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ON THE WEAK π-POTENCY OF SOME
GROUPS AND FREE PRODUCTS
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Abstract: Let π be a set of primes. A group G is weakly π-potent if G is residually finite and, for each
element x of infinite order in G, there is a positive integer m such that, for every positive π-integer n,
there exists a homomorphism of G onto a finite group which sends x to an element of order mn.
We obtain a few results about weak π-potency for some groups and generalized free products.
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1. Introduction

Recall that a group G is called residually finite if, for every nonidentity element x in G, there exists
a homomorphism of G onto a finite group under which the image of x differs from the identity. Here we
consider some more subtle approximation properties of groups.

Let π be a set of primes. A positive integer n is called a π-integer if all prime divisors of n belong
to π. An element x of G is called π-potent if one of the following two conditions is fulfilled:

1. The order of x is infinite; and, for every positive π-integer n, there exists a homomorphism of G
onto some finite group which sends x to an element of order n.

2. The order of x is finite; and, for every positive π-integer n dividing the order of x, there is
a homomorphism of G onto a finite group which sends x to an element of order n.

Call a group G π-potent if G is residually finite and all elements of G are π-potent. If π coincides
with the set of all primes then the notions of π-potent element and π-potent group coincide with the
classical notions of potent element and potent group.

For an element of infinite order, the property of “being potent” (without the corresponding term)
arose in Stebe’s paper [1] where the potency of free groups and finitely generated torsion-free nilpotent
groups was established as an auxiliary result. Later the notion of potency was studied by a few authors
and extended to elements of finite order (see, for example, [2, 3]).

Compared to residual finiteness, the property of a group “being potent” is a sufficiently rigid con-
straint. Examples of residually finite but not potent groups are given by the Baumslag–Solitar groups
G1n = (a, b; b−1ab = an) for n ≥ 2. Nevertheless, these groups are π-potent, where π is the set of all
primes not dividing n.

As it turned out, many groups lacking the π-potency property are weakly π-potent. The notion
of weak π-potency is introduced as follows:

An element x of infinite order in a group G is called weakly π-potent if there is a positive integer m
such that, for each positive π-integer n, there is a homomorphism of G onto some finite group taking x
to an element of order mn.

A group G is called weakly π-potent if G is residually finite and all elements of G of infinite order
are weakly π-potent. If π coincides with the set of all primes then the notion of weakly π-potent element
coincides with the familiar notion of weakly potent element (see, for example, [4]).

Let us formulate the results of the present article:

Theorem 1. Let G be a residually finite almost soluble minimax group and let π be the set of all
primes not belonging to the spectrum of G. Let X = (x) be an infinite cyclic subgroup in G.
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Then there is a positive integer m such that, for every positive π-integer n, the group G contains
a characteristic subgroup W of finite index such that X ∩W = Xmn.

This theorem immediately implies

Corollary 1.1. Let G be a residually finite almost soluble minimax group. Then G is weakly
π-potent, where π is the set of all primes not belonging to the spectrum of G.

In connection with the statements of Theorem 1 and Corollary 1.1, recall that a group almost
possesses some property whenever it contains a subgroup of finite index with this property. Recall also
that, in each almost soluble minimax group G, there exists a subnormal series whose every factor is
either a quasicyclic group or an infinite cyclic group or a finite group. The spectrum of an almost soluble
minimax group G is the set of all primes p for which the corresponding quasicyclic group is present
among the terms of the above-mentioned series. Obviously, polycyclic groups are soluble minimax groups
with empty spectrum.

Polycyclic groups (even in the absence of torsion) are in general not potent. Some example is con-
structed in [3]. Since every polycyclic group is residually finite [5] and its spectrum is empty, Corollary 1.1
implies the following well-known assertion (see, for example, [4, 6]):

Corollary 1.2. Every polycyclic group is weakly potent.

Soluble minimax groups constitute an important subclass of the class of all soluble groups of finite
rank (see, for example, [7]). Recall that a group G has finite rank if there exists a positive integer r such
that each finitely generated group in G is generated by at most r elements. Since each finitely generated
residually finite group of finite rank is an almost soluble minimax group (see [8]); as another consequence
of Corollary 1.1, we obtain

Corollary 1.3. Let G be a finitely generated residually finite group of finite rank. Then G is weakly
π-potent for some set π consisting of almost all primes.

Let us turn to free products of groups. Observe first of all that the question remains open of the
closedness of the class of all potent groups under free products (The Kourovka Notebook, Problem 9.1).
On the other hand, Theorems 2–7 of the present article show that the weak potency property (the weak
π-potency property) behaves sufficiently “well” under free constructions:

Theorem 2. Let G = A ∗B be the free product of groups A and B.
1. If A and B are π-potent torsion-free groups then G is a π-potent group.
2. If A and B are π-potent groups then G is a weakly π-potent group.
3. If A and B are weakly π-potent groups then G is a weakly π-potent group.

Item 1 of this theorem was proved in [2] for the case when π coincides with the set of all primes.
Item 2 is a particular case of item 3, and item 3 is a particular case of the following theorem:

Theorem 3. Let G = (A∗B;H) be the free product of the groups A and B with finite amalgamated
subgroup H. If A and B are weakly π-potent groups then G is a weakly π-potent group.

One more result of the present article concerns with the case when the amalgamated subgroup H is
cyclic. This result is formulated as follows:

Theorem 4. Let G = (A ∗ B;H) be the free product of groups A and B with infinite cyclic
amalgamated subgroup H. Suppose that the subgroup H is residually separable in each of the groups A
and B and the generator h of H is weakly potent in each of the groups A and B.

If A and B are weakly π-potent subgroups then G is a weakly π-potent group.

This implies the following result of [4]:

Corollary 4.1. Let G = (A ∗ B;H) be the free product of groups A and B with infinite cyclic
amalgamated subgroupH and suppose that the subgroupH is residually separable in each of the groups A
and B. If A and B are weakly potent groups then G is a weakly potent group.
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The following three theorems are proved for the free product G = (A ∗ B;H) of residually finite
almost soluble minimax groups A and B with amalgamated subgroup H under various constraints on H.
Since every finitely generated residually finite group of finite rank is almost soluble and minimax (see [8]),
these theorems are applicable to the free product G = (A ∗ B;H) of finitely generated residually finite
groups A and B of finite rank with amalgamation H.

Theorem 5. Let G = (A ∗ B;H) be the free product of groups A and B with cyclic amalgamated
subgroup H, where H �= A and H �= B, and let A and B be residually finite almost soluble minimax
groups.

The following three assertions are equivalent:
1. G is residually finite.
2. H is residually separable in each of the groups A and B.
3. G is weakly π-potent, where π is the set of all primes not belonging to the union of the spectra

of A and B.

The equivalence of assertions 1 and 2 of Theorem 2 is proved in [9].

Corollary 5.1. A free product of two almost polycyclic groups with cyclic amalgamation is a weakly
potent group.

This well-known assertion stems from Theorem 5 since every polycyclic group has empty spectrum
and all subgroups in it are residually finite.

Theorem 6. Let G = (A ∗ B;H) be the free product of groups A and B with amalgamated sub-
group H normal in each of the groups A and B, where H �= A and H �= B, and let A and B be residually
finite almost soluble minimax groups.

The following three assertions are equivalent:
1. G is residually finite.
2. H is residually separable in each of the groups A and B.
3. G is weakly π-potent, where π is the set of all primes not belonging to the union of the spectra

of A and B.

The equivalence of assertions 1 and 2 of Theorem 6 is proved in [10].

Corollary 6.1. A free product of two almost polycyclic groups with normal amalgamation is
a weakly potent group.

This result supplements Classical Baumslag’s Theorem (see [11]), which states the residual finiteness
of two polycyclic groups with normal amalgamation.

Theorem 7. Let G = (A ∗ B;H) be the free product of groups A and B with amalgamated sub-
group H having finite index in each of the groups A and B, where H �= A and H �= B, and let A and B
be residually finite almost soluble minimax groups.

The following three assertions are equivalent:
1. G is residually finite.
2. H contains a subgroup L of finite index normal in G.
3. G is weakly π-potent, where π is the set of all primes not belonging to the spectrum of H.

The equivalence of assertions 1 and 2 in Theorem 7 is proved in [12].

Corollary 7.1. Let G = (A ∗ B;H) be the free product of almost polycyclic groups A and B
with amalgamated subgroup H having finite index in each of the groups A and B, where H �= A
and H �= B.

Then the following three assertions are equivalent:
1. G is residually finite.
2. H contains a subgroup L of finite index normal in G.
3. G is weakly potent.
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2. Auxiliary Assertions

Let G be an arbitrary group and let n be a positive integer. As usual, we denote by Gn the power
subgroup; i.e., the subgroup in G generated by the nth powers of all elements of G. If G is an abelian
group then Gn coincides with the set of the nth powers of elements of G. If G is an almost soluble
minimax group then, as is easy to see, Gn has finite index in G.

Lemma 1. Let π be a set of primes and let A be a torsion-free abelian group containing subgroups
isomorphic to the group Qp of p-adic fractions for no p ∈ π. Let H = (h) be a nonidentity subgroup in A.

Then for each positive π-integer n there exists a positive π-integer k such that H ∩Ak = Hn.

Proof. Let n = p1
s1 . . . pr

sr be the decomposition of n into prime factors from π. By hypothesis,
for each i = 1, . . . , r the group A has no subgroups isomorphic to Qpi . Therefore, for each i = 1, . . . , r

there exists a greatest nonnegative integer ti for which the equation xpi
ti = h is solvable in A. Then

H ∩Api
si+ti = Hpi

si .

Taking intersection over of the subgroups on the left-hand (right-hand) side of this equality over all
i = 1, . . . , r, we obtain H ∩Ak = Hn, where k = p1

s1+t1 . . . pr
sr+tr is a desired π-integer.

Lemma 2. Suppose that G is a finitely generated almost free group, F is a normal free subgroup
of finite index in G, while X = (x) is an infinite cyclic subgroup in G and m is a positive integer such
that X ∩ F = Xm.

For each positive integer n there exists a homomorphism ψ of G onto a finite group such that
|xψ| = mn.

In particular, the following assertions hold:
1. If x ∈ F (i.e., if m = 1) then x is a potent element of G.
2. G is weakly potent.
3. In particular, a generalized free product of two finite groups is a weakly potent group (because it

is almost free [11]).

Proof. By the Magnus Theorem, in a finitely generated group F , the intersection of all terms in
the lower central series F = γ1(F ) ≥ γ2(F ) ≥ · · · is trivial and all factors in this series are free abelian
groups of finite ranks. Since xm ∈ F , there are adjacent terms A = γi−1(F ) and B = γi(F ) such that
xm ∈ A and xm �∈ B. Then xmB is a nonidentity element of the free abelian group A/B; and, by
Lemma 1, for each positive integer n, there exists a positive integer k such that xmB has order n modulo
the subgroup (A/B)k = AkB/B. Then |xmAkB| = n; i.e.,

Xm ∩AkB = Xmn,

whence X ∩ AkB = Xmn; i.e., the order of the element xAkB of G/AkB is equal to mn. This and the
fact that the group G/AkB is residually finite (as a finitely generated almost nilpotent group) imply that
there is a homomorphism ϕ of G/AkB onto a finite group taking xAkB to an element of order mn. Now,
as a desired homomorphism ψ, we must take the product εϕ, where ε is the natural homomorphism of G
onto G/AkB.

3. Proofs of Theorems 1–7

Proof of Theorem 1. Let G be a residually finite almost soluble minimax group, and let π be the
set of all primes not belonging to the spectrum of G. Let X = (x) be an infinite cyclic subgroup in G.

Show that there exists a positive integer m such that, for every positive π-integer n, the group G
contains a characteristic subgroup W of finite index such that X ∩W = Xmn.

By hypothesis, G has a soluble minimax subgroup H of finite index. Since H contains a power
subgroup of G and all power groups in G are characteristic subgroups of finite index, we may assume
that H is a characteristic soluble minimax subgroup of finite index in G.
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Let τ(H) be the periodic radical of H; i.e., the greatest normal periodic subgroup. Then τ(H) is
a soluble group with the minimality condition; i.e., a finite extension of a direct product of finitely many
(or zero) quasicyclic groups. On the other hand, G is residually finite and, therefore, it (and so τ(H))
contains no quasicyclic subgroups. Consequently, τ(H) is a finite subgroup. This and the residual
finiteness of G imply that G contains a normal subgroup N of finite index with N ∩ τ(H) = 1; moreover,
we may assume additionally that N is characteristic in G.

The properties of H and N imply that S = H ∩ N is a characteristic soluble minimax subgroup
of finite index in G and S ∩ τ(H) = 1. This and the fact that τ(S) ⊆ τ(H) imply that τ(S) = 1.

By Maltsev’s Theorem [7, Subsection 5.2.1], the quotient group of every soluble group of finite rank
modulo its periodic radical admits a characteristic series whose all infinite factors are torsion-free abelian
groups of finite rank. This and the fact that τ(S) = 1 imply that such a series also exists in S. Thus, we
obtain a characteristic series of the group G:

G ≥ S = S1 ≥ S2 ≥ · · · ≥ Sr = 1,

in which all infinite factors are torsion-free abelian groups of finite rank.
Obviously, there exist adjacent terms of this series A = Si−1 and B = Si such that X ∩A = Xm �= 1

and X ∩B = 1. Then xmB is an element of infinite order of A/B. Therefore, A/B is an infinite group;
hence, A/B is a torsion-free abelian group of finite rank.

For applying Lemma 1 to A/B and π, we must check that A/B contains subgroups isomorphic to Qp

for no p ∈ π. If we assume that for some p ∈ π the subgroup Qp lies in A/B then the spectrum of Qp

(consisting of the only number p) is contained in the spectrum of A/B which is in turn included in the
spectrum of G contradicting the definition of π.

Let n be a positive π-integer. Show that G has a characteristic subgroup W of finite index such that
X ∩W = Xmn.

Applying Lemma 1 to the infinite cyclic subgroup (xmB) of A/B, we conclude that there exists
a positive π-integer k such that xmB has order n modulo (A/B)k = AkB/B. Therefore, the element xm

of A has order n modulo AkB; i.e., Xm ∩AkB = Xmn. Then

X ∩AkB = X ∩A ∩AkB = Xm ∩AkB = Xmn;

i.e., the order of the element xAkB of G/AkB is equal to mn.
Show that G/AkB is residually finite. The general criterion for the residual finiteness of an almost

soluble group of finite rank was obtained by Robinson and says that this group is reduced; i.e., contains no
quasicyclic subgroups and subgroups isomorphic to the additive group Q of rationals [7, Subsection 5.3.2].
Since G/AkB inherits the almost solubility and minimaxness from G; it contains no subgroups isomorphic
to Q. The absence of quasicyclic subgroups in G/AkB follows from the fact that all infinite factors in
the series G ≥ S = S1 ≥ S2 ≥ · · · ≥ Si−1 = A ≥ AkB are torsion-free abelian groups.

Thus, xAkB is an element of finite ordermn in the residually finite group G/AkB. Therefore, G/AkB
contains the power subgroup (G/AkB)l = GlAkB/AkB modulo which the order of the element xAkB is
equal to mn. Then the order of x modulo W = GlAkB equals to mn; i.e., X ∩W = Xmn. Moreover, W
is a characteristic subgroup of finite index in G.

Proof of Theorem 2. As was observed, assertions 2 and 3 of Theorem 2 are consequences of
Theorem 3. Prove assertion 1 of Theorem 2; i.e., show that the free product G = A ∗ B of torsion-free
π-potent groups A and B is a π-potent group.

Denote the cartesian subgroup of G by D. The quotient group G/D is isomorphic to the direct
product of the π-potent groups A and B; therefore, G/D is a π-potent group.

Show that every nonidentity element x in G is π-potent.
This is obvious when x �∈ D. In this case (due to the absence of torsion in A and B), xD has

infinite order in G/D ∼= A×B and is a π-potent element of G/D. Then x is a π-potent element of G as
a homomorphic preimage of a π-potent element of infinite order.
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Consider the case when x ∈ D. In this case x has an irreducible representation x = x1x2 . . . xr
of length r > 1. We may assume without loss of generality that x1 ∈ A, x2 ∈ B, x3 ∈ A, . . . . Owing
to the residual finiteness of A and B, there exist normal subgroups M and N of finite index in A
and B such that x1 �∈ M , x2 �∈ N , x3 �∈ M, . . . . Consider the free product GMN = A/M ∗ B/N
of the finite groups A/M and B/N and the homomorphism ρMN : G → GMN extending the natural
homomorphisms A → A/M and B → B/N . Then xρMN has in GMN the irreducible representation
xρMN = x1M · x2N · x3M . . . of length r > 1; therefore, xρMN �= 1. This and the fact that x belongs
to the cartesian subgroup D of G imply that xρMN is a nonidentity element of the cartesian subgroup F
of GMN ; moreover (as any cartesian subgroup) F is a normal free subgroup in GMN and its index in GMN

is finite (since GMN /F
∼= A/M × B/N is a finite group). Therefore, by Lemma 2(1), xρMN is a potent

element (of infinite order) in GMN . It follows that x is a potent (and, in particular, π-potent) in G.

Proof of Theorem 3. Let G = (A ∗B;H = K) be the free product of weakly π-potent groups A
and B with finite amalgamated subgroups H and K. Prove that G is a weakly π-potent group. Since
the free product of two residually finite groups with finite amalgamation is residually finite (see [11]), the
group G is residually finite. Therefore, for proving the weak π-potency of G, we must check that every
element x of infinite order in G is weakly π-potent.

Let us first consider the case when x ∈ A. Let X = (x). Since A is a weakly π-potent group,
there exists a positive integer m such that, for every positive π-integer n, the group A contains a normal
subgroup Pn of finite index such that X ∩ Pn = Xmn. In particular, X ∩ P1 = Xm.

SinceH is a finite subgroup in the residually finite groupA; therefore, A contains a normal subgroup T
of finite index such that H ∩ T = 1.

Put S = P1 ∩ T . Then S is a normal subgroup of finite index in A, while H ∩ S = 1 and

X ∩ S = X ∩ P1 ∩ T = Xm ∩ T = Xml

for some positive integer l.
The proof of the weak π-potency of x in G will be as follows: we will show that, for every positive

π-integer k, there exists a homomorphism of G onto a finite group under which the image of x has
order mlk.

Write down l as l = l1l2, where l1 is a π-integer, l2 is a π′-integer, and π′ is the complement
to π in the set of all primes. For the π-integer n = l1k, the equality X ∩ Pn = Xmn takes the form
X ∩ Pl1k = Xml1k. Let U = Pl1k ∩ S. Then U is a normal subgroup of finite index in A, H ∩ U = 1,
X ∩U = X ∩Pl1k ∩X ∩ S = Xml1k ∩Xml = Xd, where d = LCM(ml1k,ml1l2) = ml1kl2 = mlk (since l2
and k are coprime). Thus, X ∩ U = Xmlk; i.e., the order of the element x modulo U is equal to mlk.

Denote by V a normal subgroup of finite index in B which trivially intersects K. The condition
H∩U = 1 = K∩V makes it possible to consider the free product with amalgamation GUV = (A/U ∗B/V ;
HU/U = KV/V ) of the finite groups A/U and B/V and also the homomorphism ρUV : G → GUV

extending the natural homomorphisms A → A/U and B → B/V . Since the order of the element
xρUV = xU of GUV is equal to mlk and GUV is residually finite (see [11]), there exists a homomorphism ρ
of GUV onto a finite group preserving the order of xρUV ; i.e., such that |xρUV ρ| = |xρUV | = mlk. This
finishes the proof of the weak π-potency of x for the case of x ∈ A. The case of x ∈ B is treated similarly.

Consider the general case when x is an arbitrary element of infinite order in G. Since the orders
of conjugate elements of a group are equal and each element inG is conjugate to some cyclically irreducible
element of the group, we must prove weak π-potency for a cyclically irreducible element x of infinite order
in G. Consider the irreducible representation x = x1x2 . . . xr. If r = 1 then x ∈ A or x ∈ B; and so, by
the particular case studied above, the element x is weakly π-potent in G.

Let r > 1. We may assume without loss of generality that x1 ∈ A \H, x2 ∈ B \K, x3 ∈ A \H, . . . .
Since H and K are finite subgroups in the residually finite groups A and B, H and K are residually
separate in A and B. Therefore, there exist normal subgroups M and N of finite index in A and B such
that H ∩M = 1 = K ∩N and x1 �∈ HM , x2 �∈ KN , x3 �∈ HM, . . . . The condition H ∩M = 1 = K ∩N
makes it possible to consider the generalized free product GMN = (A/M ∗ B/N ;HM/M = KM/N) of

958



the finite groups A/M and B/N and also the homomorphism ρMN : G → GMN extending the natural
homomorphisms A → A/M and B → B/N . Since the representation x = x1x2 . . . xr is cyclically
irreducible, by the choice of M and N , the representation xρMN = x1M · x2N · x3M . . . is also cyclically
irreducible, and its length r is greater than 1. Therefore, xρMN has infinite order in the group GMN which
is weakly potent by Lemma 2(3). Hence, xρMN is a weakly potent element of GMN . It follows that x is
a weakly potent (and, in particular, weakly π-potent) element of G.

Proof of Theorem 4. Let G = (A ∗ B;h = k) be the free product of weakly π-potent groups A
and B with infinite amalgamated cyclic subgroups H = (h) and K = (k) residually separable in A and B
respectively. Suppose that elements h and k are weakly potent in A and B. Since G is residually finite
[9, Lemma 5], for proving the weak π-potency of G, we must check that any element x of infinite order
in G is weakly π-potent.

Since h and k are weakly potent in A and B, there exists a positive integer m such that for every
positive integer n the groups A and B contain normal subgroups Sn and Tn of finite index such that
H ∩ Sn = Hmn and K ∩ Tn = Kmn. In particular, H ∩ S1 = Hm.

Let us first consider the particular case when x ∈ A. Let X = (x). Since A is a weakly π-potent
group, there exists a positive integer μ such that, for every positive π-integer ν, the group A has a normal
subgroup Pν of finite index such that X ∩ Pν = Xμν . In particular, X ∩ P1 = Xμ.

Let S = S1∩P1. Then S is a normal subgroup of finite index in A; moreover, H ∩S = H ∩S1∩P1 =
Hm ∩ P1 = Hml and X ∩ S = X ∩ P1 ∩ S1 = Xμ ∩ S1 = Xμλ for some positive l and λ.

The proof of the weak π-potency of the element x in G will be as follows: For each positive π-
integer κ, we will present a homomorphism of G onto a finite group under which the image of x has
order μλκ.

Write down λ as λ = λ1λ2, where λ1 is a π-integer, λ2 is a π′-integer. For the π-integer ν = λ1κ, the
equality X ∩ Pν = Xμν takes the form X ∩ Pλ1κ = Xμλ1κ.

Let U = Pλ1κ ∩ S. Then U is a normal subgroup of finite index in A, H ∩ U = H ∩ S ∩ Pλ1κ =
Hml ∩ Pλ1κ = Hmll1 for some positive integer l1 and

X ∩ U = X ∩ Pλ1κ ∩X ∩ S = Xμλ1κ ∩Xμλ = Xδ,

where δ = LCM(μλ1κ, μλ1λ2) = μλ1κλ2 = μλκ (since λ2 and κ are coprime). Thus, X ∩ U = Xμλκ and
H ∩ U = Hmll1 ; i.e., |xU | = μλκ and |hU | = mll1.

For n = ll1, the equality K ∩ Tn = Kmn takes the form K ∩ Tll1 = Kmll1 . The subgroup V = Tll1 is
a normal subgroup of finite index in B and |kV | = mll1 = |hU |.

The last equality makes it possible to consider the free product with cyclic amalgamation GUV =
(A/U ∗B/V ;hU = kV ) of the finite groups A/U and B/V and also the homomorphism ρUV : G→ GUV

extending the natural homomorphisms A → A/U and B → B/V . Since |xρUV | = |xU | = μλκ and the
group GUV is residually finite (see [11]), there exists a homomorphism ρ of GUV onto a finite group such
that |xρUV ρ| = |xρUV | = μλκ. This finishes the proof of the weak π-potency of x for the case of x ∈ A.
The case of x ∈ B is treated similarly.

Consider the general case when x is an arbitrary element of infinite order in G. As in the proof
of Theorem 3, we may assume that x is cyclically irreducible. Consider the irreducible representation
x = x1x2 . . . xr. If r = 1 then x ∈ A or x ∈ B, and then, by the particular case considered above, the
element x is weakly π-potent in G.

Suppose now that r > 1. We may assume that x1 ∈ A \ H, x2 ∈ B \ K, x3 ∈ A \ H, . . . . Since
by hypothesis H and K are residually finite in A and B, there exist normal subgroups Q and R of finite
index in A and B such that x1 �∈ HQ, x2 �∈ KR, x3 �∈ HQ, . . . .

Obviously, there exist positive integers i and j such that H ∩Q = H i and K ∩R = Kj . For n = ij,
the equalities H ∩ Sn = Hmn and K ∩ Tn = Kmn look as H ∩ Sij = Hmij and K ∩ Tij = Kmij . On the
form, as was observed above, H ∩Q = H i and K ∩ R = Kj . Therefore, M = Q ∩ Sij and N = R ∩ Tij
are such that H ∩M = Hmij and K ∩N = Kmij ; i.e., |hM | = mij = |kN |.
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The last equality enables us to consider the generalized free product GMN = (A/M ∗B/N ;hM = kN)
of the finite groups A/M and B/N and also the homomorphism ρMN : G→ GMN extending the natural
homomorphisms A→ A/M and B → B/N .

Since M ⊆ Q, N ⊆ R, x1 �∈ HQ, x2 �∈ KR, x3 �∈ HQ, . . . ; therefore, x1 �∈ HM , x2 �∈ KN ,
x3 �∈ HM, . . . . This means that the expression xρMN = x1M · x2N · x3M . . . is irreducible (and even
cyclically irreducible) and its length r is greater than 1. Therefore, xρMN has infinite order in the
group GMN which is weakly potent by Lemma 2(3). Consequently, xρMN is a weakly potent element
of GMN . It follows that x is a weakly potent (and, in particular, weakly π-potent) element of G.

Proof of Theorem 5. Let A and B be residually finite almost soluble minimax groups and let π
be the set of all primes not belonging to the union of the spectra of A and B. By Corollary 1.1, the
groups A and B are weakly π-potent.

Let G = (A ∗ B;H) be the free product of A and B with cyclic amalgamated subgroup H = (h);
moreover, H �= A and H �= B. Theorem 5 proved here states the equivalence of the following conditions:

1. G is residually finite.

2. H is residually separable in each of the groups A and B.

3. G is weakly π-potent.

The equivalence of conditions 1 and 2 is proved in [9]. Here we will prove that these conditions are
equivalent to condition 3. Observe first of all that if H is finite then all three conditions are fulfilled (the
weak π-potency of the group G is guaranteed by Theorem 3, and the residual finiteness of G is ensured
by Baumslag’s Theorem (see [11]).

We may now assume that H is an infinite cyclic group. It is proved in [9, Lemma 3] that if,
in a residually finite almost soluble minimax group A, an infinite cyclic subgroup H is residually separable
then its generating element h is weakly potent in A. Therefore, if condition 2 is fulfilled then h is weakly
potent in A and B, and then by Theorem 4 the group G inherits weak π-potency from A and B. Thus,
we have the implication 2 ⇒ 3.

For finishing the proof, it remains to notice that the implication 3 ⇒ 1 is obvious.

Proof of Theorem 6. Let A and B be residually finite almost soluble minimax groups and let π
be the set of all primes not belonging to the union of the spectra of A and B. Let G = (A ∗B;H) be the
free product of A and B with normal amalgamated subgroup H; moreover, H �= A and H �= B.

Theorem 6 asserts the equivalence of the following conditions:

1. G is residually finite.

2. H is residually finite in each of the groups A and B; i.e., the quotient groups A/H and B/H are
residually finite.

3. G is weakly π-potent.

The equivalence of conditions 1 and 2 is proved in [10]. The implication 3 ⇒ 1 is obvious, and it
remains to check that 2 ⇒ 3.

Suppose the fulfillment of condition 2; i.e., that the quotient groups A/H and B/H are residually
finite. We have the following collection of residually finite almost soluble minimax groups: A, B, A/H,
and B/H, and the spectrum of each of these groups is disjoint from the set π. Therefore, by Corollary 1.1
A, B, A/H, and B/H are weakly π-potent. Hence, by Theorem 2 the free product A/H ∗B/H ∼= G/H
is a weakly π-potent group.

Since by condition 1 G is residually finite, for proving the weak π-potency of G, we must check the
weak π-potency for an arbitrary element x of infinite order in G.

If the order of xH is infinite then, by the weak π-potency of G/H, the element xH (and hence x) is
weakly π-potent.

Suppose that xH has finite order l; i.e., X ∩H = X l, where X = (x). Then X l is an infinite cyclic
subgroup in the residually finite almost soluble minimax group H and the spectrum of H is contained in
the spectra of A and B and hence is disjoint from π.
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Therefore, by Theorem 1 there exists a positive integer m such that, for each positive π-integer n,
the group H has a characteristic subgroup Wn of finite index such that X l ∩Wn = X lmn. Then

X ∩Wn = X ∩H ∩Wn = X l ∩Wn = X lmn;

i.e., |xWn| = lmn. Note that Wn is normal in G (since Wn is characteristic in H and H is normal in G).
Let εn : G→ G/Wn be the natural homomorphism. Then |xεn| = |xWn| = lmn.

The groups A/Wn and B/Wn are extensions of the finite group H/Wn by the residually finite
groups A/H and B/H. Therefore, A/Wn and B/Wn are residually finite, as it is easy to verify by using
Robinson’s result [7, Subsection 5.3.2] which states that, for a soluble (almost soluble) group of finite
rank, residual finiteness is equivalent to reducedness, i.e., to the absence of quasicyclic subgroups and
subgroups isomorphic to the additive group of rationals.

The quotient group G/Wn = (A/Wn ∗ B/Wn;H/Wn) is the free product of residually finite groups
A/Wn and B/Wn with finite amalgamated subgroup H/Wn. Therefore, G/Wn is residually finite
(see [11]). This and the fact that xεn is an element of order lmn in G/Wn imply that there exists
a homomorphism ϕn of G/Wn onto a finite group such that the order of xεnϕn is equal to lmn. This
finishes the proof of the weak π-potency of x.

Proof of Theorem 7. Let G = (A ∗ B;H) be the free product of residually finite almost soluble
minimax groups A and B with amalgamated subgroup H, where H is a proper subgroup of finite index
in each of the groups A and B.

Theorem 7 states the equivalence of the following conditions:
1. G is residually finite.
2. H has a subgroup L of finite index normal in G.
3. G is weakly π-potent, where π is the set of all primes not lying in the spectrum of H.
The equivalence of conditions 1 and 2 is proved in [12]. The implication 3 ⇒ 1 is obvious, and we

must only check that 2 ⇒ 3.
Suppose the fulfillment of condition 2; i.e., that H has no subgroup L of finite index normal in G.

Since by condition 1 G is residually finite, for checking condition 3, it remains to prove weak π-potency
for any element x of infinite order in G.

Let us first consider the case when xL is an element of infinite order in G/L = (A/L ∗ B/L;H/L)
(which is the free product of the finite groups A/L and B/L with amalgamation H/L and hence is weakly
potent by Lemma 2). In this case, the element xL (and hence x) is weakly potent and, in particular,
weakly π-potent.

Suppose that xL has finite order l; i.e., X ∩ L = X l, where X = (x). Then X l is an infinite cyclic
subgroup in the residually finite almost soluble minimax group L. Note also that the spectrum of L
coincides with the spectrum of H and hence is disjoint from π.

Consequently, by Theorem 1 there exists a positive integer m such that for each positive π-integer n
the group L contains a characteristic subgroup Wn of finite index such that X l ∩Wn = X lmn. Then

X ∩Wn = X ∩ L ∩Wn = X l ∩Wn = X lmn;

i.e., |xWn| = lmn. Note that Wn is normal in G (since Wn is characteristic in L and L is normal in G).
Let εn : G→ G/Wn be the natural homomorphism. Then

|xεn| = |xWn| = lmn.

The quotient group G/Wn = (A/Wn ∗ B/Wn;H/Wn) is the free product of the finite groups A/Wn

and B/Wn with amalgamated subgroup H/Wn. Therefore, G/Wn is residually finite (see [11]). This and
the fact that |xεn| = lmn imply that there exists a homomorphism ϕn of G/Wn onto a finite group such
that |xεnϕn| = lmn. This finishes the proof of the weak π-potency of x.
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