
〉
,

where c1, . . . , cs are elements in the commutator subgroup, ni ≥ 1, i = 1, . . . , l (the relations xp
n1

1 c1 =

1, . . . , xp
nl

l cl = 1 or cl+1 = 1, . . . , cs = 1 can be absent).

Proof. The group G/G′ splits into the direct product of its nontrivial cyclic subgroups: G/G′ =
〈x1G′〉 × · · · × 〈xnG′〉. The elements x1, . . . , xn, generating G modulo the commutator subgroup, gener-
ate G. In these generators, G has the desired representation. The lemma is proved.

Lemma 4. Let M ⊆ Rpk be an arbitrary quasivariety of groups such that Zp∗Zp ∈ M . Suppose that
groups A and B in M have representations Rpk analogous to the representation of Lemma 3 in generators
a1, . . . , an and b1, . . . , bm respectively. If N is a (possibly trivial) subgroup in A ∗ B generated by some
commutators of the form [ai, bj ] then (A ∗B)/N ∈ M .

Proof. Put G = (A ∗ B)/N and [A,B] = 〈[ai, bj ] | i = 1, . . . , n, j = 1, . . . ,m〉. Since G/[A,B] ∼=
A×B, we have G/[A,B] ∈ M . Take an arbitrary nonidentity element g ∈ [A,B]. It suffices (in view of
Lemma 2) to show that gϕ �= 1 for some homomorphism ϕ of G to a suitable group in M .

The element g can be written down as

g =
∏

[ai, bj ]
mij .

Fix a pair of indices u, v such that muv �≡ 0 (mod p). Let Zp ∗ Zp = 〈a, b〉. By Lemma 1, the mapping

au → a, bv → b,

ai → 1 for i �= u; bj → 1 for j �= v

extends to a homomorphism ϕ : G→ Zp ∗ Zp ∈ M ; moreover, gϕ = [a, b]muv �= 1. The lemma is proved.

Corollary 1. If M ⊆ Rpk is a quasivariety of groups such that Zpk ∈ M and Zp ∗ Zp ∈ M then
Zps ∗ Zpt ∈ M for s, t ≤ k.

Let Arm (r,m ≥ 1) be the group defined in Rpk by the generators

ajl, bjt (j = 1, . . . , 2r; l = 1, . . . , 2m, t = 1, . . . , 2w)

and the defining relations

w∏

j=1

[b1j , b1,w+j ]
m∏

j=1

[a1j , a1,m+j ] = · · · =
w∏

j=1

[b2r,j , b2r,w+j ]
m∏

j=1

[a2r,j , a2r,m+j ],

[alj , ati] = 1 (for all l �= t).

Put c1 =
∏w
j=1[b1j , b1,w+j ]

∏m
j=1[a1j , a1,m+j ].

The groups with the same representation but with respect to other quasivarieties were considered
in [7, 15, 19], and for k = 1, in [14].

Lemma 5. Let M ⊆ Rpk be an arbitrary quasivariety of groups such that Zpk , Zp ∗Zp ∈ M . Then
Arm/〈c1〉, Arm ∈ M .

Proof. Let Bi be the group having the following representation in Rpk :

Bi =

〈
{ail, bit | l = 1, . . . , 2m, t = 1, . . . , 2w};

w∏

j=1

[bij , bi,w+j ]
m∏

j=1

[aij , ai,m+j ] = 1

〉
.
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These groups were studied in [16, Theorem 4.2.24; 19] in Rp. The proof of the fact that Bi ∈ M
(by induction on m + w on applying Lemma 4) is an almost verbatim repetition of the proofs of the
analogous assertions in [16, Theorem 4.2.24; 19] and so we omit the proof. The group Arm/〈c1〉 can be
constructed fromBi by repeating the construction of Lemma 4 several times. By Lemma 4 Arm/〈c1〉 ∈ M .

Consider the homomorphism ϕ : Arm → F2 for which bϕj1 = a, bϕj,w+1 = b (j = 1, . . . , 2r) and the
images of the other generators are equal to the identity. The existence of ϕ follows from Dyck’s Theorem
(Lemma 1). We see that cϕ1 = [a, b] �= 1. Consequently, 〈c1〉∩kerϕ = 1. Hence, Arm embeds in the group
Arm/〈c1〉 ×Arm/ kerϕ; therefore, Arm ∈ M . The lemma is proved.

Denote by Ctp(w) (1 ≤ t ≤ k − 1) the group that is represented in Rpk as

Ctp(w) =

〈
a0, a1, . . . , a2w; a

pt

0

w∏

i=1

[ai, aw+i] = 1

〉
.

Lemma 6. Commutation on noncentral elements is transitive in Ctp(w).

Proof. It is not hard to see that the commutator subgroup of Ctp = Ctp(w) is the free abelian group

of exponent p with free generators [ai, aj ] (0 ≤ i < j ≤ 2w). Let a, b, c �∈ Z
(
Ctp

)
and [a, b] = 1, [a, c] = 1.

These elements are representable as

a = ak00 a
k1
1 . . . ak2w2w c1, b = al00 a

l1
1 . . . a

l2w
2w c2, c = am0

0 am1
1 . . . am2w

2w c3,

where c1, c2, and c3 are in the commutator subgroup of the free group. Then

[a, b] =
∏

0≤i<j≤2w

[ai, aj ]
kilj−kj li = 1, [a, c] =

∏

0≤i<j≤2w

[ai, aj ]
kimj−kjmi = 1,

whence kilj − kjli ≡ 0 (mod p) and kimj − kjmi ≡ 0 (mod p) for all 0 ≤ i < j ≤ 2w. It follows that the
rank of the matrix (

k0 k1 k2 . . . k2w
l0 l1 l2 . . . l2w
m0 m1 m2 . . . m2w

)

is equal to 1. Consequently, limj − ljmi ≡ 0 (mod p) for all 0 ≤ i < j ≤ 2w. This means that [b, c] = 1.
The lemma is proved.

Lemma 7. If w1 < w2 then
(
ap

t

0

)ϕ
= 1 for every homomorphism ϕ : Ctp(w1) → Csp(w2).

Proof. Suppose that
(
ap

t

0

)ϕ �= 1. Let F be the Rpk -free group with free generators a0, a1, . . . , a2w2

and let bi be the inverse image of aϕi under the natural homomorphism of F onto Csp(w2). Since

(
aϕ0

)pt
w1∏

i=1

[
aϕi , a

ϕ
w1+i

]
= 1;

in F we have

bp
t

0

w1∏

i=1

[bi, bw1+i] = amp
s

0

w2∏

i=1

[ai, aw2+i]
m

for some m (0 ≤ m < p). If m = 0 then bp
t

0 ∈ F ′, whence bp
t

0 = 1. Hence,
(
ap

t

0

)ϕ
= 1, which fails. Thus,

we suppose that m �= 0.

Consider the group F = F/F p
2〈
aF0

〉
free in the manifold Rp2 with free generators ā1, . . . , ā2w2 . Let b̄i

be the image of bi under the natural homomorphism of F onto F . We have

b̄p
t

i

w1∏

i=1

[b̄i, b̄w1+i] =

w2∏

i=1

[āi, āw2+i]
m.

Since b̄p
t

i ∈ F
′
(t ≥ 1), we have b̄p

t

i = 1. We get a contradiction to the fact that, as was proved in [16,
Theorem 4.2.3] (see also [6, Lemma 3]), the element

∏w2
i=1[āi, āw2+i] and so its every power other than

the identity cannot be written down as a product of less than w2 commutators. The lemma is proved.
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Corollary 2. If w1 < w2 then the quasi-identity

Φt,w1 = (∀x0) . . . (∀x2w1)
(
xp

t

0

∏
[xi, xw1+i] = 1 → xp

t

0 = 1
)

holds in Csp(w2).

2. The Group Hrm

Fix quasivarieties M and N such that M � N ⊆ Rpk . We assume that M is generated by a set
of finite groups in each of which commutation on noncentral elements is transitive. Moreover, we assume
that the groups Zpk and Zp ∗ Zp belong to M .

If there is a finite group in N \ M defined in Rpk by a representation in which all defining words
are elements of the commutator subgroup of a free group (i.e., commutator words), then we fix a group
G ∈ N \ M with the least number of these relations. If there is no such group in N \ M ; then, as the
fixed group G, we take a finite group in N \M with the least number of relations in its representations
(with respect to Rpk) in the statement of Lemma 3.

Thus, G is generated by x1, . . . , xn and defined in Rpk by the defining relations r1 = 1, . . . , rs = 1,
where

r1 = xp
n1

1 w1, . . . , rd = xp
nd

d wd,

rd+1 = [xf(d+1), xg(d+1)]wd+1, . . . , rs = [xf(s), xg(s)]ws,

and n1, . . . , nd are naturals different from zero and less than k, while w1, . . . , ws are elements of the
commutator subgroup of the free group.

We say that the group G possesses property (P1) if r1 does not belong to the commutator subgroup of
the free group, and G possesses property (P2) if all its defining relations are elements of the commutator
subgroup of the free group (i.e., commutator words). Note that if G possesses property (P2) then its
defining relations have the form

[xf(1), xg(1)]w1 = 1, [xf(2), xg(2)]w2 = 1, . . . , [xf(s), xg(s)]ws = 1.

We may and will assume that the commutator [xf(i), xg(i)] occurs in a nonzero degree only in the
word ri.

Take an arbitrary nonidentity element v ∈ M (G). Since G/G′ ∈ M , we have M (G) ⊆ G′. If
some commutator [xf(i), xg(i)] occurs in v in a nonzero degree then it can be excluded from the rep-
resentation of v with the use of the defining relation ri = 1. Thus, fix v ∈ M (G) such that v �= 1,
v =

∏q
i=1[xh(i), xh(q+i)]

γi , and γi �≡ 0 (mod p) (i = 1, . . . , q) whose representation involves the commuta-
tors [xf(i), xg(i)] in a nonzero degree (i = d+ 1, . . . , s).

LetHrm(w) be the group (denoted byHrm to be as a rule) defined in Rpk by the generators x1, . . . , xn,
ajl, bjt (j = 1, . . . , 2r; l = 1, . . . , 2m, t = 1, . . . , 2w) and the following defining relations:

(i) all relations of Arm;
(ii) r1c1 = 1;
(iii) if G possesses property (P1) then, in each commutator [xh(i), xh(q+i)] (i = 1, . . . q), fix exactly

one element (this is xh(i) or xh(q+i)) different from x1 (denote it by x̄i) and introduce the relations:
[x̄i, btj ] = 1 and [x̄i, bt,w+j ] = 1 for all j = 1, . . . , w and all t such that t ≡ i (mod q); if G possesses
property (P2) then we introduce the relations [xh(i), btj ] = 1 and [xh(q+i), btj ] = 1 for all j = 1, . . . , w and
all t such that t ≡ i (mod q);

(iv) r2 = 1, . . . , rs = 1.
Recall that c1 =

∏w
j=1[b1j , b1,w+j ]

∏m
j=1[a1j , a1,m+j ] is the word from the definition of Arm. The

definition of Hrm depends on which of the properties, (P1) or (P2), is possessed by G.
Denote

∏q
i=1[xh(i), xh(q+i)]

γi ∈ Hrm again by v.
Throughout the article we denote by H the group that has in Rpk the representation H = 〈x1, . . . , xn;

r2 = 1, . . . , rs = 1〉.
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Lemma 8. H ∈ M .

Proof. Clearly, H/〈r1〉 ∼= G; therefore, H/〈r1〉 ∈ N . Let 〈a〉 be a cyclic group of order pk.
By Lemma 1, the mapping x1 → a, xi → 1 (i ≥ 2) extends to some homomorphism ϕ : H → 〈a〉 ∈ N ;
moreover, rϕ1 = ap

n1 . The groups 〈r1〉 and 〈apn1 〉 have identical orders equal to pk−n1 ; therefore, ϕ
sends 〈r1〉 onto 〈apn1 〉 isomorphically. (If G possesses property (P2) then consider the mapping ϕ under
which xf(1) → a ∈ F2, xg(1) → b ∈ F2, and xi → 1 for i �∈ {xf(1), xg(1)}.) We see that 〈r1〉 ∩ kerϕ = 1.
Hence, H embeds in H/〈r1〉 ×H/ kerϕ ∈ N . Since H has less defining relations than G, the choice of
G implies that H ∈ M . The lemma is proved.

Lemma 9. If, for some w1 (1 ≤ w1 < w), the groups C1
p(w1), C

2
p(w1), . . . , C

k−1
p (w1) belong to M

then Hrm(w) ∈ M ∨ qG.
Proof. Clearly,

Hrm/〈c1〉 ∼= (G ∗Arm/〈c1〉)/N,
where N = 〈[x̄i, btj ], [x̄i, bt,w+j ] | i = 1, . . . , q, all t ≡ i (mod q), j = 1, . . . , w〉 or N = 〈[xh(i), btj ],
[xh(q+i), btj ] | i = 1, . . . , q, j = 1, . . . , w, all t ≡ i (mod q)〉 ifG possesses property (P1) or (P2) respectively.

By Lemma 4 (applied to the quasivariety M ∨ qG), Hrm/〈c1〉 ∈ M ∨ qG. It suffices now to construct
a homomorphism ϕ : Hrm →M into a suitable group M ∈ M such that cϕ1 �= 1.

If G possesses property (P1) then we take M = Cn1
p (w1) ∈ M . Put xϕ1 = a0 and (btj)

ϕ = aj ,
(bt,w+j)

ϕ = aw1+j for j = 1, . . . , w1 and all t. The images of the remaining generators are assumed
to be equal to the identity. Since x̄ ϕ

i = 1 for every i, we see that we can apply Lemma 11, by which ϕ
extends to a homomorphism (which we again denote by ϕ) of Hrm onto Cn1

p (w1); moreover, cϕ1 =∏w1
i=1[ai, aw1+i] �= 1.
If G possesses property (P2) then we take M = F2 = 〈a, b〉 ∈ M and put xϕf(1) = a, xϕg(1) = b. If the

relation [xf(1), bl1] = 1 or the relation [xg(1), bu1] = 1 occurs among the defining relations of Hrm then

we put bϕl1 = a, bϕl,w+1 = b−1 or bϕu1 = b, bϕu,w+1 = a respectively. If none of the relations [xf(1), bt1] = 1

and [xg(1), bt1] = 1 occurs in list (iii) then we put bϕt1 = a and bϕt,w+1 = b−1 for all t. The images of

the remaining generators are assumed equal to the identity. Since the commutator [xf(1), xg(1)] does not
occur in the representation of v, the relations [xf(1), bl1] = 1 and [xg(1), bl1] = 1 cannot simultaneously
occur in the list of the defining relations of Hrm. This means that ϕ is well defined. By Lemma 1, this
mapping extends to a homomorphism (which we still denote by ϕ) onto F2; moreover, cϕ1 = [a, b]−1 �= 1.
The lemma is proved.

The proof of Lemma 9 implies that if a group G is defined only by commutation defining relations
then the assumption of the presence in M of the groups C1

p(w1), C
2
p(w1), . . . , C

k−1
p (w1) is unnecessary.

In this case, we have

Corollary 3. If G is defined in Rpk only by commutation defining relations and Zpk , Zp ∗ Zp ∈ M
then Hrm ∈ M ∨ qG.

Lemma 10. Suppose that R is a group in M , while ϕ : Hrm → R is an arbitrary homomorphism
and r ≥ q. Then vϕ = 1, where v =

∏q
i=1[xh(i), xh(q+i)]

γi ∈ Hrm. In particular, Hrm �∈ M .

Proof. Assume that vϕ �= 1. Since M is generated by the groups in which commutation on non-
central elements is transitive, by the membership test (Lemma 2), there exists a homomorphism ψ of R
into some such group for which vϕψ �= 1. So, we may and will assume that commutation on noncentral
elements of R is transitive.

Since vϕ �= 1, there exists a number i (1 ≤ i ≤ q) such that [xh(i), xh(q+i)]
ϕ �= 1. In particular,

x̄ ϕ
i �∈ Z(R). Since in Hrm we have the relations

[x̄i, btj ] = 1, [x̄i, bt,w+j ] = 1 (t ≡ i (mod q), j = 1, . . . , w)

and commutation is transitive on noncentral elements, we obtain

[btj , bt,w+j ]
ϕ = 1 (t ≡ i (mod q), j = 1, . . . , w).
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In the case when G possesses property (P2), the relations

[xh(i), xh(q+i)]
ϕ �= 1, [xh(i), btj ]

ϕ = 1,

[xh(q+i), btj ]
ϕ = 1 (t ≡ i (mod q), j = 1, . . . , w)

and the transitivity of commutation on noncentral elements implies that bϕtj ∈ Z(R), whence also

[btj , bt,w+j ]
ϕ = 1 (t ≡ i (mod q), j = 1, . . . , w).

Suppose that there exists l with [ail, ai,m+l]
ϕ �= 1. Take the commutator [atf , at,m+f ]

ϕ (t �= i). The
defining relations of Arm imply that the elements in different commutators commute. The transitivity of
commutation implies that [atf , at,m+f ]

ϕ = 1. The above yields

m∏

j=1

[atj , at,m+j ]
ϕ = 1 for t ≡ i (mod q) (t �= i);

i.e., cϕ1 = 1.

If [ail, ai,m+l]
ϕ = 1 for every l then we also find that cϕ1 = 1. Thus, cϕ1 = 1.

Let ψ : Hrm → Hrm/〈c1〉 be a natural homomorphism. Since 〈c1〉 ⊆ kerϕ, there exists a homomor-
phism ξ : Hrm/〈c1〉 → R such that ϕ = ψξ; in particular, (g〈c1〉)ξ = gϕ for every g〈c1〉 ∈ Hrm/〈c1〉.
In proving Lemma 9, we noticed that Hrm/〈c1〉 ∼= (G ∗ Arm/〈c1〉)/N . This means in particular that
〈x1, . . . , xn〉ψ ∼= G. Since vψ ∈ M (G), we conclude that vψξ = 1; i.e., vϕ = 1. The lemma is proved.

Denote by Brm the group defined in Rpk by the generators

ajl, bjt (j = 1, . . . , 2r; l = 1, . . . , 2m, t = 1, . . . , 2w), x1, . . . , xn

and the defining relations (presenting a part of the defining relations of Hrm)

(i′) [ali, atj ] = 1 for all l, j, t, and i such that l �= t;

(ii′) [x̄i, btj ] = 1, [x̄i, bt,w+j ] = 1 for all t such that t ≡ i (mod q) (j = 1, . . . , w, i = 1, . . . , q) if G
possesses property (P1) and [xh(i), btj ] = 1, [xh(q+i), btj ] = 1 for all t such that t ≡ i (mod q) (j = 1, . . . , w,
i = 1, . . . , q) if G possesses property (P2);

(iii′) r2 = 1, . . . , rs = 1.

Let ct =
∏w
j=1[btj , bt,w+j ]

∏m
j=1[atj , at,m+j ] ∈ Brm and let Nrm =

〈
r1c1, c1c

−1
2 , . . . , c1c

−1
2r

〉
be a sub-

group in Brm. Clearly, Hrm
∼= Brm/Nrm.

Lemma 11. Brm ∈ M .

Proof. Let a group B be defined in Rpk by the generators ajl and bjt (j = 1, . . . , 2r; l = 1, . . . , 2m,
t = 1, . . . , 2w) and the defining relations [alj , ati] = 1 for all l, j, t, and i such that l �= t (this is a part of
the defining relations of Brm). By Lemma 4, B ∈ M . As is easy to observe, Brm = (H ∗B)/N , where

N = 〈[x̄i, btj ], [x̄i, bt,w+j ] | t ≡ i (mod q) (i = 1, . . . , q, j = 1, . . . , w)〉

if G possesses property (P1) and

N = 〈[xh(i), btj ], [xh(q+i), btj ] | t ≡ i (mod q) (i = 1, . . . , q, j = 1, . . . , w)〉

if G possesses property (P2).

By Lemma 8, H ∈ M ; hence, by Lemma 4 Brm ∈ M . The lemma is proved.
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Lemma 12. Let B be an l-generated subgroup in Brm. If m > C2
l = n(n−1)

2 then Φ(B) ∩Nrm = 1,
where Φ(B) is the Frattini subgroup of B.

Proof. Let g ∈ Φ(B) ∩Nrm, g �= 1. Since Φ(B) = BpB′, the element g is representable as g = gp1c
for some g1 ∈ B and c ∈ B′. Since B is an l-generated subgroup, B′ is a C2

l -generated group; hence, c is
representable as the product of C2

l commutators. Thus, g has the form

g = gp1

C2
l∏

i=1

[fi, fC2
l
+i].

Since g ∈ Nrm, g is representable as

g = (r1c1)
t1

2r∏

i=2

(
c1c

−1
i

)ti .

Therefore, g is representable as

g = rt11 c
t1+t2+···
1

2r∏

i=2

c−tii .

Since g �= 1, we see that some element ci (suppose for convenience that this is c1) occurs in g in
a nonzero degree. Let F2m = 〈y1, . . . , y2m〉 be a free Rpk -group of rank 2m and let π : Brm → F2m be
a homomorphism for which (a11)

π = y1, . . . , (a1,2m)
π = y2m and the images of the remaining generators

of Brm are equal to 1 (the existence of such a homomorphism follows from Lemma 1). We infer

(
gπ1

)p
C2

l∏

i=1

[
fπi , f

π
C2

l
+i

]
=

m∏

j=1

[(a1j)
π, (a1,m+j)

π]t1+t2+···.

Since the quasi-identities

(∀x)(∀x1) . . . (∀x2n)
(
xp

n∏

i=1

[xi, xn+i] = 1 → xp = 1

)
, n = 1, 2, . . . ,

hold in F2m, we obtain the following equality in F2m:

C2
l∏

i=1

[
fπi , f

π
C2

l
+i

]
=

m∏

j=1

[yj , ym+j ]
t1+t2+···.

This contradicts [16, Theorem 4.2.3] (see also [6, Lemma 3]) the fact that the element
∏m
j=1[yj , ym+j ],

and hence its any nonidentity degree cannot be written down in F2m as the product of at most m
commutators. The lemma is proved.

Lemma 13. Let A be an l-generated subgroup in Hrm. If m > C2
l then A ∈ M .

Proof. Let ϕ : Brm → Hrm be the natural homomorphism with kernel Nrm and let B be an arbi-
trary minimal preimage of A under ϕ. (An analogous trick was used in [20].) Show that B∩Nrm ≤ Φ(B).

Suppose that this fails. Then B ∩ Nrm �⊆ M for some maximal subgroup M in B. Hence, B =
(B ∩Nrm)M . Since (B ∩Nrm)

ϕ = 1, we conclude that Mϕ = A. This contradicts the minimality of the
preimage. Thus, B ∩Nrm ≤ Φ(B).

By Lemma 12, B ∩ Nrm = 1, and hence B ∼= A. It remains to use Lemma 11, which implies that
B ∈ M . The lemma is proved.

The meaning of the rather cumbersome inequalities in Lemma 14 is as follows: The number occurring
in it are “sufficiently large” and “one is much larger than the other,” the number of generators in Hrm,
while l = n+ 4rm+ 4rw and n+ 4wq + 4q is the number of generators in Hq1.
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Lemma 14. Let ϕ : Hrm → Hxy be a homomorphism where y > C2
n+4wq+4q, f = 2|Hxy |. Put

l = n + 4rm + 4rw. If r > 4mqf or y > C2
l then vϕ = 1, where v =

∏q
i=1[xh(i), xh(q+i)]

γi and q is the
number of commutators in this decomposition.

Proof. Suppose first that y > C2
l . Since Hrm is l-generated, Hϕ

rm is generated by l elements too.
Lemma 13 implies that Hϕ

rm ∈ M . By Lemma 10, vϕ = 1.
Suppose now that r > 4mqf . Our goal is to construct the homomorphism ψ : Hq1 → Hxy such that

vψ = vϕ. Note that f is greater than the number of subgroups in Hxy. For each i (1 ≤ i ≤ q), consider
the following subgroups in Hrm:

Bi = 〈ai,1, ai,2, . . . , ai,2m〉.
Note that the subgroups Bi and Bj for i �= j commute.

Let
Ct = BtBt+q, Bt+2q . . . Bt+(2f−1)q (t = 1, 2, . . . , q).

The existence of all these subgroups Bi and Ct follows from the inequality r > 4mqf .
Study Cϕt . Since the number of the groups Bϕ

t , B
ϕ
t+q, B

ϕ
t+2q, . . . , B

ϕ
t+(f−1)q is equal to f and the

number of subgroups in Hxy is less than f , some of these subgroups coincide. Let Bϕ
t+qi = Bϕ

t+qj (i < j).

The equality [Bt+qi, Bt+qj ] = 1 implies

1 =
[
Bϕ
t+qi, B

ϕ
t+qj

]
=

[
Bϕ
t+qi, B

ϕ
t+qi

]
;

i.e., the group Bϕ
t+qi is abelian. Therefore,

cϕ1 =
w∏

u=1

[bt+qi,u, bt+qi,w+u]
ϕ

m∏

u=1

[at+qi,u, at+qi,m+u]
ϕ =

w∏

u=1

[bt+qi,u, bt+qi,w+u]
ϕ.

Put dtj = bϕt+qi,j (j = 1, . . . , 2w).

Let us first assume that G possesses property (P1). Since

[x̄t, bt+qi,1] = 1, [x̄t, bt+qi,w+1] = 1,

we have [
x̄ϕt , dtj

]
= 1 (j = 1, . . . , 2w).

Similarly, considering the subgroups Bϕ
t+fq, B

ϕ
t+(f+1)q, B

ϕ
t+(f+2)q, . . . , B

ϕ
t+(2f−1)q in C

ϕ
t ; find the elements,

denoted by dt+q,j (j = 1, . . . , 2w), in some of these groups such that
[
x̄ ϕ
t , dt+q,j

]
= 1 (j = 1, . . . , 2w).

Suppose that G possesses property (P2). Since

[xh(i), bt+qi,1] = 1, [xh(q+i), bt+qi,1] = 1,

we have [
xϕh(i), dtj

]
= 1,

[
xϕh(q+i), dtj

]
= 1 (j = 1, . . . , 2w).

Similarly, [
xϕh(i), dt+q,j

]
= 1,

[
xϕh(q+i), dt+q,j

]
= 1 (j = 1, . . . , 2w).

In both cases,

cϕ1 =
w∏

u=1

[dt+q,u, dt+q,w+u].

Hence,
w∏

u=1

[dt,u, dt,w+u] =

w∏

u=1

[dt+q,u, dt+q,w+u].
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In both cases, use Lemma 1, by which the mapping

btj → dtj , bt+q,j → dt+q,j (t = 1, . . . , q, j = 1, . . . , 2w),

xi → xϕi (i = 1, . . . , n), aij → 1

extends to a homomorphism ψ : Hq1 → Hxy. We see that vψ = vϕ. Since Hq1 is generated by n+4wq+4q

elements and y > C2
n+4wq+4q, by Lemma 13 Hψ

q1 ∈ M . By Lemma 10 vψ = 1, whence vϕ = 1. The
lemma is proved.

Theorem 1. Let M and N be quasivarieties of groups, and let M be generated by the finite
groups such that commutation on their noncentral elements is transitive, M � N ⊆ Rpk . Suppose that

Zp ∗R
pk
Zp ∈ M and C1

p(w1), C
2
p(w1), . . . , C

k−1
p (w1) belong to M for some w1. Then the interval [M ,N ]

in the lattice of quasivarieties has cardinality of the continuum.

Proof. Take a finite group G �∈ M such that G ∈ N . Assume that the group G is defined among
the groups in N \M by the least number of defining relations (with respect to Rpk) such as in Lemma 3.

We will construct a countable sequence of groups H1, H2, . . . , contained in N . Fix a number w
(w ≥ w1). All groups Hrm in what follows contain this w. As H1, take an arbitrary group Hrm

in M ∨ qG. Suppose that Hi−1 is already constructed. As Hi, take the group Hrimi such that

(1) the image of v is equal to the identity under every homomorphism of Hi into Hj (j < i);

(2) if qi−1 is the number of generators in Hi−1 then every qi−1-generated subgroup in Hi belongs
to M (note that Hi exists due to Lemmas 13 and 14).

Let N be the set of naturals. Given a subset I ⊆ N, let MI = q{Hi | i ∈ I} be the quasivariety
generated by all groups Hi (i ∈ I). If Hi ∈ MI (i �∈ I); then, by the membership test (Lemma 2), Hi is
approximated by groups from {Hi | i ∈ I}, which contradicts Lemmas 13 and 14. Therefore, Hi /∈ MI

for i �∈ I, which yields the desired assertion. The theorem is proved.

The presence of C1
p(w1), C

2
p(w1), . . . , C

k−1
p (w1) in M is necessary only in Lemma 9. If the group G

from the proof of Theorem 1 is defined only by commutation defining relations; then, instead of Lemma 9,
we can use Corollary 3. The following assertion is a consequence of the proof of Theorem 1:

Theorem 2. Suppose that a quasivariety M is generated by finite groups in which commutation
on noncentral elements is transitive and M ⊆ Rpk . Suppose that Zpk , Zp ∗R

pk
Zp ∈ M . If G �∈ M can

be defined in Rpk only by commutation defining relations then the interval [M ,M ∨ qG] in the lattice
of quasivarieties of groups has cardinality of the continuum.

Theorem 3. The set of subquasivarieties Rpk (k ≥ 2) generated by a finite group and lacking any
independent bases of quasi-identities is infinite.

Proof. Let Mw be the quasivariety generated by the groups Ctp(w) (t = 1, . . . , k − 1) and Zp ∗ Zp;
i.e.,

Mw = q

(( k−1∏

t=1

Ctp(w)

)
× (Zp ∗ Zp)

)
.

For w1 < w2, the quasi-identity Φt,w1 is false in Ctp(w1) and, by Corollary 2, is true in each Csp(w2);
therefore, Mw1 �= Mw2 for w1 < w2.

If we assume that Mw has an independent basis of quasi-identities; then, as is known [17, Proposi-
tion 6.3.1], Mw has a covering in the lattice Lq(K ) of quasivarieties contained in K for every finitely
axiomatizable quasivariety K containing Mw. But, by Theorem 1, every interval [Mw,N ] has cardinal-
ity of the continuum for Mw � N ⊆ Rpk ; consequently, Mw has no coverings in Lq(Rpk). The theorem
is proved.
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