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Abstract: We describe the nonabelian simple finite groups whose every nonsolvable local maximal
subgroup is a Hall subgroup, and the nonsolvable finite groups whose all nonsolvable superlocals are
Hall subgroups.
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1. Introduction

Only finite groups are considered. Thompson described in [1] the structure of N -groups; i. e., the
nonsolvable groups whose every local subgroup is solvable. Monakhov studied in [2] the structure of
π-solvable groups with maximal Hall subgroups whose indices in the group are π-numbers. Tikhonenko
and Tyutyanov described in [3] all nonabelian simple groups modulo the classification of finite simple
groups, and Maslova described in [4] all nonabelian simple composition factors of every nonsolvable group
with maximal Hall subgroups. Maslova and Revin obtained in [5] a full description of the structure of
finite groups whose every maximal subgroup is a Hall subgroup. Modulo the classification of finite simple
groups, the author described in [6] the structure of nonabelian simple groups G whose every maximal
subgroup is either a solvable group or a Hall subgroup of G, as well as the structure of nonabelian
composition factors of every nonsolvable group whose every nonsolvable subgroup is a Hall subgroup.
There are some other articles in this direction; see [7–10] for instance.

A subgroup H of a group G is called a local (p-local) subgroup of G whenever G includes a nonidentity
primary subgroup (p-subgroup) P such that H = NG(P ). A subgroup H of a group G is called a local
(p-local) maximal subgroup of G whenever H is both local (p-local) and maximal in G. A subgroup H of
a groupG is called a nonsolvable maximal subgroup ofG wheneverH is a nonsolvable subgroup ofG andH
is maximal in G. A subgroup H of a group G is called a nonsolvable local (p-local) maximal subgroup
of G whenever H is local (p-local) in G and H is a nonsolvable maximal subgroup of G. A subgroup H
of a group G is called a maximal local (p-local) subgroup of G whenever H is inclusion-maximal in the
set of all local (p-local) subgroups of G. In every nonabelian simple group G each local (p-local) maximal
subgroup is a maximal local (p-local) subgroup, but the converse is false. Following [11, 1.5], denote
by Chev(p) the set of all groups of Lie type over finite fields of characteristic p. Each maximal p-local
subgroup in G ∈ Chev(p) is a parabolic subgroup of G by [11, Theorem 1.41].
Aschbacher introduced [12] the concept of superlocal to generalize parabolic subgroups: A p-superlocal

in a group G is a p-local subgroup A such that A = NG(Op(A)), and A is called a superlocal in G
whenever A is a p-superlocal in G for some p ∈ π(A). As established in [12], each p-local subgroup H
of G lies in some p-superlocal A of G such that Op(H) ≤ Op(A).
Following [13], define the binary relation ≤p on the set of all subgroups of some group G as follows:

Given subgroups A and B of G, write A ≤p B if and only if A ≤ B and Op(A) ≤ Op(B). Then ≤p is
a partial order. The maximal elements with respect to this order are called [13] p-maximal subgroups
of G. As established in [13], the concept of p-superlocal in some group G is equivalent to the concept of
p-maximal subgroup of G. Thus, we will freely pass between these concepts.
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This article continues [6]. Our goal now is to study the structure of nonabelian simple groups G whose
every nonsolvable local maximal subgroup is a Hall subgroup and to establish the normal structure of
nonsolvable groups G whose every nonsolvable p-superlocal is a Hall subgroup for all p ∈ π(G).
Following [6], we use the notation: Jh is the class of nonabelian simple groups whose every maximal

subgroup is either a solvable group or a Hall subgroup; Jlmh is the class of nonabelian simple groups whose
every nonsolvable local maximal subgroup is a Hall subgroup; Jslh is the class of nonabelian simple groups
whose every nonsolvable superlocal is a Hall subgroup; Th is the class of groups whose every nonsolvable
maximal subgroup is a Hall subgroup; Tlmh is the class of groups whose every nonsolvable local maximal
subgroup is a Hall subgroup; and Tslh is the class of groups whose every nonsolvable superlocal is a Hall
subgroup. The definitions of these classes of groups imply directly that Jslh ⊆ Jlmh. However, the
inductive arguments for Tslh-groups are simpler than for Tlmh-groups.
We obtain the next results:

Theorem 1. A group G is a Jlmh-group if and only if G is isomorphic to one of the following groups:
(1) L2(q) with q > 3;
(2) Sz(q) with q = 22n+1 and n ≥ 1;
(3) L3(q) with q = p

s ≥ 3 and s ≥ 1, where q �≡ 1 (mod 3);
(4) L5(2); L5(4); U3(3);

2F4(2)
′; A7; M11; M23; and J1.

Theorem 2. Given a nonsolvable Tslh-group G, denote by S(G) the solvable radical of G and put
G := G/S(G). Then

(1) Inn(A) ≤ G ≤ Aut(A), where the group A is isomorphic to one of the Jlmh-groups (1)–(4) in
Theorem 1;
(2) S(G) is a dispersive group.

2. Definitions, Notations, and Auxiliary Results

For the notations and definitions not explicit in this article; see [14–20]. Given a group G and
p ∈ π(G), denote by Gp some Sylow p-subgroup of G; by S(G), the solvable radical of G; while by
H ≤ G, H � G, and H · �G the properties that H is a subgroup, a normal subgroup, and a minimal
normal subgroup of G.
Given some set X of groups, if X contains all groups isomorphic to A for every group A ∈ X then X is

called a class of groups. A class X closed under homomorphic images is called a homomorph. A class X
is closed under normal subgroups or, briefly, Sn-closed whenever A ∈ X and H � A imply that H ∈ X.
Every group belonging to X is called an X-group. Denote by K(G) the class of simple groups isomorphic
to the composition factors of G, and by K(X) the union of the classes K(G) over all G ∈ X [19, 20].
To prove the main results of this article, we apply the classification theorem for nonabelian simple

groups and refer to their list as in [11, Table 2.4]. Proving Theorem 2, we use the main result of [21],
while proving Theorem 1, we depend much on the results about the minimal permutation representations
of simple classical groups [22–27]. A minimal permutation representation of a group G is a faithful
permutation representation of G of the least degree n. A group G is called dispersive if G has a normal
series whose every quotient is isomorphic to some Sylow subgroup of G; see [20, 4.7].
For G ∈ Chev(p) the subgroup B = NG(Gp) is called the Borel subgroup of G. A proper sub-

group P of G which includes B is called a parabolic subgroup of G. There exists a bijective correspon-
dence between the parabolic subgroups P of G and the subsets S of the system Π = {p1, p2, . . . , pl} of
simple roots [11, 2.1]; henceforth we will enumerate the vertices of the Dynkin diagram in accordance
with [11, Fig. 2.1]. Given i = 1, 2, . . . , l, put Si := Π\{pi} and let the parabolic subgroup Pi of G
correspond to Si. Then Pi is a parabolic maximal subgroup of G for all i = 1, 2, . . . , l [11, 2.1].
Recall the main result of [1]:

Lemma 2.1. Each nonsolvableN -group is isomorphic to a groupG satisfying Inn(A) ≤ G ≤ Aut(A),
where A is one of the following N -groups:
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(1) L2(q) with q > 3;
(2) Sz(q) with q = 22n+1 and n ≥ 1;
(3) L3(3), M11, A7, U3(3), and

2F4(2)
′.

Remark 2.1. The statement of Lemma 2.1 includes the group 2F4(2)
′, omitted in the first part of the

fundamental article [1]; it is an N -group; see [17, p. 74] for instance. Lemma 2.1 implies that a nonabelian
simple group A is an N -group if and only if A is isomorphic to one of the groups in claims (1)–(3) of
Lemma 2.1.

Proposition 2.1 [12]. If H is a p-local subgroup of a group G then G includes a p-superlocal A
satisfying H ≤ A and Op(H) ≤ Op(A).
Proposition 2.2. Jslh ⊆ Jlmh.
Proof. Take G ∈ Jslh. Then for every p ∈ π(G) each nonsolvable p-superlocal is a Hall subgroup

of G. Take a nonsolvable p-local maximal subgroup H of G. Proposition 2.1 shows that H lies in some
p-superlocal A of G. Since G is a simple group, from A < G and H ≤ A it follows that H = A is a Hall
subgroup of G. Thus, G ∈ Jlmh, and so Jslh ⊆ Jlmh. �
Proposition 2.3. Every superlocal is solvable in a nonsolvable group G if and only if G is an N -

group.

Proof. Straightforward from the definition of N -group and Proposition 2.1.

Lemma 2.2 [13, Proposition 1]. If a p-superlocal N of a group G normalizes a p-subgroup Q then
Q ≤ Op(N). In particular, Op(G) ≤ Op(N).
Lemma 2.3 [13, Proposition 3]. Consider two superlocals N1 and N2 of some group G and the

corresponding radicals P1 = Op(N1) and P2 = Op(N2). If N1 ≤ N2 then P1 ≥ P2 and P2 � N1.
Furthermore, if N1 ≤p N2 then N1 = N2. In particular, each superlocal is a p-maximal subgroup.
Lemma 2.4 [13, Proposition 4]. Consider a normal subgroup H of some group G. The following

hold:
(1) If P is a p-radical in G then P ∩H is a p-radical in H.
(2) If PH is a p-radical in H and NH = NH(PH) is the corresponding p-superlocal of H then

N = NG(PH) is a p-superlocal in G; moreover, N ∩ H = NH and P = Op(N) is a p-radical in G
satisfying P ∩H = PH .
Lemma 2.5. The class Tslh is an Sn-closed homomorph.

Proof. Given G ∈ Tslh, take A � G and a p-superlocal L in A for some p ∈ π(A). Verify that
A ∈ Tslh. The definition of p-superlocal yields Op(L) �= 1 and L = NA(Op(L)). By Lemma 2.4 L lies
in a p-superlocal U of G; furthermore, L = U ∩ A and Op(L) = A ∩ Op(U). By assumption, either U is
a solvable group or U is a Hall subgroup of G. If U is solvable then L ≤ U implies that L is a solvable
subgroup of A. If U is a Hall subgroup of G then L = U ∩ A is a Hall subgroup of A. Therefore, the
superlocal L in A is either solvable or Hall, and so A ∈ Tslh. Consequently, Tslh is Sn-closed.
Given G ∈ Tslh, take N � G and verify that G/N ∈ Tslh. Take a nonsolvable p-superlocal K/N

in G/N and put B/N := Op(K/N) �= 1. Then K/N = NG/N (B/N) = NG(B)/N , and so K = NG(B);
furthermore, B = BpN . Frattini’s argument yields K = BNK(Bp) = NNK(Bp).
Take g ∈ NG(Bp) := T . Then (Bp)g = Bp and Bg = (Bp)gNg = BpN = B. Consequently,

g ∈ NG(B) = K and T ≤ K. Thus, T = NG(Bp) = NK(Bp). Since K/N = NT/N ∼= T/(N ∩ T ) is
a nonsolvable group, T is a nonsolvable p-local subgroup of G. Then by Proposition 2.1 we see that T lies
in a p-superlocalW ofG; furthermore, Op(T ) ≤ Op(W ). By assumption,W is a Hall subgroup ofG. Since
K = NT ; therefore, K ≤ NW . This implies that K/N ≤ NW/N . Since Op(K/N) = B/N = BpN/N
and Bp ≤ Op(T ) ≤ Op(W ), it follows that Op(K/N) = BpN/N ≤ Op(W )N/N . Now the p-maximality
of K/N in G/N implies that K/N = NW/N , and so K = NW . Since W is a Hall subgroup of G, infer
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that K/N = NW/N is a Hall subgroup of G/N . Hence, G/N ∈ Tslh, and so Tslh is a homomorph. The
proof of Lemma 2.5 is complete. �

Lemma 2.6. If each superlocal in a solvable group G is a Hall subgroup then G is a dispersive
group.

Proof. For a counterexample G of minimal order, take a nonidentity p-group M � G. Consider
the quotient G/M and take a q-superlocal L/M in G/M . Then B/M = Oq(L/M) �= 1 and L/M =
NG/M (B/M) = NG(B)/M . If q = p then B/M = Op(L)/M and L/M = NG(Op(L))/M . Therefore,
L = NG(Op(L)), and so L is a p-superlocal in G. By assumption, L is a Hall subgroup of G. Then L/M
is a Hall subgroup of G/M .

Assume that q �= p. Then B = [M ]Bq and Frattini’s argument yields L = BNL(Bq) = MNL(Bq).
Take g ∈ NG(Bq). Then Bg = Mg(Bq)g = MBq = B, and so g ∈ NG(B). Since L/M = NG(B)/M ,
it follows that g ∈ NG(B) = L, and so g ∈ NL(Bq). Consequently, NL(Bq) = NG(Bq) := T . Since T
is a q-local subgroup of G, Proposition 2.1 shows that T lies in a q-superlocal U of G; moreover, Bq ≤
Oq(T ) ≤ Oq(U). Thus, B ≤ Oq(T )M ≤ Oq(U)M , and so

B/M = Oq(L/M) ≤ Oq(T )M/M ≤ Oq(U)M/M.

Moreover, L = MT ≤ MU and L/M = MT/M ≤ MU/M . Since L/M is a q-superlocal in G/M , it
follows that L/M is a q-maximal subgroup of G/M . The definition of q-maximal subgroup implies that
L/M =MU/M . By assumption, U is a Hall subgroup of G. Therefore, L/M is a Hall subgroup of G/M .

By induction, G/M is dispersive. In case M = Gp, G would be dispersive as well. Consequently, G
does not have normal Sylow subgroups and M < Gp. Take a normal Sylow r-subgroup C/M of G/M .
Then Cr is a Sylow r-subgroup of G. Since C � G, it follows that G = MNG(Cr). So, N := NG(Cr) is
an r-superlocal in G, and by assumption N is a Hall subgroup of G. Since p|(|N |, |G : N |); infer that N
is not a Hall subgroup of G; a contradiction. �
Remark 2.2. The converse to Lemma 2.6 is false. Consider G := SL2(3). Then G is dispersive,

but the 3-superlocal NG(G3) is not a Hall subgroup of G.

Lemma 2.7. If G is a nonsolvable Tslh-group then the solvable radical S(G) of G is a dispersive
group.

Proof. Given a nonsolvable Tslh-group G, suppose that R := S(G) is not a dispersive group and G
is a group of minimal order with these properties. Take a minimal normal subgroup M of G included
into R. Then M is an elementary abelian p-group for some p ∈ π(R). Since by Lemma 2.5 Tslh is
a homomorph, G/M ∈ Tslh. Then R/M := S(G/M), and by induction R/M is a dispersive group.
Consequently, R/M is q-closed for some q ∈ π(R/M). Suppose that q = p. Then Rp � R, and so Rp � G.
By induction, R/Rp is dispersive; hence, so is R; a contradiction. Thus, q �= p and R does not have
normal Sylow subgroups. Suppose that M ≤ Φ(R). Then from [20, Theorem 3.24] it follows that R is
a q-closed group; a contradiction.

Consequently, M ∩Φ(R) = 1 andM < Rp. The normal subgroupM is complemented in R. Suppose
that R = [M ]H. Since R/M ∼= H is q-closed, H = NR(Hq), and furthermore Hq is a Sylow q-subgroup
of R. Frattini’s argument yields G = RN , where N := NG(Hq). Since Hq is a q-radical in R, while
H = NR(Hq) is the corresponding q-superlocal in R, Lemma 2.4 shows that N = NG(Hq) is a q-
superlocal in G satisfying N ∩R = H, while Q = Oq(N) is a q-radical in G satisfying Q∩H = Hq. Since
G/R = RN/R ∼= N/(N ∩R); therefore, N is nonsolvable, and by assumption N is a Hall subgroup of G.
Then H = N ∩ R is a Hall subgroup of R, which contradicts the property that p divides (|H|, |R : H|).
Thus, R is dispersive. �

Lemma 2.8 [21]. A group G is a 2-nilpotent group if and only if the index of the normalizer of
an arbitrary Sylow subgroup in G is odd.

781



3. Proof of Theorem 1

Necessity: Consider a Jlmh-group G; i. e., a nonabelian simple group such that for every p ∈ π(G)
each p-local maximal subgroup of G is either a solvable group or a Hall subgroup of G. Verify that G is
isomorphic to one of the groups (1)–(4) in Theorem 1. If G is an N -group then G ∈ Jlmh, and Lemma 2.1
shows that G is a group of one of the types (1)–(4) in Theorem 1. Assume now that G is not an N -group.
Applying the results of [17; 22–27] on the minimal permutation representations of simple groups

of Lie type, we determine the cases in which the simple groups of Lie type, the alternating, and the
sporadic groups include a p-local maximal subgroup which is nonsolvable and is not a Hall subgroup of G
for some p ∈ π(G).
1. Suppose that G = PSLl+1(q) = Ll+1(q) ∼= Al(q) ∈ Jlmh with l ≥ 1 and q = ps for some prime p

and s ≥ 1. By Lemma 2.1, we may assume that l > 1.
Applying Theorem 1 of [23] on the minimal permutation representation of Ll+1(q) for l > 1, we have

separately to consider the case of L4(2) and the remaining groups with l > 1 of [23, Theorem 1].
Assume that G := L4(2). Then by [17, p. 22] G includes nonsolvable maximal subgroups of type

23 : L3(2) of order 1344 and index 15, which are not Hall subgroups of G, and so G is not a Jlmh-group;
a contradiction.
Suppose that G = Ll+1(q) for l > 1 such that the pair (l+1, q) is distinct from (4, 2). By [17, p. xv],

L3(2) ∼= L2(7). Lemma 2.1 shows that L3(2) and L3(3) are N -groups; thus, we may assume that
(l + 1, q) �∈ {(3, 2), (3, 3)}. Theorem 1 of [23] implies that G includes a nonsolvable p-local maximal
subgroup P1 ∼= psl · SLl(q) · t, where t = (q − 1)/(q − 1, l + 1),

|P1| = ql(l+1)/2 (q − 1)
d

l−1∏

i=1

(qi+1 − 1),

and n = |G : P1| = ql+1−1
q−1 .

Assume that l = 2 and (l + 1, q) �∈ {(3, 2), (3, 3)}. We have

|G| = |L3(q)| = (1/(q − 1, 3))q3(q3 − 1)(q2 − 1), |P1| = q3 (q − 1)
d
(q2 − 1),

where d = (3, q − 1) and |G : P1| = (q3 − 1)/(q − 1) = q2 + q + 1. Then P1 is a nonsolvable p-local
maximal subgroup of G. Suppose that q ≡ 1 (mod 3). Then |G : P1| ≡ 0 (mod 3) and q − 1 ≡ 0 (mod 3).
Consequently, (q − 1, 3) = 3. Therefore, |P1| and |G : P1| are divisible by 3, and so P1 is not a Hall
subgroup of G; a contradiction. Thus, q �≡ 1 (mod 3) and G is a group of type (3) in Theorem 1.
Assume that l ≥ 3 is odd. Then l + 1 = 2k with k > 1, and q2k − 1 is divisible by q2 − 1. Hence,

(q+1)|(|G : P1|, |P1|). Furthermore, for l ≥ 3 the subgroup P1 is a nonsolvable p-local maximal subgroup
of G. Consequently, G �∈ Jlmh; a contradiction.
Assume that l ≥ 4 is even. Proposition 1 of [24] shows that G includes the parabolic subgroup P2

corresponding to S2 = Π\{p2}. Furthermore,

|P2| = ql(l+1)/2 (q − 1)
d
(q2 − 1)

l−2∏

i=1

(qi+1 − 1)

and |G : P2| = (ql+1−1)(ql−1)
(q−1)(q2−1) , where d = (l + 1, q − 1). Then [14, § 2] implies that P2 is a nonsolvable

p-local maximal subgroup of G; also see [16, Proposition 4.1.17]).

Assume that l = 4. Then |G : P2| = (q5−1)(q4−1)
(q−1)(q2−1) . If q is odd then 2|(|G : P2|, |P2|). Hence,

G �∈ Jlmh; a contradiction. Suppose that q is even. If q = 2 then G ∼= L5(2). By [17, p. 70], all maximal
subgroups of G are Hall subgroups of G; moreover, each nonsolvable group among them is 2-local and G
is a group of type (4) of Theorem 1. Suppose that q = 2s with s > 1 and q ≡ 1 (mod 5). Then
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|G : P2| = (q4 + q3 + q2 + q + 1)(q2 + 1) ≡ 0 (mod 5). Since d = (5, q − 1) = 5 and |P2| is divisible by 5;
therefore, (|G : P2|, |P2|) is divisible by 5. Thus, P2 is not a Hall subgroup of G; and, furthermore, P2 is
a nonsolvable 2-local maximal subgroup of G; a contradiction. Consequently, q �≡ 1 (mod 5). According
to [18, Table 8.18], for q ≥ 5 the group SL5(q) includes a maximal subgroup A ∼= (q−1)4 : S5 which is not
a Hall subgroup of SL5(q) for q ≥ 5. Since for q �≡ 1 (mod 5) we have d := |Z(SL5(q))| = (5, q − 1) = 1,
it follows that SL5(q) ∼= L5(q) = G. This yields q = 2s < 5 and G ∼= L5(2s) for s = 1, 2. So, G is a group
of type (4) in Theorem 1.
Suppose that l ≥ 6 is even. Then l = 2m with m ≥ 3, and ql − 1 = q2m − 1 = (qm − 1)(qm + 1).

Define d1 = (q
m − 1, q2 − 1), then qm − 1 = d1t, and finally q2 − 1 = d1t1. Put s := ql+1−1

q−1 . Since m ≥ 3;
infer that t > 1, and moreover, (t, t1) = 1. Then

|G : P2| = (q
l+1 − 1)(ql − 1)
(q − 1)(q2 − 1) =

s(qm + 1)t

t1
.

Since (t, t1) = 1, it follows that s(q
m + 1) is divisible by t1. This implies that |G : P2| is divisible by t.

Since |P2| is divisible by qk − 1 for every 2 ≤ k ≤ l − 1 and 3 ≤ m = l/2 ≤ l − 1, we have (qm − 1)||P2|
and so t||P2|. Then t|(|G : P2|, |P2|); furthermore, by [14, § 2], for l ≥ 6 the subgroup P2 is a nonsolvable
p-local maximal subgroup of G; also see [16, Proposition 4.1.17]. Thus, G �∈ Jlmh; a contradiction.
2. Consider G = PSp2l(q) = S2l(q) ∼= Cl(q) ∈ Jlmh with l ≥ 1 and q = ps for some prime p

and s ≥ 1. Thus, G is a projective symplectic group and |G| = (1/d)ql2(q2−1)(q4−1) · · · (q2l−1), where
d := (2, q− 1). Then G is a simple group with the exception of S2(2) = L2(2) ∼= S3, S2(3) = L2(3) ∼= A4,
and S4(2) ∼= S6. Since S2(q) = L2(q), we may assume that l > 1 and the pair (2l, q) is distinct from (4, 2).
The minimal permutation representations of S2l(q), where 2l ≥ 4, with the point stabilizer H and degree
n = |G : H| are described in [23]. Applying [23, Theorem 2], we notice that H is a nonsolvable local
maximal subgroup of G in all but last cases; furthermore, in the first case for 2l = 4 and q = 3 we have
3|(n, |H|), and in all but last remaining cases we obtain (q + 1)|(n, |H|).
Assume that 2l ≥ 6 and q = 2. Since d := (2, q − 1) = 1, it follows that G = S2l(2) ∼= Sp2l(2). For

l ∈ {3, 4}, by [17, p. 46 and p. 123] the group G includes a subgroup H of type 25 : S4(2) and 27 : S6(2)
respectively and, moreover, 3|(|H|, |G : H|). For l ∈ {5, 6} by [18, p. 413 and p. 424], the group G
includes a subgroup H of type 29 : S8(2) and 2

11 : S10(2) respectively.
Assume that l > 6. Then by [16, Proposition 4.1.19] for m = 1 the group G includes a subgroup H

of type 2a.S2l−2(2), where a = (1/2)− (3/2)+ 2l = 2l− 1. Since |H| = 2l2(22− 1)(24− 1) · · · (22(l−1)− 1)
and |G| = 2l2(22 − 1)(24 − 1) · · · (22(l−1) − 1)(22l − 1), we find that |G : H| = 22l − 1 ≡ 0 (mod 3), and so
3|(|H|, |G : H|) for every l ≥ 3. Thus, G �∈ Jlmh for l > 1; a contradiction.
3. Consider G = PSUm(q) = Um(q) ∼= 2Am−1(q), where m ≥ 2 and q = ps for some prime p

and s ≥ 1. Therefore, G is a special projective unitary group and
|G| = (1/d)q(m−1)m/2(qm − (−1)m)(qm−1 − (−1)m−1) · · · (q2 − 1),

where d = (m, q + 1). Then G is a simple group with the exception of U2(2) = L2(2) ∼= S3, U2(3) =
L2(3) ∼= A4, and U3(2) ∼= 32 · 2 · 22. Since U2(q) = L2(q), we may assume that m > 2. Observe that
U4(2) ∼= S4(3). Lemma 2.1 implies that U3(3) is an N -group, and so U3(3) ∈ Jlmh. Thus, we may assume
that m ≥ 3 and (m, q) �∈ {(3, 2), (3, 3), (4, 2)}.
The minimal permutation representations of Um(q), where m ≥ 3, with the point stabilizer H and

degree n = |G : H|, are studied in [23]. Applying [23, Theorem 3], we consider the following cases:
3.1. Assume that m = 3 and q = ps ≥ 4. According to [18, Table 8.5], S := SU3(q) has a maximal

subgroup M := GU2(q). Furthermore, |S| = q3(q3+1)(q2−1), |M | = q(q+1)(q2−1), and |Z(M)| = q+
1 ≥ 5. Put Z := Z(S). SinceM is maximal in S, infer that Z ≤M ; furthermore, |Z| = (q+1, 3) ∈ {1; 3}.
Then |S/Z : M/Z| = |S :M | = q2(q2 − q + 1) and (|S/Z : M/Z|, |M/Z|) > 1. This implies that M/Z is
maximal in S/Z; also, M/Z is neither a solvable group nor a Hall subgroup of the group S/Z ∼= U3(q).
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Since Z(M)/Z �= 1; therefore, the group M/Z is a nonsolvable local maximal subgroup of S/Z, which
contradicts the hypotheses of Theorem 1.

3.2. Assume that m = 4 and q = ps for some prime p. By [23, Theorem 3] G = U4(q) includes
a nonsolvable local maximal subgroup H ∼= q4 ·SL2(q2) : ((q+1)/(q+1, 4)) with |G : H| = (q3+1)(q+1).
Since |SL2(q2)| = q2(q4 − 1), we have (q + 1)|(|H|, |G : H|); and so G = U4(q) �∈ Jlmh; a contradiction.
3.3. Assume that m > 4 and (m, q) �= (2s, 2), where q = ps for some prime p. By [23, Theorem 3]

G = Um(q) includes a maximal subgroup H ∼= q · q2(m−2) : SUm−2(q) : ((q2 − 1)/(m, q + 1)) with
|G : H| = (qm − (−1)m)(qm−1 − (−1)m−1)/(q2 − 1). Suppose that (m, q) = (5, 2). By [17, p. 73]
G = U5(2) includes a nonsolvable local maximal subgroup M ∼= 34 : S5. Therefore, 2|(|M |, |G : M |),
and so G = U5(2) �∈ Jlmh. Consequently, we may assume that m ≥ 7 is odd for q = 2. Then H is
a nonsolvable local maximal subgroup of G. Since for m = 2k or m = 2k − 1 the index |G : H| equals
(q2k − 1)(q2k−1 + 1)/(q2 − 1) or (q2k−1 + 1)(q2k−2 − 1)/(q2 − 1) respectively, and

|SUm−2| = q(m−2)(m−3)/2(qm−2 − (−1)m−2)(qm−3 − (−1)m−3) · · · (q2 − 1),
it follows that (q+1)|(|H|, |G : H|). Thus, for m > 4 with (m, q) �= (2s, 2) we see that G = Um(q) �∈ Jlmh;
a contradiction.

3.4. Assume that m ≥ 6 is even, m = 2k, and q = 2. By [17, p. 115] G = U6(2) includes
a nonsolvable local maximal subgroup K ∼= 29 : U4(2), and furthermore 3|(|K|, |G : K|). Consequently,
G = U6(2) �∈ Jlmh. Suppose that m ∈ {8, 10, 12}. According to [18, Tables 8.46, 8.62, and 8.72]
SUm(2) includes a nonsolvable local maximal subgroup K of type 2

13 : U6(2) : (2
2 − 1), 217 : U8(2) :

(22 − 1), and 221 : U10(2) : (22 − 1) respectively; and, furthermore, |Z(SUm(2))| ∈ {1, 3}. By [16,
Proposition 4.1.18], G = Um(2), for even m = 2k ≥ 8 includes a nonsolvable local maximal subgroup
K ∼= 22m−3 : (a/(2 + 1,m) · Um−2(2)) · b, where b = (22 − 1)(22 − 1, 1)(2 + 1,m− 2)/a. Since

|G| = 2k(2k−1)(22k − 1)(22k−1 + 1)(22k−2 − 1) · · · (23 + 1)(22 − 1)
and

|K| = 24k−3 · 2(k−1)(2k−3)(22k−2 − 1)(22k−3 + 1))
· · · (23 + 1)(22 − 1) · 3(3, 2k − 2)/(3, 2k),

we infer that
|G : K| = (22k − 1)(22k−1 + 1)(3, 2k)/3(3, 2k).

Observe that both factors 22k − 1 and 22k−1 + 1 are divisible by 3. Since 22k − 1 = (2k − 1)(2k + 1) is
divisible by 3, one of the factors is divisible by 3. If 3|(2k−1) then ((2k−1)/3)|(|K|, |G : K|). If 3|(2k+1)
then ((2k + 1)/3)|(|K|, |G : K|). Consequently, G = Um(2) �∈ Jlmh if m ≥ 6 is even; a contradiction.
4. Consider G = PΩ2l+1(q) = Ω2l+1(q) = O2l+1(q) ∼= Bl(q) with l ≥ 1 and q = ps for some prime p

and s ≥ 1. By [17, p. xii], we see that |G| = (1/d)ql2(q2l − 1)(q2l−2 − 1) · · · (q2 − 1), where d = (2, q − 1).
Following [24], we have

O3(q) ∼= L2(q), O+4 (q) ∼= L2(q)× L2(q), O−4 (q) ∼= L2(q2),
O5(q) ∼= S4(q), O+6 (q) ∼= L4(q), O−6 (q) ∼= U4(q).

Therefore, we assume that m = 2l + 1 ≥ 7.
The minimal permutation representations of the simple orthogonal group G = O2l+1(q), where

m = 2l + 1 ≥ 7 with the point stabilizer H of degree n = |G : H| are described in [24]. Applying [24,
Theorem], we notice that the following two cases must be considered:

4.1. Assume that q = 3. According to [24], in the group G = O2l+1(3) with 2l + 1 ≥ 7 the
maximal subgroup of least index is not local. Verify that G includes a nonsolvable 3-local maximal
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subgroup. Indeed, for l = 3, 4, 5, according to [18, Tables 8.39, 8.58, and 8.74], each of the groups Ω7(3),
Ω9(3), and Ω11(3) includes a nonsolvable 3-local maximal subgroup of type E

3+3
3 : (1/2)GL3(3), E

6+4
3 :

(1/2)GL4(3), and E
10+5
3 : (1/2)GL5(3) respectively. For l > 5 by [16, Proposition 4.1.20] G = Ω2l+1(3)

includes a nonsolvable 3-local maximal subgroup H ∼= [3a] : (1/2)GLl(3), where a = l(2l + 1) − (1/2)l
(3l + 1) = (1/2)l(l + 1). Since

|G| = (1/2)3l2(32l − 1)(32(l−1) − 1) · · · (34 − 1)(32 − 1),

|H| = 3l2(3l − 1)(3(l−1) − 1) · · · (33 − 1)(32 − 1),
it follows that

|G : H| = (1/2)(3l + 1)(3(l−1) + 1) · · · (33 + 1)(32 + 1)(32 − 1).
Then 2|(|H|, |G : H|). This implies that G = O2l+1(3) for 2l+1 ≥ 7 is not a Jlmh-group; a contradiction.
4.2. Assume that q = ps �= 3 and p is some odd prime. By [24, Theorem] G = O2l+1(q) for

2l+ 1 ≥ 7 includes a nonsolvable p-local maximal subgroup H ∼= q2l−1 · ((Ω2l−1(q)× (q − 1)/2) · 2); and,
furthermore, |G : H| = (q2l − 1)/(q − 1) = (ql − 1)(ql + 1)/(q − 1). Since 2l − 1 = 2(l − 1) + 1, we see
that |H| = q2l−1((1/d)q(l−1)2(q2(l−1)− 1)(q2(l−1)−2− 1) · · · (q2− 1)), where d = (2, q− 1). If l is odd then
(q+1)|(|H|, |G : H|). Suppose that l = 2r is even. Since 2(l−1) > l for l ≥ 3, it follows that |H| includes
the factor (ql − 1) = (qr − 1)(qr + 1); and, furthermore, l ≥ 4 and r ≥ 2. Then (qr − 1)/(q − 1) divides
(|H|, |G : H|). Consequently G is not a Jlmh-group; a contradiction.
5. Consider G = PΩ+2l(q) = O

+
2l(q)

∼= Dl(q) with l ≥ 1 and q = ps for some prime p and s ≥ 1. By
[17, p. xii],

|G| = (1/d)ql(l−1)(ql − 1)(q2l−2 − 1)(q2l−4 − 1) · · · (q4 − 1)(q2 − 1),
where d = (4, ql − 1). Appreciating the isomorphism of the groups in Subsection 4 of the proof, we may
assume that 2l ≥ 8. Verify that G = O+2l(q) for l ≥ 4 includes a nonsolvable local maximal subgroup of G
which is not a Hall subgroup of G.

5.1. Assume that l = 4. According to [18, Table 8.50], O := Ω+8 (q) includes a nonsolvable local
maximal subgroup A ∼= q6 : (1/(q − 1, 2))GL4(q). Put Z := Z(O). Then |Z| = (q − 1, 2). Since

|O| = |Ω+8 (q)| = (1/(2, q4 − 1))q12(q4 − 1)(q6 − 1)(q4 − 1)(q2 − 1),
|A| = q6 · (1/(q − 1, 2))(q − 1)q6(q4 − 1)(q3 − 1)(q2 − 1),

it follows that

|O : A| = (q3 + 1)(q2 + 1)(q2 − 1)(q − 1, 2)/(q − 1)(2, q4 − 1) = (q3 + 1)(q2 + 1)(q + 1).
5.1.1. Suppose that p = 2. Then Z = 1 and |A| = q12(q − 1)(q4 − 1)(q3 − 1)(q2 − 1), and so

(q + 1)|(|A|, |O : A|). Since G ∼= O, we see that G is not a Jlmh-group.
5.1.2. Suppose that p > 2. Then |Z| = 2, while G = O/Z and Z < A. Since

|A/Z| = (1/4)q12(q − 1)(q4 − 1)(q3 − 1)(q2 − 1),
we have |O/Z : A/Z| = |O : A| = (q3 + 1)(q2 + 1)(q + 1), and so (q + 1)|(|A/Z|, |O/Z : A/Z|). Since
G ∼= O/Z, we see that G = O+8 (q) is not a Jlmh-group.
5.2. Assume that l = 5. According to [18, Table 8.66], O := Ω+10(q) includes a nonsolvable local

maximal subgroup B ∼= q10 : (1/(q − 1, 2))GL5(q). Put Z := Z(O). Then |Z| ≤ 2. Since

|O| = |Ω+10(q)| = (1/(2, q5 − 1))q20(q5 − 1)(q8 − 1)(q6 − 1)(q4 − 1)(q2 − 1),
|B| = q10 · (1/(q − 1, 2))(q − 1)q10(q5 − 1)(q4 − 1)(q3 − 1)(q2 − 1),
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we see that

|O : B| = (q4 + 1)(q3 + 1)(q2 + 1)(q2 − 1)(q − 1, 2)/(q − 1)(2, q5 − 1)
= (q4 + 1)(q3 + 1)(q2 + 1)(q + 1).

5.2.1. Suppose that p = 2. Then Z = 1, while |B| = q20(q − 1)(q5 − 1)(q4 − 1)(q3 − 1)(q2 − 1), and
|O : B| = (q4 + 1)(q3 + 1)(q2 + 1)(q + 1), and so (q + 1)|(|B|, |O : B|). Since G ∼= O, we see that G is not
a Jlmh-group.

5.2.2. Suppose that p > 2. Then |Z| ≤ 2, while G = O/Z and Z < B. We have |B/Z| =
(1/4)q20(q−1)(q5−1)(q4−1)(q3−1)(q2−1), and |O/Z : B/Z| = |O : B| = (q4+1)(q3+1)(q2+1)(q+1).
Hence, (q + 1)|(|A/Z|, |O/Z : A/Z|). Since G ∼= O/Z, we see that G = O+10(q) is not a Jlmh-group.
5.3. Assume that l = 6. According to [18, Table 8.82], the group O := Ω+12(q) includes a nonsolvable

local maximal subgroup C ∼= q15 : (1/(q − 1, 2))GL6(q). Put Z := Z(O). Then |Z| = (2, q − 1). Since
|O| = |Ω+12(q)| = (1/(2, q6 − 1))q30(q6 − 1)(q10 − 1)(q8 − 1)(q6 − 1)(q4 − 1)(q2 − 1),
|C| = q15 · (1/(q − 1, 2))(q − 1)q15(q6 − 1)(q5 − 1)(q4 − 1)(q3 − 1)(q2 − 1),

it follows that
|O : C| = (q5 + 1)(q4 + 1)(q3 + 1)(q2 + 1)(q + 1).

5.3.1. Suppose that p = 2. Then Z = 1,

|C| = q30(q − 1)(q6 − 1)(q5 − 1)(q4 − 1)(q3 − 1)(q2 − 1),
|O : C| = (q5 + 1)(q4 + 1)(q3 + 1)(q2 + 1)(q + 1).

Hence, (q + 1)|(|C|, |O : C|). Since G ∼= O, we see that G is not a Jlmh-group.
5.3.2. Suppose that p > 2. Then |Z| = 2, while G = O/Z, and Z < C. We have

|C/Z| = (1/4)q30(q − 1)(q6 − 1)(q5 − 1)(q4 − 1)(q3 − 1)(q2 − 1),
|O/Z : C/Z| = |O : C| = (q5 + 1)(q4 + 1)(q3 + 1)(q2 + 1)(q + 1).

Hence, (q + 1)|(|A/Z|, |O/Z : A/Z|). Since G ∼= O/Z, we see that G = O+12(q) is not a Jlmh-group.
5.4. Assume that l > 6 and p > 2. By [16, Proposition 4.1.20], G = O+2l(q) includes a nonsolvable

p-local maximal subgroup of the following type.

5.4.1. Suppose that (1/2)l(q − 1) is odd. It follows that [qa] : (1/2)(GLl(q)) ∼= D ≤ G, where
a = l(2l)− (l/2)(3l + 1) = (l/2)(l − 1). Since

|D| = q(l/2)(l−1)(1/2)(q − 1)q(l/2)(l−1)(ql − 1)(ql−1 − 1) · · · (q3 − 1)(q2 − 1),
we have

|G : D| = 2(ql−1 + 1)(ql−2 + 1) · · · (q3 + 1)(q2 + 1)(q2 − 1)/(q − 1)(4, ql − 1).
Since (1/2)l(q−1) is odd and p > 2, we find that the 2-part of (q−1) satisfies (q−1)2 = 2. Consequently,
(4, ql − 1) = 2 and (q + 1)|(|D|, |G : D|); thus, G = O+2l(q) /∈ Jlmh.
5.4.2. Suppose that (1/2)l(q − 1) is even. Then [qa] : J ∼= F ≤ G, where a = l(2l)− (l/2)(3l + 1) =

(l/2)(l − 1) and |F | = q(l/2)(l−1)|J |.
5.4.2.1. Suppose that l is even. Then J ∼= (1/2)(q − 1).Ll(q) · ((1/2)(q − 1, l)), and so

|F | = q(l/2)(l−1)(1/2)(q − 1)(1/(q − 1, l))q(l/2)(l−1)(ql − 1)(ql−1 − 1)
· · · (q3 − 1)(q2 − 1)((1/2)(q − 1, l)).
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Thus,
|G : F | = (ql−1 + 1)(ql−2 + 1) · · · (q3 + 1)(q2 + 1)(q2 − 1)/(q − 1)(4, ql − 1).

Since l is even, we see that (4, ql−1) = 4; and, furthermore, 4|(ql−1+1)(ql−2+1). Then (q+1)|(|F |, |G : F |)
and G = O+2l(q) /∈ Jlmh.
5.4.2.2. Suppose that l is odd. Then J ∼= (1/4)(q − 1).Ll(q) · (q − 1, l), and so

|F | = q(l/2)(l−1)(1/4)(q − 1)(1/(q − 1, l))q(l/2)(l−1)
·(ql − 1)(ql−1 − 1) · · · (q3 − 1)(q2 − 1)(q − 1, l).

Consequently,

|G : F | = 4(ql−1 + 1)(ql−2 + 1) · · · (q3 + 1)(q2 + 1)(q2 − 1)/(q − 1)(4, ql − 1).
Since l is odd, we see that (4, ql − 1) = 2. Then (q + 1)|(|F |, |G : F |) and G = O+2l(q) /∈ Jlmh.
5.5. Assume that l > 6 and p = 2. By [16, Proposition 4.1.20] G = O+2l(q) includes a nonsolvable

2-local maximal subgroup K ∼= [qa] : (GLl(q)× 1), where a = l(2l)− (l/2)(3l + 1) = (l/2)(l − 1). Since

|K| = q(l/2)(l−1)(q − 1)q(l/2)(l−1)(ql − 1)(ql−1 − 1) · · · (q3 − 1)(q2 − 1),
we obtain

|G : K| = (ql−1 + 1)(ql−2 + 1) · · · (q3 + 1)(q2 + 1)(q2 − 1)/(q − 1)(4, ql − 1).
Since p = 2, we see that (4, ql − 1) = 1. Hence, (q + 1)|(|K|, |G : K|), and so G = O+2l(q) /∈ Jlmh.
6. Consider G = PΩ−2l(q) = O

−
2l(q)

∼= 2Dl(q) with l ≥ 1 and q = ps for some prime p and s ≥ 1.
From [17, p. xii] we infer that

|G| = (1/d)ql(l−1)(ql + 1)(q2l−2 − 1)(q2l−4 − 1) · · · (q4 − 1)(q2 − 1),
where d = (4, ql + 1). Using the group isomorphism of Subsection 4 of the proof, we may assume that
2l ≥ 8. Let us verify that G = O−2l(q) with l ≥ 4 includes a nonsolvable local maximal subgroup that is
not a Hall subgroup of G.

6.1. Assume that l = 4. According to [18, Table 8.52], O := Ω−8 (q) includes a nonsolvable local
maximal subgroup A ∼= q9 : ((1/(q − 1, 2))GL2(q)× Ω−4 (q)) · (q − 1, 2) and Z(O) = 1. Since

|O| = |Ω−8 (q)| = (1/(2, q4 + 1))q12(q4 + 1)(q6 − 1)(q4 − 1)(q2 − 1),

|A| = q9 · (1/(q − 1, 2))(q − 1)q(q2 − 1)(1/(2, q2 + 1))q2(q2 + 1)(q2 − 1)(q − 1, 2),
we have

|O : A| = (q4 + 1)(q6 − 1)(q − 1, 2)(2, q2 + 1)/(q − 1)(2, q4 + 1)(q − 1, 2)
= (q4 + 1)(q6 − 1)/(q − 1).

Consequently, (q + 1)|(|A|, |O : A|). Since G ∼= O, we see that G is not a Jlmh-group.
6.2. Assume that l = 5. According to [18, Table 8.68], O := Ω−10(q) includes a nonsolvable local

maximal subgroup B ∼= q15 : ((1/(q − 1, 2))GL3(q) × Ω−4 (q)) · (q − 1, 2). Put Z := Z(O). Then |Z| ≤ 2.
Since

|O| = |Ω−10(q)| = (1/(2, q5 + 1))q20(q5 + 1)(q8 − 1)(q6 − 1)(q4 − 1)(q2 − 1),
|B| = q15 · (1/(q − 1, 2))(q − 1)q3(q3 − 1)(q2 − 1)(1/(2, q2 + 1))q2(q2 + 1)(q2 − 1)(q − 1, 2);

787



therefore,

|O : B| = (q5 + 1)(q8 − 1)(q3 + 1)(q − 1, 2)(2, q2 + 1)/(q − 1)(2, q5 + 1)(q − 1, 2)
= (q5 + 1)(q8 − 1)(q3 + 1)/(q − 1).

Since (q2 − 1)|(q8 − 1), it follows that (q + 1)||O : B| and (q + 1)|(|B|, |O : B|).
6.2.1. Suppose that p = 2. Then Z = 1. Since G ∼= O, we see that G is not a Jlmh-group.
6.2.2. Suppose that p > 2. Then |Z| ≤ 2, while G = O/Z and Z < B. We have |B/Z| =

(1/4)q20(q−1)(q3−1)(q2−1)(q2+1)(q2−1)/|Z|, and |O/Z : B/Z| = |O : B| = (q5+1)(q8−1)(q3+1)/(q−1).
Hence, (q + 1)|(|B/Z|, |O/Z : B/Z|). Since G ∼= O/Z, we see that G = O+10(q) is not a Jlmh-group.
6.3. Assume that l = 6. According to [18, Table 8.84, p. 428], O := Ω−12(q) includes a nonsolvable

local maximal subgroup C ∼= q21 : ((1/(q − 1, 2))GL3(q)× Ω−6 (q)) · (q − 1, 2) and Z := Z(O) = 1. Since
|O| = |Ω−12(q)| = (1/(2, q6 + 1))q30(q6 + 1)(q10 − 1)(q8 − 1)(q6 − 1)(q4 − 1)(q2 − 1),

|C| = q21 · (1/(q − 1, 2))(q − 1)q3(q3 − 1)(q2 − 1)
·(1/(2, q3 + 1))q6(q3 + 1)(q4 − 1)(q2 − 1)(q − 1, 2),

we have

|O : C| = (q6 + 1)(q10 − 1)(q8 − 1)(q − 1, 2)(2, q3 + 1)/(q − 1)(2, q6 + 1)(q − 1, 2).
Since (q2 − 1)|(q8 − 1), it follows that (q + 1)||O : C| and (q + 1)|(|C|, |O : C|). Since G ∼= O, we see
that G is not a Jlmh-group.

6.4. Assume that l > 6 and p > 2. By [16, Proposition 4.1.20], G = O−2l(q) includes a nonsolvable
p-local maximal subgroup of the following type.
6.4.1. Suppose that −1 ∈ Ω and (1/2)m(q − 1) is odd. Suppose also that m = 3. It follows that

[qa] : ((1/2)GL3(q)×Ω−2l−6(q)) ∼= D ≤ G, where a = 3(2l)− (3/2)(9+1) = 6l−15. Since 2l−6 = 2(l−3),
we have

|D| = q6l−15(1/2)(q − 1)q3(q3 − 1)(q2 − 1)(1/(2, ql−3 + 1))
·q(l−3)(l−4)(ql−3 + 1)(q2l−8 − 1)(q2l−10 − 1) · · · (q4 − 1)(q2 − 1),

|G : D| = 2(ql + 1)(q2l−2 − 1)(q2l−4 − 1)
·(ql−3 − 1)(2, q3 + 1)/(q − 1)(q2 − 1)(q3 − 1)(4, ql + 1).

Observe that (4, ql + 1)|(ql + 1). Since (q2 − 1)|(q2l−2 − 1) and (q2 − 1)|(q2l−4 − 1), the numerator is
divisible by (q + 1)2, while the denominator, only by q + 1. Treating the numerator and denominator as
polynomials in q over the field of rationals, we find that (q+1)||G : D| and (q+1)|(|G : D|, |D|). Thus, G
is not a Jlmh-group.

6.4.2. Suppose that −1 ∈ Ω, (1/2)m(q − 1) is even, and l > m. Suppose also that m = 3. Then
[qa] : 2.(J × PΩ−2l−6(q)) ∼= F ≤ G,

where a = 3(2l)− (3/2)(9 + 1) = 6l − 15. Since 2l − 6 = 2(l − 3), we have
|F | = q6l−152(1/4)(q − 1)(1/(q − 1, 3))q3(q3 − 1)(q2 − 1)(q − 1, 3)(1/(4, ql−3 + 1))

·q(l−3)(l−4)(ql−3 + 1)(q2l−8 − 1)(q2l−10 − 1) · · · (q4 − 1)(q2 − 1)2,
|G : F | = (ql + 1)(q2l−2 − 1)(q2l−4 − 1)(ql−3 − 1)
·(4, ql−3 + 1)/(q − 1)(q3 − 1)(q2 − 1)(4, ql + 1).
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As in Subsection 6.4.1, it is not difficult to show that (q + 1)||G : F | and (q + 1)|(|G : F |, |F |). Thus, G
is not a Jlmh-group.

6.4.3. Suppose that −1 �∈ Ω and 2l − 2m ≥ 2. Suppose also that m = 3. It follows that
[qa] : ((1/2)GL3(q)× Ω−2l−6(q)).2 ∼= K ≤ G,

where a = 3(2l)− (3/2)(9 + 1) = 6l − 15. Since 2l − 6 = 2(l − 3), we have

|K| = q6l−15(1/2)(q − 1)q3(q3 − 1)(q2 − 1)(1/(2, ql−3 + 1))
·q(l−3)(l−4)(ql−3 + 1)(q2l−8 − 1)(q2l−10 − 1) · · · (q4 − 1)(q2 − 1),

|G : K| = 2(ql + 1)(q2l−2 − 1)(q2l−4 − 1)(ql−3 − 1)
·(2, q3 + 1)/(q − 1)(q2 − 1)(q3 − 1)(4, ql + 1).

As in Subsection 6.4.1, it is not difficult to show that (q + 1)||G : D| and (q + 1)|(|G : D|, |D|). Thus, G
is not a Jlmh-group.

6.5. Assume that l > 6 and p = 2. By [16, Proposition 4.1.20], G = O−2l(q) for m = 3 includes
a nonsolvable 2-local maximal subgroup L ∼= [qa] : (GL3(q)×Ω−2l−6(q)), where a = 3(2l)− (3/2)(9+1) =
6l − 15. Since 2l − 6 = 2(l − 3), we have

|L| = q6l−15(1/2)(q − 1)q3(q3 − 1)(q2 − 1)(1/(2, ql−3 + 1))
·q(l−3)(l−4)(ql−3 + 1)(q2l−8 − 1)(q2l−10 − 1) · · · (q4 − 1)(q2 − 1),

|G : L| = (ql + 1)(q2l−2 − 1)(q2l−4 − 1)(ql−3 − 1)
·(2, q3 + 1)/(q − 1)(q2 − 1)(q3 − 1)(4, ql + 1).

As in Subsection 6.4.1, it is not difficult to show that (q + 1)||G : L| and (q + 1)|(|G : L|, |L|). Thus, G
is not a Jlmh-group.

7. ConsiderG = G2(q) with q = p
s for some prime p and s ≥ 1. Then |G| = q6(q6−1)(q2−1). Observe

that G2(2) is not simple; and, furthermore, G2(2)
′ ∼= U3(3) is a nonabelian simple group. For q ≥ 3 this G

is a nonabelian simple group. Assume that q = 3. By [17, p. 60], G includes a nonsolvable maximal
subgroup H ∼= 23 ·L3(2) which is not a Hall subgroup of G. Assume that q = 4. By [17, p. 97], G includes
a nonsolvable maximal subgroup M ∼= 22+8 : (3×A5) which is not a Hall subgroup of G; a contradiction
with the hypotheses of Theorem 1.
Assume that q > 4. The degrees n = |G : P | of the minimal permutation representations of G and

the corresponding point stabilizers P are listed in [25, Theorem 1]. It is not difficult to verify that for
q > 4 in all cases P is a nonsolvable local maximal subgroup of G; furthermore, (n, |P |) > 1; i. e., P is
not a Hall subgroup of G; a contradiction with the hypotheses of Theorem 1.

8. Consider G = F4(q), with q = p
s for some prime p and s ≥ 1. We have |G| = q24(q12 − 1)(q8 − 1)

(q6 − 1)(q2 − 1). By [25, Theorem 2], the group G admits the minimal permutation representation of
degree n = |G : P | = (q12−1)(q4+1)

q−1 with point stabilizer P ; and, furthermore, P is a nonsolvable local

maximal subgroup of G. Let us verify that P is not a Hall subgroup of G. Suppose that q = 2s. Then

P ∼= (2s · 28s × 26s) : (C3(q)× (q − 1)).
Since

|C3(q)| = (1/d)q9(q6 − 1)(q4 − 1)(q2 − 1), d = (2, q − 1),
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it follows that (q + 1)|(n, |P |). Suppose that q = ps for some prime p > 2. Then
P ∼= (ps · p14s) : (2 · (C3(q)× (q − 1)/2) · 2)

or
P ∼= (p7s · p8s) : (2 · (B3(q)× (q − 1)/2) · 2),

again (q + 1)|(n, |P |), and so P is not a Hall subgroup of G; a contradiction with the hypotheses of
Theorem 1.

9. Consider G = E6(q), where q = p
s for some prime p and s ≥ 1. According to [17, Table 6], we

have
|G| = (1/d)q36(q12 − 1)(q9 − 1)(q8 − 1)(q6 − 1)(q5 − 1)(q2 − 1),

where d = (3, q− 1), and by [26, Theorem 1] the group G includes a nonsolvable local maximal subgroup
P ∼= p16s : (e · (D5(q)× (q−1)/e′) · e) with n = |G : P | = (q9−1)(q8+q4+1)

q−1 , where e = (q−1, 4) and e′ = ed.
Since D5(q) is a nonabelian simple group, infer that P is a nonsolvable group; moreover, [17, Table 6]
yields

|D5(q)| = (1/d1)q20(q5 − 1)(q8 − 1)(q6 − 1)(q4 − 1)(q2 − 1),
where d1 = (4, q

5 − 1). Then (q2 + q + 1)|(n, |P |). Thus, P is not a Hall subgroup of G; a contradiction
with the hypotheses of Theorem 1.

10. Consider G = E7(q), with q = p
s for some prime p and s ≥ 1. According to [17, Table 6], we

have
|G| = (1/d)q63(q18 − 1)(q14 − 1)(q12 − 1)(q10 − 1)(q8 − 1)(q6 − 1)(q2 − 1),

where d = (2, q − 1), and by [26, Theorem 2] G includes some local maximal subgroup
P ∼= p27s : (d′ · (E6(q)× (q − 1)/c) · d′),

where d′ = (q−1, 3), e = (q−1, 4), c = d·d′, and n = |G : P | = (q14−1)(q9+1)(q5+1)
q−1 . Applying Subsection 9,

we find that (q3+1)|(n, |P |). Thus, P is neither a solvable group nor a Hall subgroup of G; a contradiction
with the hypotheses of Theorem 1.

11. Consider G = E8(q), with q = p
s for some prime p and s ≥ 1. According to [17, Table 6], we

have
|G| = q120(q30 − 1)(q24 − 1)(q20 − 1)(q18 − 1)(q14 − 1)(q12 − 1)(q8 − 1)(q2 − 1),

and by [26, Theorem 3] G includes a local maximal subgroup

P ∼= ps · p56s : (d · (E7(q)× (q − 1)/d) · d),
where d = (q − 1, 2), and we have

n = |G : P | = (q
30 − 1)(q12 + 1)(q10 + 1)(q6 + 1)

q − 1 .

Applying Subsection 10, we find that (q6 + 1)|(n, |P |). Thus, P is a nonsolvable local group and is not
a Hall subgroup of G; a contradiction with the hypotheses of Theorem 1.

12. Consider G = Sz(22m+1) ∼= 2B2(q) with q = 22m+1 and m ≥ 1. By Lemma 2.1, G is an N -group,
and it is a group of type (2) of Theorem 1.

13. Consider G = 3D4(q) with q = p
s for some prime p and s ≥ 1. According to [17, Table 6], we

have |G| = q12(q8 + q4 + 1)(q6 − 1)(q2 − 1) and by [27, Theorem 3] G includes the maximal subgroup
P ∼= (ps · p8s) : (d · (A1(q3)× (q− 1)/d) ·d), where d = (q− 1, 2), and so n = |G : P | = (q8+ q4+1)(q+1).
Since |A1(q3)| = q3(q6 − 1) and A1(q3) ∼= L2(q3) is a nonsolvable group, infer that P is a nonsolvable
local maximal subgroup of G; and, furthermore, (q + 1)|(n, |P |) in contradiction with the hypotheses of
Theorem 1.
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14. Consider G = Re(q) ∼= 2G2(q) with q = 3
2n+1 and n ≥ 1. By [11, Theorem 3.33], |G| =

q3(q3 + 1)(q − 1) and G includes some nonsolvable local maximal subgroup H ∼= 2 × L2(q). Since
q|(|G : H|, |H|), it follows that H is not a Hall subgroup of G in contradiction with the hypotheses of
Theorem 1.

15. Consider G = 2F4(q) with q = 2
s and an odd integer s > 1. According to [17, Table 6],

we have |G| = q12(q6 + 1)(q4 − 1)(q3 + 1)(q − 1). By [27, Theorem 5] G includes a nonsolvable local
maximal subgroup P ∼= (2s · 24s · 25s) : (2B2(q) × (q − 1)). Since |2B2(q)| = q2(q2 + 1)(q − 1), we see
that (q − 1)|(|G : P |, |P |). Thus, P is not a Hall subgroup of G in contradiction with the hypotheses of
Theorem 1.

16. Consider G = 2E6(q) with q = p
s for some prime p and s ≥ 1. According to [17, Table 6], we

have
|G| = (1/d)q36(q12 − 1)(q9 + 1)(q8 − 1)(q6 − 1)(q5 + 1)(q2 − 1),

where d = (3, q − 1), and by [27, Theorem 4] G includes a nonsolvable local maximal subgroup P ∼=
(ps · p20s) : (d+ · 2A5(q)× (q − 1)/c) · c, where d+ = (q + 1, 2), and c = (q + 1, 3), and so we find that

n = |G : P | = (q
12 − 1)(q6 − q3 + 1)(q4 + 1)

q − 1 .

Since
|2A5(q)| = q15(q2 − 1)(q3 + 1)(q4 − 1)(q5 + 1)(q6 − 1),

it follows that (|G : P |, |P |) > 1; hence, P is not a Hall subgroup of G in contradiction with the hypotheses
of Theorem 1.

17. Consider G = An with n ≥ 5. Since A5 ∼= L2(5), A6 ∼= L2(9), and A7 areN -groups by Lemma 2.1,
we may assume that n ≥ 8. Denote by A the set of all permutations in Sn keeping the first n−3 symbols
unmoved; and by B, the set of all permutations in Sn leaving the last three symbols unmoved. Then
A ∼= S3 and B ∼= Sn−3, while A ≤ Sn, B ≤ Sn, and A × B ≤ Sn. Since (n/2) > 3, using [28], we see
that H = G ∩ (A × B) is a maximal subgroup of G. Since A �⊆ G, it follows that Sn = A · G; and,
furthermore, D = A ∩G ≤ H with D � A and |A : D| = 2. This implies that D ∼= A3. Since D � A, we
have D � A × B, and so D � H. Similarly, B �⊆ G, and so Sn = B · G; furthermore, F = B ∩ G ≤ H
with F � B and |B : F | = 2. Therefore, F ∼= An−3. Since F � B, infer that F � A × B, and so F � H.
Since n − 3 ≥ 5, it follows that F is a nonsolvable group. Hence, H is a nonsolvable subgroup of G;
furthermore, H = NG(D), where |D| = 3. We can show that H ∼= (3×An−3) : 2. Since

|G : H| = (n!/2)/(3 · (n− 3)!) = (n− 2)(n− 1)n
2 · 3 ,

we see that (|G : H|, |H|) > 1 for n ≥ 8. Thus, H is not a Hall subgroup of G, and so G is not
a Jlmh-group for n ≥ 8; a contradiction.
18. Assume that G is one of the 26 sporadic groups, not belonging to {M11;M23; J1}. Applying [17],

it is not difficult to verify that G includes a nonsolvable local maximal subgroup H, and H is not a Hall
subgroup of G.
Applying Subsections 1–18, we conclude that G is isomorphic to one of the groups of Theorem 1.

Sufficiency: Suppose that G is isomorphic to one of the groups listed in Theorem 1 and ver-
ify that G is a Jlmh-group; i. e., each nonsolvable local maximal subgroup of G is a Hall subgroup.
By Lemma 2.1, the groups listed in items (1), (2), and (4) of Theorem 1, with the exception of the
groups L5(2), L5(4), J1, and M23 are N -groups, and so they are Jlmh-groups. By [17], {L5(2), J1,M23}
⊆ Jlmh. According to [18, Table 8.18], SL5(4) ∼= L5(4) is simple. In the “Notes” column the sub-
groups of G = L5(4) marked by the letter N for a “newbie” are not maximal subgroups of G. The
subgroups A ∼= E44 : GL4(4) and B ∼= E64 : (SL2(4) × SL3(4)) : 3 are nonsolvable 2-local maximal Hall
subgroups of G. The subgroup C ∼= SL5(2) is a simple group and so it is not a local subgroup of G.
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The subgroup D ∼= SU5(2) is a simple group and hence it is not a local subgroup of G. Consequently,
G = L5(4) ∈ Jlmh.
Consider G := L3(q) with q = p

s ≥ 3 and s ≥ 1 such that q �≡ 1 (mod 3). For q = 3 Lemma 2.1
shows that G is an N -group, and so G ∈ Jlmh. Assume that q > 3. Up to isomorphism, all maximal
subgroups of geometric type of the group SL3(q) with q ≥ 2 are listed in [18, Table 8.3]; furthermore,
|SL3(q)| = q3(q3 − 1)(q2 − 1) = N , and |L3(q)| = N/d with d := |Z(SL3(q))| = (q − 1, 3). Since
q �≡ 1 (mod 3), infer that d := 1, and so L3(q) ∼= SL3(q).
Take a local subgroup A ∼= E2q : GL2(q) of the group G in the first row of [18, Table 8.3], which has

a misprint, as it gives E3q instead of E
2
q . Then A is a nonsolvable local maximal subgroup of G. Verify

that A is a Hall subgroup of G. Since |A| = q3(q − 1)(q2 − 1), we have |G : A| = q2 + q + 1. If r is
a prime divisor of q2 + q + 1 then (q, r) = 1. Suppose that r|(q − 1). Then q = rk + 1 with k ∈ Z and
q2 + q + 1 = r2k2 + 3rk + 3; hence, 3 is divisible by r. Consequently, r = 3. Therefore, 3|(q − 1), which
is impossible because q �≡ 1 (mod 3). Thus, r does not divide (q − 1). Suppose that r|(q2 − 1). Then
r|(q + 1). From r|(q2 + q + 1) we infer that r|q2 and r|q. Hence, (q, r) = r �= 1; a contradiction. Thus,
(|A|, |G : A|) = 1 and A is a Hall subgroup of G.
Since the subgroup isomorphic to GL2(q) is a newbie, it is not a maximal subgroup of G.
Suppose that B ∼= SL3(q0) · (q − 1/q0 − 1, 3), where q = qr0 for odd r, is a subgroup of the group G

in row 6 of [18, Table 8.3]. Suppose that q0 ≡ 1 (mod 3). Then q = qr0 ≡ 1 (mod 3), which is impossible.
Consequently, q0 �≡ 1 (mod 3). Then Z(B) = 1 and B is not a local subgroup of G.
Suppose that C ∼= d×SO3(q), where q is odd, is a subgroup of the group G in row 8 of [18, Table 8.3].

Since d = 1, it follows that C ∼= SO3(q), where q is odd. Then (2, q−1) = 2 and the second row from the
bottom in [17, Table 2, p. xii] implies that C with q = 3 is a solvable group, while for q ≥ 5 it is not local.
Suppose that D ∼= (q0 − 1, 3) × SU3(q0), where q = q20, is a subgroup of the group G in row 9

of [18, Table 8.3]. Then q0 �≡ 1 (mod 3) and D ∼= SU3(q0). Suppose that q0 ≡ ±1 (mod 3). Then
q = q20 ≡ 1 (mod 3), which is impossible. Consequently, q0 �≡ ±1 (mod 3). Therefore, (3, q0 + 1) = 1
and D ∼= U3(q0). Then D is not a local subgroup of G. Thus, the groups of item (3) of Theorem 1 are
Jlmh-groups.
We have now established that each group of Theorem 1 is a Jlmh-group. The proof of Theorem 1 is

complete.

4. Proofs of Theorem 2 and the Corollary to It

Consider a nonsolvable Tslh-group G. Then in G each nonsolvable superlocal is a Hall subgroup.
Suppose that G violates the claim of Theorem 2 and G is a group of minimal order with this property.
Denote the solvable radical of G by S(G). Lemma 2.7 shows that S(G) is a dispersive group.
Suppose that S(G) �= 1 and consider the quotient group G/S(G). By Lemma 2.5 G/S(G) ∈ Tslh.

Since |G/S(G)| < |G|, by induction G/S(G) includes a normal nonabelian simple subgroup A/S(G)
satisfying A/S(G) ≤ G/S(G) ≤ Aut(A/S(G)) and isomorphic to one of the groups of items (1)–(4) of
Theorem 1. Hence, the claim of Theorem 2 holds for G; a contradiction.
Thus, S(G) = 1. If M · � G then M is a direct product of pairwise isomorphic nonabelian simple

groups Pi, for i = 1, 2, . . . , n. Since G ∈ Tslh and by Lemma 2.5 the class Tslh is Sn-closed, it follows that
M ∈ Tslh, and so Pi ∈ Tslh for every i = 1, 2, . . . , n. Suppose that n > 1. Take a nonidentity p-subgroupN
of P1. Then H = NG(N) is a p-local subgroup of G; furthermore, P2 × P3 × · · · × Pn < H, and so H is
a nonsolvable group. Proposition 2.1 shows that H lies in a p-superlocal B of G with Op(H) ≤ Op(B).
The assumptions of Theorem 2 imply that B is a Hall subgroup of G. Since N ≤ Op(H) ≤ Op(B) and
Op(B) � B, it follows that P1 �⊆ B. Indeed, otherwise we would obtain N ≤ Op(B) ∩ P1 � P1, which
is impossible. Since B is a Hall subgroup of G and M � G, it follows that M ∩ B is a Hall subgroup
of M ; furthermore, the modular identity yields B ∩M = (B ∩ P1) × P2 × P3 × · · · × Pn. Suppose that
q||P1 : (B∩P1)|. Then q||P2|, and so q||B∩M |. Thus, B∩M is not a Hall subgroup ofM ; a contradiction.
Hence, n = 1 andM = P1 is a nonabelian simple Jslh-group. Since Proposition 2.2 yields Jslh ⊆ Jlmh,

infer that M is a nonabelian simple Jlmh-group. By Theorem 1, the group M is isomorphic to one of

792



the simple groups in Theorem 1. By [20, Lemma 1.53] we see that CG(M) � G, while [20, Theorem 2.8]
implies that the quotient G/CG(M) is isomorphic to a subgroup of Aut(M); moreover, CG(M)∩ M = 1.
Suppose that CG(M) = 1. Then M ≤ G ≤ Aut(M) and G is isomorphic to a group in Theorem 2;
a contradiction.
Suppose that CG(M) �= 1. Since S = 1, it follows that C := CG(M) is a nonsolvable normal subgroup

of G, while S(C) = 1 and M × C � G. Since G ∈ Tslh and by Lemma 2.5 the class Tslh is Sn-closed, we
infer that M × C ∈ Tslh. Then G =M × C by induction.
By Lemma 2.8, M includes a Sylow subgroup whose normalizer in M is of even index. Suppose that

NM (Mp) is of even index in M . Then L := NG(Mp) ≥ C; and furthermore L ∩M = NM (Mp). Since L
is a p-local subgroup of G, Proposition 2.1 shows that L lies in a superlocal V of G with Op(L) ≤ Op(V ).
Then C ≤ V , and so V is nonsolvable. The modular identity yields V := C × (V ∩M). The assumption
of Theorem 2 implies that V is a Hall subgroup of G. Since Mp ≤ Op(L) ≤ Op(V ) and Op(V ) � V , it
follows that M �⊆ V . Indeed, otherwise we would obtain Mp ≤ Op(V ) ∩M � M , which is impossible.
Since V is a Hall subgroup of G and M � G, infer that V ∩M is a Hall subgroup of M . On the other
hand, V ∩M < M , NM (Mp) ≤ (V ∩M), Mp ≤ Op(V ), andMp ≤ (Op(V )∩M); hence, Mp = Op(V )∩M .
Then Mp � (V ∩M), and so (V ∩M) = NM (Mp). This implies that V ∩M is of even index in M , and
so V is of even index in G. Since 2||V |, it follows that V is not a Hall subgroup of G; a contradiction.
The proof of Theorem 2 is complete.

Corollary 2.1. If each superlocal in a nonidentity group G is a Hall subgroup then G is a dispersive
group.

Proof. Suppose that each superlocal in a nonidentity group G is a Hall subgroup. Suppose also
that G is a nonsolvable group and G is a group of minimal order with these properties. Take a minimal
normal subgroupM of G and denote the solvable radical of the group by S := S(G). Suppose that S �= 1
and M is a p-group. Consider the quotient G/M . Suppose further that A/M is a q-superlocal in G/M
and put B/M := Oq(A/M). Assume that q = p. Then B/M := Op(A/M) = Op(A)/M and B = Op(A).
Consequently, A = NG(Op(A)) is a p-superlocal in the group G. By assumption, A is a Hall subgroup
of G; therefore, A/M is a Hall subgroup of G/M .
Assume that q �= p. Then B � A and B = MBq, while Frattini’s argument yields A = BNA(Bq) =

MNA(Bq). Take g ∈ NG(Bq). Then Bg = Mg(Bq)g = MBq = B, and so g ∈ NG(B). Since A/M =
NG/M (B/M) = NG(B)/M , it follows that g ∈ NG(B) = A and so g ∈ NA(Bq). Consequently, NA(Bq) =
NG(Bq) := T . Since T is a q-local subgroup of G, by Proposition 2.1 T lies in a q-superlocal U of G.
Then A =MT ≤MU and A/M =MT/M ≤MU/M . Since A/M is a q-superlocal in G/M , we see that
A/M is a q-maximal subgroup of G/M . The definition of q-maximal subgroup yields A/M = MU/M .
By assumption, U is a Hall subgroup of G. Therefore, A/M is a Hall subgroup of G/M . By induction,
the group G/M is solvable; therefore, so is the group G; a contradiction. Consequently, S = 1. Then
Theorem 2 shows that M is the nonabelian simple group isomorphic to a simple group as in Theorem 1,
and M ≤ G ≤ Aut(M). It is not difficult to verify that M includes a Sylow subgroup whose normalizer
is not a Hall subgroup of M . As in the proof of Theorem 2, it is not difficult to show that G includes
a superlocal that is not a Hall subgroup of G and arrive at a contradiction. Thus, G is a solvable group.
Then Lemma 2.6 shows that G is a dispersive group. �
The main results of this article were announced in [29].

References

1. Thompson J. G., “Nonsolvable finite groups all of whose local subgroups are solvable. I–VI,” Bull. Amer. Math.
Soc., vol. 74, no. 3, 383–437 (1968); Pacific J. Math., vol. 33, no. 2, 451–536 (1970); vol. 39, no. 2, 483–534
(1971); vol. 48, no. 2, 511–592 (1973); vol. 50, no. 1, 215–297 (1974); vol. 51, no. 2, 573–630 (1974).

2. Monakhov V. S., “Finite π-solvable groups whose maximal subgroups have the Hall property,” Math. Notes,
vol. 84, no. 3, 363–366 (2008).

3. Tikhonenko T. V. and Tyutyanov V. N., “Finite groups with maximal Hall subgroups,” Izv. F. Skorina Gomel
Univ., vol. 50, no. 5, 198–206 (2008).

793



4. Maslova N. V., “Nonabelian composition factors of a finite group whose all maximal subgroups are Hall,” Sib.
Math. J., vol. 53, no. 5, 853–861 (2012).

5. Maslova N. V. and Revin D. O., “Finite groups whose maximal subgroups have the Hall property,” Siberian
Adv. Math., vol. 23, no. 3, 196–209 (2013).

6. Vedernikov V. A., “Finite groups in which every nonsolvable maximal subgroup is a Hall subgroup,” Proc.
Steklov Inst. Math., vol. 285, no. suppl. 1, S191–S202 (2014).

7. Monakhov V. S. and Tyutyanov V. N., “On finite groups with given maximal subgroups,” Sib. Math. J., vol. 55,
no. 3, 451–456 (2014).

8. Demina E. N. and Maslova N. V., “Nonabelian composition factors of a finite group with arithmetic constraints
on nonsolvable maximal subgroups,” Proc. Steklov Inst. Math., vol. 289, no. suppl. 1, 64–76 (2015).

9. Maslova N. V., “Finite groups with arithmetic restrictions on maximal subgroups,” Algebra and Logic, vol. 54,
no. 1, 65–69 (2015).

10. Maslova N. V. and Revin D. O., “Nonabelian composition factors of a finite group whose maximal subgroups
of odd indices are Hall subgroups,” Proc. Steklov Inst. Math., vol. 299, no. suppl. 1, 148–157 (2017).

11. Gorenstein D., Finite Simple Groups. An Introduction to Their Classification, Plenum, New York (1982).
12. Aschbacher M., “Subgroup structure of finite groups,” in: Proceedings of the Rutgers Group Theory Year
1983/1984, Cambridge Univ., Cambridge (1984), 35–44.

13. Revin D. O., “Superlocals in symmetric and alternating groups,” Algebra and Logic, vol. 42, no. 3, 192–206
(2003).

14. Kondratev A. S., “Subgroups of finite Chevalley groups,” Russian Math. Surveys, vol. 41, no. 1, 65–118 (1986).
15. Carter R. W., Simple Groups of Lie Type, John Wiley and Sons, London (1972).
16. Kleidman P. B. and Liebeck M., The Subgroup Structure of the Finite Classical Groups, Cambridge Univ.,
Cambridge (1990).

17. Conway J. H., Curtis R. T., Norton S. P., Parker R. A., and Wilson R. A., Atlas of Finite Groups. Maximal
Subgroups and Ordinary Characters for Simple Groups, Clarendon, Oxford (1985).

18. Bray J. N., Holt D. F., and Roney-Dougal C. M., The Maximal Subgroups of the Low-Dimensional Finite
Classical Groups, Cambridge Univ., Cambridge (2013).

19. Doerk K. and Hawkes T. O., Finite Soluble Groups, De Gruyter, Berlin and New York (1992).
20. Monakhov V. S., Introduction to the Theory of Finite Groups and Their Classes [Russian], Vysheishaya Shkola,
Minsk (2006).

21. Kondratev A. S., “A criterion for 2-nilpotency of finite groups,” in: Subgroup Structure of Groups [Russian],
Sverdlovsk (1988), 82–84.

22. Cooperstein B. N., “Minimal degree for a permutation representation of a classical group,” Israel J. Math.,
vol. 30, no. 3, 213–235 (1978).

23. Mazurov V. D., “Minimal permutation representations of finite simple classical groups. Special linear, symplec-
tic, and unitary groups,” Algebra and Logic, vol. 32, no. 3, 142–153 (1993).

24. Vasilev A. V. and Mazurov V. D., “Minimal permutation representations of finite simple orthogonal groups,”
Algebra and Logic, vol. 33, no. 6, 337–350 (1994).

25. Vasilyev A. V., “Minimal permutation representations of finite simple exceptional groups of types G2 and F4,”
Algebra and Logic, vol. 35, no. 6, 371–383 (1996).

26. Vasilev A. V., “Minimal permutation representations of finite simple exceptional groups of types E6, E7, and
E8,” Algebra and Logic, vol. 36, no. 5, 302–310 (1997).

27. Vasilev A. V., “Minimal permutation representations of finite simple exceptional twisted groups,” Algebra and
Logic, vol. 37, no. 1, 9–20 (1998).

28. Liebeck M. W., Praeger C., and Saxl J., “A classification of the maximal subgroups of the finite alternating
and symmetric groups,” J. Algebra, vol. 111, no. 2, 365–383 (1961).

29. Vedernikov V. A., “Finite groups with unsolvable local Hall subgroups,” in: Theory of Groups and Its Applica-
tions. Proceedings of the XII International School-Conference on the Theory of Groups Dedicated to the 65th
Anniversary of A. A. Makhnev, Kubansk. Univ., Krasnodar (2018), 32–33.

V. A. Vedernikov
Moscow City Pedagogical University, Moscow, Russia
E-mail address: vavedernikov@mail.ru

794


