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PRIVILEGED COORDINATES FOR CARNOT–CARATHÉODORY
SPACES OF LOWER SMOOTHNESS

S. G. Basalaev UDC 514.77:517.28

Abstract: We describe classes of local coordinates on the Carnot–Carathéodory spaces of lower smooth-
ness which permit the homogeneous approximation of quasimetrics and basis vector fields. We establish
the minimal smoothness that is required for these classes to coincide with the class of the already-
described privileged coordinates in the infinite smoothness case. Moreover, we apply these results to
prove the analogs of the available theorems in the case of the canonical coordinates of the second kind.
Also, we prove some convergence theorems in quasimetric spaces.
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1. Introduction

Consider an N -dimensional connected C∞-smooth Riemannian manifold M with a fixed distribution
H ⊂ TM and some inner product 〈·, ·〉 : H ×H → R on H. The vector field [X,Y ] = XY −Y X is known
as the commutator (Lie bracket) of two vector fields X and Y . Taking successive commutators of vector
fields in H, we obtain the family of subbundles H1 = H and Hk+1 = Hk+[Hk, H]. It is known [1, 2] that
if H is totally nonholonomic, meaning that Hm = TM for some m > 0; then every two points in M can be
connected by a horizontal curve, i. e., an absolutely continuous curve γ with γ̇ ∈ H almost everywhere.
Definition 1. The metric dcc(x, y) on M, defined as the greatest lower bound of the lengths of

horizontal curves connecting x and y, is called the Carnot–Carathéodory metric; while the corresponding
metric space, a Carnot–Carathéodory space or a sub-Riemannian space. The precise definitions of these
terms may differ across the sources.

Equiregular Carnot–Carathéodory spaces constitute an important subclass. In these spaces, the
dimensions of Hk(x) in the filtration

H = H1 � H2 � · · · � Hm = TM (1)

are independent of x, and so Hk is a distribution on M. As [3] shows, we can locally lift each Carnot–
Carathéodory space to an equiregular space of higher dimension.
Since we will study the local properties of equiregular spaces, it is convenient to choose a basis for TM

subordinate to the structure in (1); i. e., in a neighborhood of p ∈ M we can choose some tuple of vector
fields X1, . . . , XN such that

Hk(x) = span{X1(x), . . . , XdimHk(x)}.
Associate the formal weight σj = min{k : Xj ∈ Hk} to each Xj .
Nilpotent approximations are essential for studying the local geometry of Carnot–Carathéodory

spaces. Nilpotent approximation methods stem from the research on hypoelliptic operators, which in-
volves the canonical coordinates of the first kind

θp(x1, . . . , xN ) = exp(x1X1 + · · ·+ xNXN )(p). (2)
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Definition 2. Using (2) and considering a neighborhood of p ∈ M, introduce the family

Δpε : θp(x1, . . . , xN ) �→ θp(εσ1x1, . . . , εσNxN )
of anisotropic dilations, and the (quasi)distance function

d∞(x, y) = max
i=1,...,N

|ui|
1
σi in case y = θx(u1, . . . , uN ).

Let us state the key assertions as the following theorem whose items may differ from how they were
formulated by the authors; see the comparison of various formulations below.

Theorem 1 (of nilpotent approximation). Let M be an equiregular Carnot–Carathéodory space M
and p ∈ M.
(1) (The Rothschild–Stein Local Approximation Theorem [3, 4].) The limits

̂X
p
k(x) = limε→0

(

Δpε
)−1
∗ ε

σkXk(Δεx), k = 1, . . . , N,

exist and are uniform on some neighborhood of p; moreover, the homogeneous vector fields ̂Xp1 , . . . ,
̂X
p
N

constitute a basis for the Lie algebra of some Carnot group Gp (a graded stratified nilpotent Lie group).
(2) (The Nagel–Stein–Wainger Ball–Box Theorem [5].) There exist a neighborhood U of p and

constants 0 < C1 ≤ C2 <∞ such that
C1d∞(x, y) ≤ dcc(x, y) ≤ C2d∞(x, y)

for all x, y ∈ U .
(3) (The Gromov Local Approximation Theorem [6].) In some neighborhood of p the uniform limit

d̂pcc(x, y) = lim
ε→0
1

ε
dcc
(

Δpεx,Δ
p
εy
)

exists, where d̂pcc is the Carnot–Carathéodory metric for the group Gp (meaning that d̂
p
cc is formed by the

homogeneous vector fields ̂Xp1 , . . . ,
̂X
p
N ).

In their original article Rothschild and Stein [3] prove that in the special case of free vector fields we
have the expansion

Xk(x) = ̂X
p
k(x) +Rk(p, x),

where ̂Xpk is homogeneous, while the residues of Rk are small as x→ p. The convergence of vector fields
to homogeneous fields in the equiregular smooth case is proved in [4] as presented in item (1). In the
recent article [7] the convergence of vector fields is proved in the special regularized coordinates of the
first kind in the case that H ∈ Cm−1,α with α > 0; see also some generalization below to the case of less
smoothness.
The article [5] provides some comparison of the Carnot–Carathéodory metric with the distance d∞

as well as several other distance functions. It is worth noting that the quantity d∞ is in general only
a local quasimetric rather than a metric meaning that

d∞(x, z) ≤ Q(d∞(x, y) + d∞(y, z))
for all x, y, z ∈ U and some constant Q = Q(U) ≥ 1. Some authors state the Ball–Box Theorem as

Box(x,C1r) ⊂ Bcc(x, r) ⊂ Box(x,C2r),
where Bcc is a ball of dcc, while Box is a ball of d∞.
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Gromov stated in [6] the Local Approximation Theorem for “sufficiently smooth vector fields” as
∣

∣dcc(x, y)− d̂pcc(x, y)
∣

∣ = o(ε) as ε→ 0 for x, y ∈ Bcc(p, ε).
This statement is equivalent to item (3) because the metric d̂pcc is homogeneous under the dilation Δ

p
ε.

Generalizations of equiregular Carnot–Carathéodory spaces with C1-smooth vector fields are intro-
duced in [8, 9]. Acting as in these articles, we rely on the following definition:

Definition 3. A connected C∞-smooth manifold M of topological dimension N is called an equireg-
ular Carnot–Carathéodory space with Cr,α-smooth vector fields, where r ∈ N and α ∈ [0, 1] provided that
Cr,0 = Cr whenever the tangent bundle TM has a distinguished filtration by Cr,α-smooth subbundles

H1 � H2 � · · · � Hm = TM (3)

such that [Hi, Hj ] ⊂ Hi+j for all i, j = 1, . . . ,m.
A Carnot–Carathéodory space M is called a Carnot manifold whenever M satisfies the stronger con-

dition Hk = span{Hk−1, [Hi, Hj ] : i+ j = k} for k = 2, . . . ,m. We call m the depth of M.
Each classical equiregular sub-Riemannian space with H ∈ Cr+m−1,α is a Cr,α-smooth Carnot man-

ifold. Carnot manifolds are also equipped with the Carnot–Carathéodory metric; this is proved for the
smoothness class C1,α with α ∈ (0, 1] in [9], and for C1 in [10]. However, some points may exist in gen-
eral that are unconnectable by a horizontal curve. In this case, the quasimetric d∞ is used to study the
properties of Carnot–Carathéodory spaces. The properties of C1-smooth Carnot–Carathéodory spaces
are described in the next theorem (cf. Theorem 1):

Theorem 2 [9, 11, 12]. Suppose that C1-smooth vector fields X1, . . . , XN satisfy the commutator
table

[Xi, Xj ](x) =
∑

k:σk≤σi+σj
cijk(x)Xk(x)

and fix a point p. Then

(1) There exists a tuple of vector fields ̂X ′1, . . . , ̂X ′N in RN such that

exp(u1 ̂X
′
1 + · · ·+ uN ̂X ′N )(0) = (u1, . . . , uN )

and
[ ̂X ′i, ̂X

′
j ](u) =

∑

k:σk=σi+σj

cijk(p) ̂X
′
k(u).

Furthermore, ̂X ′1, . . . , ̂X ′N define the structure of a graded nilpotent Lie algebra (and the structure of
a Carnot algebra for a Carnot manifold).

(2) If ̂Xpk = (θp)∗ ̂X
′
k then

̂X
p
k(x) = limε→0

(

Δpε
)−1
∗ ε

σkXk
(

Δpεx
)

,

where the limit is uniform on some neighborhood of p.

(3) Using ̂X ′k, construct the quasimetric d̂
′∞ by analogy with d∞, and carry d̂′∞ over to the manifold:

d̂
p∞(x, y) = d̂′∞

(

θ−1p (x), θ−1p (y)
)

; we cannot immediately define d̂p∞ from ̂Xk because these ̂Xk are only
continuous in general. Then

∣

∣d∞(x, y)− d̂p∞(x, y)
∣

∣ = o(ε)

for x, y ∈ Box(p, ε) as ε→ 0 and o(ε) is uniform on some neighborhood of p.
The convergence of vector fields to homogeneous ones in coordinates of the first kind is obtained

for C1,α-smooth vector fields in [9] and for C1-smooth vector fields in [11]. The convergence of d∞ to
a homogeneous quasimetric of the local group for C1-smooth vector fields is established in [12]. Observe
that the coordinate system θp is just C

1-smooth for C1-smooth vector fields.
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The above results are obtained in the canonical coordinates of the first kind. However, it is convenient
in some problems to use other coordinate systems, for instance, the canonical coordinate system of the
second kind

(x1, . . . , xN ) �→ exp(xNXN ) ◦ · · · ◦ exp(x1X1)(p)
is much used in [10].
In this regard, the following question arises: What conditions must the coordinate system satisfy for

the items of Theorem 1 to hold? Such a condition is stated in [13] for smooth sub-Riemannian spaces.
The class of privileged smooth coordinate systems for smooth spaces is described in [14]. Here we give
the following simple geometric criterion for a smooth coordinate system to be privileged.

Theorem 3. The analogs of items of Theorem 1 hold in the coordinates φp in a neighborhood of
a point p if and only if

φp(Box(0, C1ε)) ⊂ Bdcc(p, ε) ⊂ φp(Box(0, C2ε))
for some 0 < C1 ≤ C2 <∞ and all 0 < ε ≤ ε0. Here Box(0, r) = {x ∈ RN : |xk|σk ≤ r}.
This article presents an independent proof of Theorem 3 in the equiregular Cm-smooth case (see Sec-

tion 4); however, as Remark 7 implies, for vector fields of lower smoothness the claim is false. We describe
the classes of coordinate systems φp in which some partial analogs of Theorem 1 are satisfied for Carnot–
Carathéodory spaces with vector fields of lower smoothness.
Since convergence theorems are established in the canonical coordinates θp of the first kind, we

describe these classes in terms of the transition function Φp = φ
−1
p ◦ θp; i. e., we obtain the conditions on

the transition function in the new coordinates under which it preserves the claims of Theorem 1. In the
smooth case, Theorem 3 implies the necessary and sufficient condition on the transition function Φ as
follows:

Box(0, C1ε) ⊂ Φ(Box(0, ε)) ⊂ Box(0, C2ε) (4)

for some 0 < C1 ≤ C2 <∞ and all ε ∈ (0, ε0). Section 2 shows that in the case of insufficient smoothness
of Φ condition (4) is still necessary (Theorem 6) but fails to be sufficient (Remark 7). Furthermore, in
Section 2 we obtain a sufficient condition under which the homogeneous limit of quasimetrics is preserved
in the new coordinates (Theorem 9). Namely: Assume that
(1) Φ is a homeomorphism;
(2) the limit

L(x) := lim
ε→0 δ

−1
ε ◦ Φ ◦ δε(x) (5)

exists and is uniform on some neighborhood of the origin, where δε(x1, . . . , xN ) = (ε
σ1x1, . . . , ε

σNxN );
(3) L is also a homeomorphism.

Then in the new coordinate system the homogeneous limit of quasimetrics exists (similar to the limit of
metrics in Theorem 1) and L is an isometry between the limit of quasimetrics in the original and new
coordinate systems.
Section 3 shows that (5) is insufficient for the existence in the new coordinates of homogeneous limits

of the basis vector fields (Remark 12). Then we obtain some sufficient condition (Theorem 14). Namely:
Assume that
(1) Φ is a C1-diffeomorphism;
(2) the uniform limit

λ(x) := lim
ε→0Dδ

−1
ε ◦DΦ ◦Dδε(x) (6)

exists;
(3) detλ(0) 
= 0.

Then in the new coordinates the homogeneous limit of vector fields exists, as in Theorem 1. Further-
more, λ is an isomorphism of homogeneous algebras between the limits in the original and new coordinate
systems.
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In Section 4 we prove that in the case of Φ ∈ Cm, where m is the depth of the space, conditions (5)
and (6) are equivalent to (4). The examples in Remarks 7 and 12 show that in the case of lower smoothness
of the transition function all three conditions are distinct.
In Section 5 we prove that some coordinate systems, including the canonical coordinates of the second

kind, satisfy (5) in the C1-smooth case and (6) in the Cm-smooth case.

2. Homogeneous Approximation of Quasimetric Spaces

Definition 4. Given a neighborhood U ⊂ RN of the origin, refer as a quasimetric on U to a function
d : U × U → R such that
• d is continuous;
• d(x, y) ≥ 0 for all x, y ∈ U and d(x, y) = 0 ⇔ x = y;
• d(x, y) ≤ Cd(y, x) for all x, y ∈ U and some C ≥ 1;
• d(x, z) ≤ Q(d(x, y) + d(y, z)) for all x, y, z ∈ U and some Q ≥ 1.
The pair (U, d) is called a quasimetric space.

Definition 5. Given a tuple (σ1, . . . , σN ) of positive reals, introduce in RN the one-parameter group
of dilations

δε(x1, . . . , xN ) = (ε
σ1x1, . . . , ε

σNxN ), ε > 0.

Definition 6. Define the δε-homogeneous quasinorm

‖x‖ = ‖(x1, . . . , xN )‖ = max
k=1,...,N

|xk|
1
σk

on RN . Denote the set of x ∈ RN with ‖x‖ < r by Box(r). Observe that δεBox(r) = Box(εr).
Definition 7. A quasimetric d̂ on RN is called δε-homogeneous whenever

d̂(δεx, δεy) = ε d(x, y)

for all x, y ∈ RN and ε > 0. The triple (RN , δε, d̂) is called a δε-homogeneous quasimetric space.

Definition 8. Say that (RN , δε, d̂) is a δε-homogeneous approximation to (U, d) if the limit

lim
ε→0
1

ε
d(δεx, δεy) = d̂(x, y) (7)

exists and is uniform in x and y in some neighborhood of the origin. If the limit exists then we say
that (U, d) admits a δε-homogeneous approximation.

Remark 4. In the terminology of [15] the space (RN , d̂) is a local tangent cone to the quasimetric
space (U, d). This generalizes the concept of tangent cone to a metric space which is introduced by
Gromov [16]. We avoid this terminology because the tangent cone is defined up to isometry. The approach
here is a slightly more naive and distinguishes homogeneous approximations in distinct coordinate systems
even if the resulting spaces are isometric.

Lemma 5. If a quasimetric d admits a δε-homogeneous approximation then there exist constants
0 < C1 ≤ C2 <∞ and r0 > 0 such that

C1‖x‖ ≤ d(0, x) ≤ C2‖x‖
for all x ∈ Box(r0).
Proof. Suppose that a δε-homogeneous quasimetric d̂ is a δε-homogeneous approximation to d.

Then there exists r0 > 0 such that

1

ε
d(0, δεx)→ d̂(0, x) as ε→ 0 (8)

uniformly in x ∈ Box(2r0).
767



Put
m = inf{d̂(0, v) : ‖v‖ = r0}, M = sup{d̂(0, v) : ‖v‖ = r0}.

There exists ε1 > 0 such that
m

2
<
1

ε
d(0, δεv) < 2M

for all v ∈ ∂ Box(r0) and ε < ε1. Hence,
m

2r0
‖x‖ = m

2
ε < d(0, x) < 2Mε =

2M

r0
‖x‖

for all ε < min{ε1, 2} and x ∈ ∂ Box(εr0). The proof of Lemma 5 is complete. �
Theorem 6 (a necessary condition for homogeneous approximation in the new coordinates). Consider

a quasimetric space (U, d) admitting a δε-homogeneous approximation and a homeomorphism Φ : U →
Φ(U) with Φ(0) = 0. Define the quasimetric ρ on Φ(U) by putting

ρ(u, v) = d(Φ−1(u),Φ−1(v)).
If (Φ(U), ρ) admits a δε-homogeneous approximation then there exist ε0 > 0 and 0 < C1 ≤ C2 <∞

such that
Box(C1ε) ⊂ Φ(Box(ε)) ⊂ Box(C2ε) (9)

for all ε ∈ (0, ε0).
Proof. By Lemma 5, for the quasimetrics d and ρ there exist positive constants r1, r2, c1, c2, c3,

and c4 such that
c1‖x‖ ≤ d(0, x) ≤ c2‖x‖, c3‖y‖ ≤ ρ(0, y) ≤ c4‖y‖

for all x ∈ Box(r1) and y ∈ Box(r2). Since Φ is a homeomorphism of a neighborhood of the origin, there
exist positive r3 ≤ r2 and r4 ≤ r1 such that Box(r3) ⊂ Φ−1(Box(r2)) and Box(r4) ⊂ Φ(Box(r3)). Then

c1

c4
‖x‖ ≤ 1

c4
d(0, x) =

1

c4
ρ(0,Φ(x)) ≤ ‖Φ(x)‖ ≤ 1

c3
ρ(0,Φ(x)) =

1

c3
d(0, x) ≤ c2

c3
‖x‖

for all x ∈ Box(r4). This implies the claim. �
Remark 7. To show that the condition in Theorem 6 is insufficient in general, take the plane R2

with coordinates (x, y), the dilation δε(x, y) = (εx, ε
2y), and the δε-homogeneous metric

d((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + |y1 − y2|.
Consider the coordinate change Φ(x, y) = (x, y + f(x)) with

f(x) =

{

x2

2 sin
1

|x|1−β , x 
= 0,
0, x = 0,

where β ∈ (0, 1). Then f ∈ C1,β \ C2 and f ′(0) = 0. Observe that DΦ(0) = Id; consequently, Φ is
a C1,β-diffeomorphism of neighborhoods of the origin. Moreover, Φ satisfies the estimate

1

2
(|x|2 + |y|) ≤ |x|

2

2
+ |y| ≤ |Φ1(x, y)|2 + |Φ2(x, y)| ≤ 3

2
|x|2 + |y| ≤ 3

2
(|x|2 + |y|).

However, it is not difficult to verify that the metric ρ(u, v) = d(Φ(u),Φ(v)) admits no δε-homogeneous
approximation. Indeed,

1

ε
d(Φ(εx1, ε

2y1),Φ(εx2, ε
2y2)) =

√

(x1 − x2)2 + |y1 − y2 − 1
ε2
(f(εx1)− f(εx2))|,

where the expression
1

ε2
(f(εx1)− f(εx2)) = x1

2
sin

1

|εx1|1−β −
x2

2
sin

1

|εx2|1−β
lacks any limit as ε→ 0 for x1 
= x2.
It is possible to construct a similar example for the functions of class C1,1. To this end we may

consider, for instance, f(x) =
∫ x
0 t sin

1
t dt.

However, the hypotheses of Theorem 6 are sufficient for the mappings of class C2 on this metric
space, as we verify in Lemma 16.
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Lemma 8. Given a neighborhood U ⊂ RN of the origin and a continuous mapping Φ : U → RN , for
the uniform limit

L(x) := lim
ε→0 δ

−1
ε ◦ Φ ◦ δε(x) (10)

to exist on some neighborhood of the origin, it is necessary and sufficient that there exist a continuous
δε-homogeneous mapping L : RN → RN such that

Φk(x) = Lk(x) + o(ε
σk), k = 1, . . . , N, (11)

as ε → 0 and x ∈ Box(ε) for all coordinate functions Lk, and Φk, with k = 1, . . . , N . Here the coeffi-
cients σk for k = 1, . . . , N are from Definition 5 of the dilation δε.
Under each of these conditions, if Φ and L are homeomorphisms then the limit

lim
ε→0 δ

−1
ε ◦ Φ−1 ◦ δε(y) = L−1(y)

also exists and is uniform on some neighborhood of the origin.

Proof. Suppose that (10) exists and is uniform in x ∈ Box(r0). In this case the limit mapping L is
continuous and

Lk(δtx) = lim
ε→0

1

εσk
Φk(δεδtx) = lim

ε→0 t
σk

1

(tε)σk
Φk(δtεx) = t

σkLk(x) (12)

for all t ∈ (0, 1]; i. e., δt ◦ L = L ◦ δt. We can extend L to a continuous δε-homogeneous mapping on the
whole RN . Then

Φk(δεx) = ε
σk(ε−σkΦk(δε(x))) = εσk(Lk(x) + o(1)) = Lk(δεx) + o(εσk)

for all x ∈ Box(r0). Conversely, suppose that (11) holds. Fix r0 > 0 with Box(r0) ⊂ U . Then
1

εσk
Φk(δεx) =

1

εσk
(Lk(δεx) + o(ε

σk)) = Lk(x) + o(1) (13)

as ε→ 0 uniformly in x ∈ Box(r0). Thus, (10) and (11) are equivalent.
Furthermore, assume that Φ and L are homeomorphisms. Since L is continuous and δε-homogeneous,

it follows that

M = sup
x �=0
‖L(x)‖
‖x‖ = sup

x �=0

∥

∥δ−1‖x‖L(x)
∥

∥ = sup
x �=0

∥

∥L
(

δ−1‖x‖x
)∥

∥ = sup
‖v‖=1

‖L(v)‖ <∞.

Since L(x) 
= 0 for x 
= 0, similarly we obtain
m = sup

x �=0
‖x‖
‖L(x)‖ = sup‖v‖=1

1

‖L(v)‖ <∞.
Therefore,

1

m
‖x‖ ≤ ‖L(x)‖ ≤M‖x‖, 1

M
‖y‖ ≤ ‖L−1(y)‖ ≤ m‖y‖

for all x, y ∈ RN . Consequently, there is a neighborhood V of the origin such that
1

2m
‖x‖ ≤ ‖Φ(x)‖ ≤ 2M‖x‖, 1

2M
‖y‖ ≤ ‖Φ−1(y)‖ ≤ 2m‖y‖

for all x ∈ V and y ∈ Φ(V ). Put Φε(x) = δ−1ε ◦ Φ ◦ δε(x) and take r1 ≤ r0 with Box(r1) ⊂ V and
Box
(

r1
2m

) ⊂ Φ(V ). Then
‖(Φε)−1(y)‖ = 1

ε
‖Φ−1(δεy)‖ ≤ 2m

ε
‖δεy‖ = 2m‖y‖

for all y ∈ Box( r12m
)

and ε > 0; i. e., (Φε)−1
(

Box
(

r1
2m

)) ⊂ Box(r1). From (13) we then infer that
‖Φε(x)− L(x)‖ = o(1) as ε→ 0 uniformly in x ∈ Box(r0). Hence,

y − L ◦ (Φε)−1(y) = Φε((Φε)−1(y))− L((Φε)−1(y)) = o(1)
as ε → 0 uniformly in y ∈ Box( r12m

)

. Since the continuous mapping L−1 is uniformly continuous
on Box

(

r1
2m

)

; therefore,

L−1(y)− (Φε)−1(y) = L−1(y)− L−1(L ◦ (Φε)−1(y)) = o(1)
as ε→ 0 uniformly on Box( r12m

)

. The proof of Lemma 8 is complete. �
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Theorem 9 (a sufficient condition for homogeneous approximation in the new coordinates). Given

a neighborhood U ⊂ RN of the origin, consider a continuous quasimetric d on U and a quasimetric d̂ that
is the δε-homogeneous approximation of d. Let Φ : U → RN be a homeomorphism onto a neighborhood of
the origin such that there exists a δε-homogeneous homeomorphism L : RN → RN satisfying the condition

L(x) = lim
ε→0 δ

−1
ε ◦ Φ ◦ δε(x)

as ε → 0 uniformly in x ∈ Box(r0). Consider the quasimetric space (Φ−1(U), ρ), where ρ(u, v) =
d(Φ(u),Φ(v)). Then
(1) the limit

ρ̂(u, v) := lim
ε→0
1

ε
ρ(δεu, δεv)

exists for all u, v ∈ RN and is uniform on some neighborhood V ⊂ Φ(U) of the origin;
(2) ρ̂(u, v) is a continuous δε-homogeneous quasimetric on RN ;
(3) L is a δε-homogeneous isometry between (RN , d̂) and (RN , ρ̂); i. e.,

δεL(x) = L(δεx), ρ̂(x, y) = d̂(L(x), L(y))

for all x, y ∈ RN .

Proof. Take Φε = δ−1ε ◦ Φ ◦ δε. Then
ρ(δεu, δεv) = d(Φ(δεu),Φ(δεv)) = d(δε ◦ Φε(u), δε ◦ Φε(v)).

Lemma 8 yields

1

ε
ρ(δεu, δεv) =

1

ε
d(δε ◦ Φε(u), δε ◦ Φε(v)) = d̂(Φε(u),Φε(v)) + o(1)
= d̂(L(u) + o(1), L(v) + o(1)) + o(1)

as ε→ 0, where all o(1) are uniform in u and v in a neighborhood of the origin. Therefore,

ρ̂(u, v) := lim
ε→0
1

ε
ρ(δεu, δεv) = d̂(L(u), L(v)).

Since L−1 is a homeomorphism, it follows that ρ̂ is also a quasimetric on RN . Moreover,

ρ̂(δtu, δtv) = d̂(L(δtu), L(δtv)) = d̂(δt ◦ L(u), δt ◦ L(v)) = td̂(L(u), L(v)) = tρ̂(u, v)
for all t > 0 and u, v ∈ RN . The proof of Theorem 9 is complete. �
Remark 10. In Theorem 9, the condition that the uniform limit exists is unnecessary. We can

construct an example of Φ such that (10) lacks any limit, although the quasimetrics converge in the new
coordinate system. Consider C with the Euclidean metric d(z, w) = |z−w| and homothety as the dilation
δε(z) = εz for ε > 0.
Define the mapping Φ : C→ C as

Φ(reiθ) = r ei(θ+log r), Φ(0) = 0,

where θ ∈ [0, 2π]. This mapping Φ is continuous because Φ(re0i) = Φ(re2πi) and Φ(reiθ) → 0 as r → 0.
Furthermore, the metric d(z, w) = |Φ(z)− Φ(w)| is homogeneous:

1

ε
|Φ(εr1eiθ1)− Φ(εr2eiθ2)| = 1

ε
|εr1eiθ1+i log(εr1) − εr2eiθ2+i log(εr2)|

= |ei log ε||r1eiθ1+i log r1 − r2eiθ2+i log r2 | = |Φ(r1eiθ1)− Φ(r2eiθ2)|.
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However, (10) for Φ is as follows:

1

ε
Φ(εz) =

1

ε
Φ(εreiθ) = reiθ+i log(εr) = reiθ+i log rei log ε = Φ(z)ei log ε

and so there is no limit as ε→ 0. Here |z − w| and |Φ(z)− Φ(w)| are not isometric.
Let us apply the results of this section to Carnot–Carathéodory spaces. Consider an equiregular

C1-smooth space M. In a neighborhood U of p ∈ M choose a basis X1, . . . , XN subordinate to (3). Recall
that, using the family

θx(u1, . . . , uN ) = exp(u1X1 + · · ·+ uNXN )(x), x ∈ U,

of the canonical coordinates of the first kind, we define the quasimetric d∞(x, y) = maxk=1,...,N |uk|
1
σk

and the family of dilations

Δpε : θp(u1, . . . , uN ) �→ θp(εσ1u1, . . . , εσNuN ).
Theorems 2 and 9 imply the following statement:

Corollary 11. Consider an equiregular Carnot–Carathéodory space M with C1-smooth vector fields,
a basis X1, . . . , XN in a neighborhood of p ∈ M subordinate to (3), the canonical coordinate system θp
of the first kind (2), and a homeomorphism φp : U ⊂ RN → M of a neighborhood of the origin onto
a neighborhood of p. Define the family of dilations

˜Δpε : φp(x1, . . . , xN ) �→ φp(εσ1x1, . . . , εσNxN ).
If the limit

Lp(x) := lim
ε→0 δ

−1
ε ◦ φ−1p ◦ θp ◦ δε(x)

exists and is uniform on some neighborhood of the origin and Lp is a homeomorphism then the limit

d̃p∞(x, y) = lim
ε→0
1

ε
d∞
(

˜Δpεx, ˜Δ
p
εy
)

exists and is uniform on some neighborhood of the origin and d̃p∞ is a ˜Δpε-homogeneous quasimetric
isometric to d̂p∞. The isometry is given by the mapping L p = φp ◦ Lp ◦ θ−1p : d̂p∞(x, y) = d̃p∞(L px,L py).

Remark 12. In Corollary 11, if L p is a C1-diffeomorphism then we can define the vector fields
˜X
p
j = L p∗ ̂Xpj . These are homogeneous under dilation in the new coordinates; however, in general we
cannot assert that they are homogeneous limits of the vector fields Φ∗Xj . Consider, for instance, R2x,y
with the collection of vector fields

{

∂
∂x
, ∂∂y
}

, the dilation δε(x, y) = (εx, ε
2y), and the transition mapping

Φ(x, y) = (x, y + f(x)), where

f(x) =

{

x3 sin 1x , x 
= 0,
0, x = 0.

Then Φ is a C1,1-diffeomorphism of neighborhoods of the origin and

δ−1ε ◦ Φ ◦ δε(x, y) =
(

x
y + εx3 sin 1εx

)

→
(

x
y

)

as ε→ 0. However, Φ∗ ∂∂x = ∂
∂x +

(

3x2 sin 1x − x cos 1x
)

∂
∂y , and the expression

(δε)
−1
∗ εΦ∗

∂

∂x
(εx, ε2y) =

∂

∂x
+

(

3εx2 sin
1

εx
− x cos 1

εx

)

∂

∂y

lacks any limit as ε→ 0 for x 
= 0.
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3. Homogeneous Approximation to Vector Fields

In this section we present a sufficient condition on the transition function Φ for which there exist
homogeneous approximations to basis vector fields of a Carnot–Carathéodory space in the new coordi-
nates.

Definition 9. Assume that a dilation δε is prescribed in a neighborhood U ⊂ RN of the origin. Say
that a continuous vector field X on U admits a δε-homogeneous approximation of degree r whenever the
limit

̂X(x) := lim
ε→0(δ

−1
ε )∗ε

rX(δεx) (14)

exists and is uniform on some neighborhood of the origin. Observe that in this case the vector field ̂X is
δε-homogeneous of degree r.

Lemma 13. Given Φ ∈ C1(U,RN ), for the uniform limit
λ(x) := lim

ε→0Dδ
−1
ε ◦DΦ ◦Dδε(x) (15)

to exist on some neighborhood of the origin, it is necessary and sufficient that for all k, l ∈ {1, . . . , N}
with σk > σl there are some continuous functions λkl : RN → R δε-homogeneous of degree σk − σl and
satisfying the condition

∂Φk
∂xl
(x) = λkl(x) + o(ε

σk−σl) (16)

as ε→ 0, where all o(·) are uniform in x ∈ Box(ε).
Under these hypotheses, if Φ(0) = 0 then the uniform limit

L(x) := lim
ε→0 δ

−1
ε ◦ Φ ◦ δε(x) (17)

exists and λ = DL.

Proof. Since the matrix Dδε is diagonal with ε
σ1 , . . . , εσN at the diagonal, we have

[

Dδ−1ε ◦DΦ ◦Dδε
]

kl
(x) = εσl−σk

∂Φk
∂xl
(δεx).

Necessity. Take V = Box(r0) and suppose that the limit in (15) exists and is uniform on V . This
is equivalent to the property that for all k, l ∈ {1, . . . , N} the uniform limits of the coordinate functions

λkl(x) := lim
ε→0 ε

σl−σk ∂Φk
∂xl
(δεx), x ∈ V,

exist. Then the functions λkl are continuous as the uniform limits of continuous functions and λkl(δtx) =
tσk−σlλkl(x) for x ∈ V and t ∈ (0, 1]. We can extend λkl by homogeneity to functions on RN .

Sufficiency. Assume (16). Then in the case σl ≥ σk we have
εσl−σk

∂Φk
∂xl
(δεx)→

{ ∂Φk
∂xl
(0), σl = σk,

0, σl > σk,

as ε→ 0 uniformly on some compact neighborhood of the origin. For σl < σk we obtain
εσl−σk

∂Φk
∂xl
(δεx) = ε

σl−σk(λkl(δεx) + o(εσk−σl)
)

= λkl(x) + o(1),

where o(·) is uniform in x.
Existence of the limit in (17). Put Φε = δ−1ε ◦ Φ ◦ δε. If Φ(0) = 0 then Φε(0) = 0 for all ε > 0.

Suppose that DΦε(x)→ λ(x) as ε→ 0 uniformly in x ∈ Box(r0). Given ε1, ε2 > 0 and x ∈ Box(r0), we
have

|Φε1(x)− Φε2(x)| = |(Φε1 − Φε2)(x)− (Φε1 − Φε2)(0)| ≤ r0 sup
y∈Box(r0)

‖D(Φε1 − Φε2)(y)‖.

Since the family of DΦε is fundamental in the uniform norm, we conclude that so is the family of Φε.
Hence, the uniform limit Φε(x)→ L(x) as ε→ 0 exists for x ∈ Box(r0). Furthermore, since DΦε converge
uniformly, DL(x) = limε→0DΦε(x) = λ(x) for x ∈ Box(r0). The proof of Lemma 13 is complete. �
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Theorem 14 (a sufficient condition for approximation of vector fields in the new coordinates). Given
a continuous vector field X in a neighborhood U of the origin, assume that the uniform limit

̂X(x) = lim
ε→0
(

δ−1ε
)

∗ε
rX(δεx)

exists for some r > 0.
Take a C1-diffeomorphism Φ : U → RN of neighborhoods of the origin with Φ(0) = 0. Suppose that

the uniform limit
λ(x) := lim

ε→0Dδ
−1
ε ◦DΦ ◦Dδε(x)

exists in a neighborhood of the origin and detλ(0) 
= 0. Put Y (y) = Φ∗X(Φ−1(y)). Then the limit
̂Y (y) = lim

ε→0
(

δ−1ε
)

∗ε
rY (δεy)

exists, is uniform on some neighborhood of the origin, and ̂Y (y) = L∗ ̂X(L−1(y)), where the mapping L
is defined by (17).

Proof. Indeed, by Lemma 13 there is a neighborhood of the origin in which the uniform limits

L(x) = lim
ε→0 δ

−1
ε ◦ Φ ◦ δε(x), L∗(x) = DL(x) = lim

ε→0
(

δ−1ε ◦ Φ ◦ δε
)

∗(x)

exist. Since detDL(0) = detλ(0) 
= 0, it follows that L(x) is a diffeomorphism of neighborhoods of the
origin. By Lemma 8, the uniform limit

L−1(y) = lim
ε→0 δ

−1
ε ◦ Φ−1 ◦ δε(y)

exists in a neighborhood of the origin. Consequently, in a sufficiently small neighborhood

(

δ−1ε
)

∗ε
rY (δεy) =

(

δ−1ε
)

∗ε
rΦ∗X(Φ−1(δεy))

=
(

δ−1ε ◦ Φ ◦ δε
)

∗
(

δ−1ε
)

∗ε
rX ◦ δε

(

δ−1ε ◦ Φ−1 ◦ δε(y)
)→ L∗ ̂X(L−1(y))

as ε→ 0 uniformly in y. �
Theorems 2 and 14 immediately yield the following statement:

Corollary 15. Consider an equiregular Carnot–Carathéodory space M with C1-smooth vector fields,
a basis X1, . . . , XN for TM in a neighborhood of p ∈ M which is subordinate to (3), the canonical coordi-
nate system θp of the first kind (2), and a C

1-diffeomorphism φp : U ⊂ RN → M from a neighborhood of
the origin onto a neighborhood of p. Define the family of dilations

˜Δpε : φp(x1, . . . , xN ) �→ φp(εσ1x1, . . . , εσNxN ).
If the uniform limit

λp(x) := lim
ε→0Dδ

−1
ε ◦Dφ−1p ◦Dθp ◦Dδε(x)

exists in a neighborhood of the origin and detλp(0) 
= 0 then
(1) the uniform limit

˜X
p
k(x) = limε→0

(

˜Δpε
)−1
∗ ε

dkXk
(

˜Δpεx
)

exists in a neighborhood of the origin;
(2) the hypotheses of Corollary 11 hold, while the mappings Lp and L p defined in Corollary 11 are

continuously differentiable and ˜Xpk = L p∗ ̂Xpk .
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4. Transition and Smoothness

In this section we point out conditions on the smoothness of the transition function Φ under which
the necessary condition (9) is also sufficient.
We use the standard multi-index notation. If α = (α1, . . . , αN ), where αk are nonnegative integers

for k = 1, . . . , N , then

|α| = α1 + · · ·+ αN , α! = α1! · . . . · αN !, xα = xα11 · . . . · xαNN , DαΦ =
∂Φ|α|

∂xα11 . . . ∂x
αN
N

.

Introduce also the weight of multi-indices as σ(α) = σ1α1 + · · ·+ σNαN .
Lemma 16. Consider Φ : U → RN and for the coordinate functions of this mapping assume that

Φk ∈ Cσk(U) for k = 1, . . . , N . The following are equivalent:
(1) There exist constants C > 0 and ε0 > 0 such that Φ(Box(ε)) ⊂ Box(Cε) for all 0 < ε ≤ ε0.
(2) Φk(x) = O(ε

σk) as ε→ 0 for x ∈ Box(ε).
(3) DαΦk(0) = 0 for all multi-indices α with σ(α) < σk.
(4) The limits

L(x) = lim
ε→0 δ

−1
ε ◦ Φ ◦ δε(x), (18)

DL(x) = lim
ε→0Dδ

−1
ε ◦DΦ ◦Dδε(x) (19)

exist and are uniform on some neighborhood of the origin.
If any of these conditions hold then coordinate functions of L are polynomials.

Proof. Equivalence of items (1) and (2) is obvious: Item (2) is a coordinate expression of item (1).
To show that item (3) is equivalent to (2), expand the coordinate functions of Φ into Taylor polynomials
to the corresponding orders:

Φk(x) = Pk(x) + o(|x|σk) =
∑

α:|α|≤σk

DαΦk(0)

α!
xα + o(|x|σk). (20)

Observe that xα = O(εσ(α)) for x ∈ Box(ε). Hence, Φk(x) = O(εσk) if and only if DαΦk(0) = 0 for all α
with σ(α) < σk.
Let us verify that item (3) is necessary and sufficient for the limit of (18) to exist. Indeed, using the

expansion in (20), for the coordinate function Φk we obtain

1

εσk
Φk(δεx) =

∑

α:σ(α)<σk

DαΦk(0)

α!εσk−σ(α)
xα +

∑

α:σ(α)=σk

DαΦk(0)

α!
xα + o(1).

This expression has a limit as ε→ 0 if and only if its first term vanishes; i. e., if item (3) is satisfied. In
this case, the second term yields an expression for the coordinate function of the limit Lk(x).
Consider the limit in (19). Since Dδε is the diagonal matrix with entries ε

σ1 , . . . , εσN at the diagonal,
we have

[

Dδ−1ε ◦DΦ ◦Dδε
]

kl
(x) = εσl−σk

∂Φk
∂xl
(δεx).

Since ∂Φk∂xl ∈ Cσk−1(U), it follows that
∂Φk
∂xl
(x) =

∂Pk
∂xl
(x) + o(|x|σk−1),

where Pk is the Taylor polynomial for Φk in (20). Furthermore,
∂(xα)
∂xl

is a δε-homogeneous monomial of

degree σ(α)− σl. Thus,
εσl−σk

∂Φk
∂xl
(δεx) =

∑

α:σ(α)<σk

DαΦk(0)

α!εσk−σ(α)
∂(xα)

∂xl
+

∑

α:σ(α)=σk

DαΦk(0)

α!

∂(xα)

∂xl
+ o(1).

We infer again that this expression has a limit as ε→ 0 if and only if its first term vanishes; i. e., item (3)
holds. In this case, the second term is ∂Lk∂xl (x). The proof of Lemma 16 is complete. �
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Corollary 17. Consider an equiregular Carnot–Carathéodory space M of depth m with Cm-smooth
vector fields. Take p ∈ M and the canonical system of coordinates θp of the first kind in a neighborhood
of p. A Cm-smooth coordinate system φp in a neighborhood of p satisfies the hypotheses of Corollaries 11
and 15 if and only if there exist constants 0 < C1 ≤ C2 <∞ and ε0 > 0 such that

φp(Box(C1ε)) ⊂ θp(Box(ε)) ⊂ φp(Box(C2ε)) (21)

for all ε ∈ (0, ε0).
Proof. Put Φ = θ−1p ◦ φp.
Necessity. Under the hypotheses of Corollary 11 the uniform limits

L(x) = lim
ε→0 δ

−1
ε ◦ Φ ◦ δε(x)

exist on some neighborhood of the origin. By Theorem 6, there are constants 0 < C1 ≤ C2 < ∞ and
ε0 > 0 such that Box(C1ε) ⊂ Φ(Box(ε)) ⊂ Box(C2ε). This directly yields (21).
Sufficiency. Suppose that (21) holds. By Lemma 16, the uniform limits

L(x) = lim
ε→0 δ

−1
ε ◦ Φ ◦ δε(x), λ(x) = DL(x) = lim

ε→0Dδ
−1
ε ◦DΦ ◦Dδε(x),

L−1(x) = lim
ε→0 δ

−1
ε ◦ Φ−1 ◦ δε(x), λ−1(x) = DL−1(x) = lim

ε→0Dδ
−1
ε ◦DΦ−1 ◦Dδε(x)

exist on some neighborhood of the origin. Furthermore, the coordinate functions of L, L−1, λ, and λ−1
are polynomials. Thus, the requirements of Corollary 11 are met: L exists and is a homeomorphism,
while the conditions of Corollary 15 are met as well: the mapping λ exists and detλ 
= 0. �
Remark 18. Examples in Remarks 7 and 12 show that the smoothness assumptions on Φ cannot

be improved in general; i. e., the hypotheses of Theorems 6, 9, and 14 are equivalent for Cm-smooth
mappings and differ substantially in the case of lower smoothness, for instance, for Cm−1,1.
Remark 19 (an alternative proof of Theorem 3). For Carnot manifolds with C1-smooth vector fields

we have the Ball–Box Theorem (claim 2 of Theorem 1; for a proof see [17, Theorem 8] for instance). This
theorem and Corollary 17 imply Theorem 3 of the Introduction for Carnot manifolds with Cm-smooth
vector fields.

5. Canonical Coordinate Systems

Consider an equiregular Carnot–Carathéodory space M with Cr-smooth vector fields with r ≥ 1 and
a basis X1, . . . , XN for TM in a neighborhood of p ∈ M which is subordinate to (3). Split the tuple of
vector fields {Xi}Ni=1 into L disjoint tuples {Xj,1, . . . , Xj,kj}, for j = 1, . . . , L, and consider the mapping

φp(u1, . . . , uN ) = exp(uL,1XL,1 + · · ·+ uL,kLXL,kL) ◦ · · ·
◦ exp(u2,1X2,1 + · · ·+ u2,k2X2,k2) ◦ exp(u1,1X1,1 + · · ·+ u1,k1X1,k1)(p). (22)

Then φp ∈ Ck and ∂φp∂ui (0) = Xi(p). Consequently, φp is a Cr-diffeomorphism from a neighborhood of the
origin onto a neighborhood of p. The canonical coordinate system of the second kind

θ2p(u1, . . . , uN ) = exp(uNXN ) ◦ exp(uN−1XN−1) ◦ · · · ◦ exp(u1X1)(p)

is a particular case of this mapping.
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Theorem 20. Consider an equiregular Carnot–Carathéodory space M with C1-smooth vector fields
and p ∈ M. Using (22), define the one-parameter family of dilations

Δpε : φp(x1, . . . , xN ) �→ φp(εσ1x1, . . . , εσNxN ).
Then the limit

d̃p∞(x, y) = lim
ε→0
1

ε
d∞
(

Δpεx,Δ
p
εy
)

exists, is uniform on some neighborhood of p, and d̃p∞ is a Δpε-homogeneous quasimetric isometric to the
quasimetric d̂p∞ of Theorem 2. If M is a depth m space with Cm-smooth vector fields then the limit

˜X
p
k(x) = limε→0

(

Δpε
)−1
∗ ε

dkXk
(

Δpεx
)

exists and is uniform on some neighborhood of p, while the vector fields ˜Xpk determine the structure of
a graded nilpotent Lie algebra isomorphic to the algebra of Theorem 2.

We prove this theorem using the following result:

Theorem 21 [12]. Consider an equiregular Carnot–Carathéodory space M with C1-smooth vector
fields, p ∈ M, and a basis X1, . . . , XN in a neighborhood of p which is subordinate to (3). If ̂X

p
k ,

for k = 1, . . . , N , are nilpotent approximations to these vector fields constructed using the canonical
coordinates of the first kind as in Theorem 2 then there exists a neighborhood U of p such that, given
two absolutely continuous curves γ, γ̂ : [0, 1]→ M with γ(0) = γ̂(0) ∈ U and

γ̇(t) =

N
∑

i=1

bi(t)Xi(γ(t)), ˙̂γ(t) =

N
∑

i=1

bi(t) ̂X
p
i (γ̂(t)),

where the measurable functions bi(t) satisfy the condition

1
∫

0

|bi(t)| dt < Sεσi , S <∞, i = 1, . . . , N, (23)

we have
max{d∞(γ(1), γ̂(1)), d̂∞(γ(1), γ̂(1))} ≤ o(1) · ε,

where o(1) is uniform on U and in all tuples {bi(t)}Ni=1 of functions satisfying (23).
Proof of Theorem 20. Take δε-homogeneous vector fields ̂X

′
1, . . . ,

̂X ′N of Theorem 2. Define
φ̂′p : RN → RN as

φ̂′p(u1, . . . , uN ) = exp(uL,1 ̂X
′
L,1 + · · ·+ uL,kL ̂X ′L,kL) ◦ · · ·

◦ exp(u2,1 ̂X ′2,1 + · · ·+ u2,k2 ̂X ′2,k2) ◦ exp(u1,1 ̂X ′1,1 + · · ·+ u1,k1 ̂X ′1,k1)(0).
Observe that φ̂′p is a C∞-diffeomorphism onto RN . Since ̂X ′j is homogeneous of degree σj , for all u, v ∈ RN

we have
δε ◦ exp(u1 ̂X ′1 + · · ·+ uN ̂X ′N )(v) = exp(εσ1u1 ̂X ′1 + · · ·+ εσNuN ̂X ′N )(δεv).

Consequently, δε ◦ φ̂′p = φ̂′p ◦ δε.
Theorem 21 shows that

d̂p∞

(

exp

( N
∑

k=1

εσkukXk

)

(x), θp ◦ exp
( N
∑

k=1

εσkuk ̂X
′
k

)

◦ θ−1p (x)
)

= o(ε)

for each tuple (u1, . . . , uN ) of constants, where o(ε) is uniform in x in a neighborhood of p; and in
(u1, . . . , uN ), in a neighborhood of the origin. Thus,

d̂p∞(φp(δεu), θp ◦ φ̂′p(δεu)) = o(ε) as ε→ 0
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uniformly in u. The quasimetric d̂p∞ is homogeneous in θp; consequently,
1

ε
d̂p∞
(

φp(δεu), θp ◦ φ̂′p(δεu)
)

=
1

ε
d̂p∞
(

θp ◦ θ−1p ◦ φp(δεu), θp ◦ δε ◦ φ̂′p(u)
)

= d̂p∞
(

θp ◦ δ−1ε ◦ θ−1p ◦ φp(δεu), θp ◦ φ̂′p(u)
)

= o(1).

Hence, we conclude that the limit
lim
ε→0 δ

−1
ε ◦ θ−1p ◦ φp ◦ δε = φ̂′p

exists and is uniform on some neighborhood of the origin, and the hypotheses of Corollary 11 hold. The
mapping L p = θp ◦ φ̂′p ◦φ−1p : d̃p∞(x, y) = d̂p∞(L px,L py) provides an isometry between the quasimetrics.
In the case of Carnot–Carathéodory spaces with Cm-smooth vector fields both coordinate systems θp

and φp are also C
m-smooth; consequently, by Theorem 6 and Corollary 17 the hypotheses of Corollary 15

hold and L p determines a Lie algebra isomorphism: ˜Xpk(x) = (L
p∗ )−1 ̂Xpk(L

px) for k = 1, . . . , N . The
proof of Theorem 21 is complete. �
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(1996), 79–323 (Sub-Riemannian Geometry; Vol. 144).

7. Bramanti M., Brandolini L., and Pedroni M., “On the lifting and approximation theorem for nonsmooth vector
fields,” Indiana Univ. Math. J., vol. 59, no. 6, 2093–2138 (2010).
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