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THE JUNCTION PROBLEM FOR TWO WEAKLY
CURVED INCLUSIONS IN AN ELASTIC BODY
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Abstract: Under study are the boundary value problems that describe the equilibria of two-dimensional
elastic bodies with thin weakly curved inclusions in the presence of delamination, which means that
there is a crack between the inclusions and an elastic body. Some inequality-type nonlinear boundary
conditions are imposed on the crack faces that exclude mutual penetration. This puts the problems into
the class of those with unknown contact area. We assume that the inclusions have a contact point, find
boundary conditions at the junction point, and justify passage to infinity with respect to the rigidity
parameter of the thin inclusion. In particular, we obtain and analyze limit models.
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1. Introduction. This article studies junction boundary value problems for two weakly curved
inclusions in an elastic body in the presence of crack delamination. On the crack faces we impose
inequality-type nonlinear boundary conditions that prevent the mutual penetration of the opposite faces.
The goal of this article is to find boundary conditions at the junction point and prove the solvability of
the corresponding boundary value problems. We consider the junction of two elastic inclusions as well
as of an elastic inclusion and a rigid inclusion.

The last few years have brought in the extensive studies of boundary value problems for the equilibria
of elastic and inelastic bodies with cracks in the framework of models with the nonlinear boundary
conditions on faces [1-7]. Similar results are obtained in the case of problems of equilibria for elastic
bodies with thin inclusions in the presence of crack delamination [8-14]. Among the articles dealing with
junction we note [15-22] which consider the junction problem of elastic objects. The junction problems
of elastic, rigid, and semirigid inclusions in elastic bodies in the presence of delamination with nonlinear
boundary conditions on the crack faces can be found in [23-28]. Thin elastic inclusions were described
there using the Euler—Bernoulli and Timoshenko beam models.

In the case of weakly curved inclusions, treated in this article, a whole series of features appear due
to the nonzero curvature of inclusions. In particular, the structure of the displacement field for rigid
weakly curved inclusions is noticeably more complicated than for rectilinear inclusions. We consider
the two possible variants of mutual contact of inclusions: The first variant corresponds to breaking
composite inclusion at the junction point, and the second variant is characterized by the absence of
a corner point, which corresponds to the conservation of the angle between the inclusions at this point
during the deformation.

2. Statement of the equilibrium problem. The corner case. Let us state the equilibrium
problem for an elastic body with two thin elastic weakly curved inclusions. Consider a bounded domain
Q C R? with smooth boundary T'; for v = v; U2 U {(0,0)} put Q, = Q\ ¥, where

Vi = {(z1,22) [22 = (21),21 € 53}, s1=(=1,0), s2=(0,1),
and ¢ : (=1,1) — R is a given function with ¢(0) = 0 of smoothness
(RS Hl(si), P11 € Loo(si)’ 1=1,2.
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Assume that the median lines of the thin elastic inclusions coincide with ;. Therefore, the inclusions
touch at (0,0). The elastic body occupies €2,. Assume that v has a corner point at (0,0). This term
means that actually we have the two inclusions 7; and -2 unrelated to each other at (0,0). In other
words, if we remove the surrounding elastic body then two inclusions v; and 2 can move independently
of each other.

To describe weakly curved inclusions, we use the Euler—-Bernoulli model. For suitable models of elastic
hollow shells, as well as the corresponding one-dimensional weakly curved beams; see [29, Chapter 1] for
instance. Denote the unit normal to v by v = (v1,12) and put 7 = (12, —v1). Denote by B = {b;;u }, for
1,7, k,l = 1,2, the available positive definite elasticity tensor:

bijk:l = Ujikl = bklij7 i, 5,k 0 =1,2; bijk'l € LOO(Q)a
bijriPij Prl = co|<p\2 for all ¢;; = ¢;j, co = const > 0.

There is summation implied over the repeating indices. Henceforth we assume all quantities with two
lower indices symmetric with respect to these indices. Denote by f = (f1, f2) € L?(£2)? the given vector
of exterior forces acting on the elastic body; by k € L*(s;), the known curvature of the median curves
of the thin inclusions which is equal to ¢ 11(1 + (¢,1)?)~%/2.

Suppose that the positive side, relative to the normal v, of the inclusion v delaminates, forming
thus a crack between the elastic body and the inclusion. On the crack faces we impose inequality-type
boundary conditions that ensure the mutual nonpenetration of the faces. To simplify the statement
of junction boundary conditions at (0,0), assume that ¢ ;(0+) = 0. This assumption preserves the
generality of the result because we can always choose some coordinate system with ¢ 1(0+) = 0.

The statement of the equilibrium problem for an elastic body with inclusions v; and v is as follows:
Find the displacement vector u = (u1,u2) and the stress tensor o = {0;;} for 4, j = 1,2 defined on Q,,
as well as the displacements v and w of points of the thin inclusions defined on s; U s such that

—dive=f, o—Be(u)=0 in Q,, (2.1)

v +k(wy +kv) =loy]p ons;, 1=1,2, (2.2)

—wqi1 — (kv)1 =[o7]p ons;, 1=1,2, (2.3)

u=0onl; vy=vinm=wi+kv=0, =z;=-1,1, (2.4)

[uy] >0, v=wu,, w=u; on-~, (2.5)

of <0, 07 =0, 0f[u,]=0 on~, (2.6)

[0(O)]y = O] = (11O = (w1 + ko) (OF =0, v.11(0+) = 0. (2.7

Here [h] = At — h™ is the jump of h on +, and h* are the values of h on the positive and negative sides
of the cut v in accordance with the chosen direction of the normal v. Furthermore, e(u) = {&;;(u)} is the
deformation tensor e;;(u) = %(um +u;;) for i,j = 1,2; ov = (015v4, 095V5), 0y = 04VjVi, O = 045ViTi,
uy = uv, u; = ut, and p = 4 /1 + 3.

The jumps [-], and [-]? of the functions prescribed on the axis 1 at 1 = 0 are given as

[m(0)], = m(0+) — (p~'m)(0-);  [m(0)} = m(0+) — (pm)(0—).

The second and third equalities in (2.5) should be understood as v(z1) = u, (z1,¢(z1)) for z1 € s;,
where ¢ = 1,2. Here (2.1) are the equilibrium equations of the elastic body and the state equation
(the Hooke law), while (2.2) and (2.3) represent the equilibrium equations of the thin weakly curved
inclusions; the right-hand sides of (2.2) and (2.3) describe the forces acting on the inclusions from the
direction of the elastic body. The first boundary condition in (2.5) ensures the mutual nonpenetration of
the crack faces, while the second and third conditions say that the displacements of points of the elastic
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body and the thin inclusions coincide on v~. The second group of (2.4) corresponds to the zero torque,
zero shearing force, and zero dilation or contraction. As for boundary conditions (2.6), they are typical
for the statements of boundary value problems of crack theory with unknown contact domain; see [1].
In particular, if contact is absent at the specified point xg, i.e. [u,(z)] > 0; we obtain the zero value of
the surface force: (ov)™(zg) = 0. On the other hand, if the surface force is nonzero, i.e., o} (zg) < 0, then
we have the contact condition [u,(x¢)] = 0. Boundary conditions (2.7) describe the junction conditions
for two inclusions at (0,0). In particular, the torques vanish; the jumps [-], for the displacements of thin
inclusions vanish; the jumps []? of the shearing forces and tangential forces also vanish. Since at (0,0)
we have a corner point between the inclusions, the jump of v ; at 0 is nonzero in general.

As we will establish, (2.1)—(2.7) are precisely equivalent to the variational statement of the problem of
minimizing the energy functional on a suitable set of functions. The energy functional includes the terms
corresponding to the deformation energy of the elastic body, the work of exterior forces, the bending and
dilation energy of the thin inclusion. Let us present the variational statement of (2.1)—(2.7). To this end,
introduce the set of admissible displacements

K ={(u,v,w) |u € HNQ)?% v e H*(s;), we H'(s;), i =1,2,
[w] >0, v="1,, w=u; on~y},
where the Sobolev space H}(£2,) is defined as
H(Q,) = {6 € HY(Q,) | 6 =0 on T},

Consider the energy functional

2 2
m(u, v, w) = ;/a(u)e(u) - /fu+ ;Z/”?ll + % Z/(w,l + kv)?.
g o, =1} =1}

For brevity, here and henceforth we denote o;;(u)e;j(u) by o(u)e(w). Then the minimization problem

find (u,v,w) € K such that m(u,v,w) = i%fw
has a solution satisfying the variational inequality

(u,v,w) € K, (2.8)

/a(u)s(a —u) — /f(ﬂ —u) + 22:/@711(@711 —v11)
Q, Q, =1

Si

2
+ Z/{(wl +kv)(w1 +kv—wy —kv)} >0 forall (u,v,w) € K. (2.9)
i=1

As the solvability of (2.8), (2.9) is established in [11], we omit the arguments. Note also that the solution
is unique.

We can prove that problems (2.8), (2.9) and (2.1)—(2.7) are equivalent on the class of smooth solutions.
This means that all relations in (2.1)—(2.7) follow from (2.8), (2.9); and, conversely, we can deduce (2.8)
and (2.9) from (2.1)—(2.7).

Proposition 1. Problems (2.8), (2.9) and (2.1)—(2.7) are equivalent on the class of sufficiently
smooth solutions.

PROOF. Suppose that (2.8) and (2.9) hold. Firstly, using the corresponding substitutions into (2.9),
we verify in the standard fashion that the equilibrium equation in (2.1) is satisfied. Boundary con-
ditions (2.6) are typical for contact problems of this form, and so we omit their derivation; see [1,11].
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Furthermore, choose in (2.9) test functions of the form (@, v,w) = (u, v, w)=£(4, v, w), where (4, v, w) € K,
with [@,] = 0 on . This yields

/a(u)e(a) —({ fu+ gs/v,nﬁ,n + gg[(w,l + kv)(w, + kv) = 0;

~

consequently, integrating by parts, we obtain

_/[Uu]au - /[O-Tﬁ”r] +Z;/U,111117

v Y
2 2
— Z /(w,l + kv),lﬁ) + Z /(w,l + kv)k@ + U’nf)’l‘gl
=1 =1
—H)7111~)’1|(1) — 1},11117‘(11 - U71111~)‘(1) + (w71 + kv)fu]gl + (’LU71 + kv)ﬂ]‘(l) =0. (2.10)

Assume for the time being that the test functions in (2.10) satisfy the conditions o = 0; = w = 0 for
xz1 = —1,0,1. The vanishing of the derivative 0 ; at 1 = 0 means that v ;(0+) = 0. We arrive at the
identity

2 2 2
— /[UV]’&,,/ - /[0'7-117-] + Z/U,llllf) - Z /(w,l + kv)71ﬂ) + Z /(’LU71 + kv)kn? == O,
5 5 =13 =13 =17
valid for all chosen functions. This implies equilibrium equations (2.2) and (2.3) because dy = pdz;.
Return to (2.10). The available smoothness of the solution and the second and third boundary conditions
in (2.5) yield [v(0)], = [w(0)], = 0. Indeed, v is a Lipschitz curve. Since u € H'(Q,)?, it follows that
ul,- € H 1/2(5). Therefore, by the boundary conditions v = u, and w = u,; on v and the available
smoothness of v and w, the displacements of inclusions at (0,0) must coincide. The functions v and w
are the displacements of the thin inclusions in the normal and tangent directions. Thus, the gluing of
displacements at (0,0) leads to the boundary conditions [v(0)], = [w(0)], = 0. Here we account for the
assumption ¢ 1(0+) = 0. We should also keep in mind that the jumps [-], of the test functions ¢ and w
at 1 = 0 vanish. Therefore, from (2.10) we obtain the second group of boundary conditions (2.4) and,
moreover,

(v,119,1)(0=) — (v,119,1)(0+) + [v,111(0)]P2(0+) — [(w,1 + kv)(0)]Pw(0+) = 0.

This implies the remaining boundary conditions in (2.7). Thus, from (2.8) and (2.9) we obtain all relations
n (2.1)-(2.7).

Conversely, suppose that (2.1)—(2.7) hold. Multiply the first equation in (2.1) by @ — u, while (2.2)
and (2.3) by ¥ — v and W — w respectively, then integrate over €2, and s;. Integrating by parts yields

Jlovia=wl+ [ owea - - Q/ Fa— )+ Z / o (@11 — o)

5 Q,
2 2
+ Z /(w,l + kv)(wy + kv —w; — kv) — Z /[UT]p(w —w)
=17 =17
2
-3 /[Uu]P(T) —0) —vn (01 —v1)[2 v @1 —v1)lo + v — )24

=13,

+v111(0 — v)]é — (w1 + kv)(w — w)]‘ll — (w1 + kv)(w — w)|é =0. (2.11)
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In order to obtain (2.9), it suffices to establish that the sum of boundary terms in (2.11), including the
integrals over v and s;, is not positive. In view of (2.7) and the second group of conditions in (2.4), it
suffices to show that

Jiouta— )+ [lon(ar ~u) - g / o p(@ — w) ; / 0, ]p(5 —v) < 0;

2l 2l
i.e., taking the boundary conditions (2.5) and (2.6) into account,

/[oy Ty Z/ay (o —v) <0.

v
The last inequality is easy to verify using (2.6).
The proof of Proposition 1 is complete. [J

3. Passage to the limit at infinity with respect to the rigidity parameter. In this section
we study passage to the limit with respect to the rigidity parameter in (2.8), (2.9). Assume that the
rigidity of one inclusion depends on a parameter 6 > 0. In (2.8), (2.9) this parameter equals 1. Introduce
now a parameter into the model and study the behavior of solution as § — co.

Therefore, consider the boundary value problem of the form (2.1)—(2.7) with the parameter 6. In this
case we decorate all unknown functions with §. We need to find the displacement vector u5 = (u‘ls, ug)

and the stress tensor o9 = {J } for 7,5 = 1,2, defined on (2, as well as the displacements v® and w? of
points of the thin inclusion deﬁned for z1 € s;, with i = 1, 2, such that

—dive® = f, ¢° -~ Be(w’) =0 inQ,,
(5"*1(1)’51111 + k(w‘% + kv‘s)) = [ag]p on s;, i=1,2,
5i_1( wn (kv ), ) = [Uﬂp on s;, 1 =1,2,
uw’ =0onT, vfsll = 1),6111 = wfsl +k? =0, 2 =—1,1,
[u,‘i] >0, v = ui*, w’ = u‘;; on v,
a£+ <0, U£+ =0, aﬁ* [ui] =0 onvy,
[ (0)]p = [’ (0)]p = [v711(0)]" = [(w) + ko) (0)]” =0, o0y (0+) =0.

It is clear that the rigidity parameter equals 1 for the inclusion v; and § for the inclusion 7. The stated
problem can be expressed as the variational inequality

(ud, v, w’) € K, (3.1)

2
/G(u5)€(ﬂ — ua) + Z / 5t (w’al + kzvé) (@751 — wfsl)
=15

Q'Y
+Z/5l 1{1)11(1)11 v11)+k(w1+kv } /f %) > 0 for all (@,7,w) € K.(3.2)

Firstly, let us obtain a priori estimates in (3.1), (3.2). From (3.1), (3.2) for @ > 0 we infer that

Qy =l
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Choosing a small value of o > 0 and using the Korn inequality, the equalities v0 = uf,* and wd = ufsf
on v, and Embedding Theorems, we have

1 2

é ) § 4 §
5 [ o) = a [100R + @R} = alu By p o >0 (3.4
Qy =1
Hence, we see that
HU(SH?—II{(Q,QZ <c (3.5)

uniformly in §. Moreover, for all 3> 0, d > §y > 0, and ¢ = 1,2 we obtain
a(v5)2 + a(w5)2 + (5"71{(1)7511)2 + ('wf;l)2 + k2(vé)2 + kafslfu‘;}

21]52
> ol + a4 0 { () + p(wh)? - T

1-0
i—1
Since a — 601_’6;2 > & for 3 small, where i = 1,2, using (3.5), (3.4), and (3.3) for § > dy, we infer that

112y <& 001y <6 i=1,2, (3.6)
(5/(1}?11)2 + 5/(wf51 + kv5)2 <ec. (3.7)
S92 S2

By (3.5)—(3.7), we may assume that, as 6 — oo, we have
(w0, 0%, w’) = (u,v,w) weakly in HE(Q,)? x H%(s;) x H(s;), i=1,2, (3.8)
v(z1) =ap +arz1; wi(xr)+k(z)v(z) =0, 1 € s2, ap,a1 €R. (3.9)

Introduce the set
K, = {(u,v,w) | ue Hll(QAY)27 v E Hz(sl), w e Hl(sl),
[uy] >0, v=u,, w=u; onvy, (u,,u; ), € L(O,l)}
of admissible displacements for the limit problem, where
L(0,1) = {(v,w) | v(z1) = bp + biz1, wi(x1) + k(z1)v(z1) =0, x1 € s2; by, by € R}.

We should note that the solution lying in K, means that the displacement u~ on 7, has prescribed struc-
ture; namely, the displacement u,, = v must be a continuous affine function, while the displacement u-
must be determined from the solution to the ordinary differential equation on the interval so. This equa-
tion on w contains as its right-hand side both the curvature k of the inclusion and the displacement v.

It is clear that the limit functions u, v, and w of (3.8) and (3.9) satisfy the condition (u,v,w) € K.
Basing on (3.8) and (3.9), we can pass to the limit in (3.1) and (3.2). To this end, take an arbitrary test
function (u,v,w) € K,. Then (@,v,w) € K. Upon passing to the limit as § — oo in (3.1) and (3.2), we
find that the limit element (u,v,w) satisfies the variational inequality

(u,v,w) € Ky, (3.10)
/a(u)s(ﬁ ) - /f(a )+ /U,n(@,n —un)
Q. Qy s1
+ /(w,l + kv)(wy + kv —wy —kv) >0 forall (u,7,w) € K,. (3.11)

S1

Thus, we have justified the following theorem.
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Theorem 1. As § — oo, the solutions to problems (3.1), (3.2) converge in the sense of (3.8), (3.9)
to the solution to (3.10), (3.11).

It is interesting to write down the differential statement of (3.10), (3.11). We need to find the
displacement vector u = (u1,u2) and the stress tensor o = {0y;}, for i, j = 1,2, defined on €2, as well as
the displacements v and w of points of the thin inclusions defined on s; U s3 such that

—dive=f, o—Be(u)=0 in Q,, (3.12)

vl + k(wi + kv) = [ou]p, —wi1 — (kv)1 = [o-]p on sy, (3.13)

u=0onI; vi=vin=wi1+kv=0, z=-1, (3.14)

[uy] >0, o} <0, of =0, of[u,]=0 onyr, (3.15)

v=u,, w=u; onvy; (u,,u;)l € L(0,1), (3.16)

[v(0)]p = [w(0)]p =0, ©v11(0-) =0, (3.17)

/[a,,]pv + /[GT]pw—i- v,111(0—)(0) — (w1 + kv)(0—)w(0) = 0 for all (v,w) € L(0,1). (3.18)

89 S9

Proposition 2. Problems (3.10), (3.11) and (3.12)—(3.18) are equivalent on the class of sufficiently
smooth solutions.

PROOF. Suppose that (3.10), (3.11) hold. Firstly, let us establish in the usual fashion the validity
of (3.12). Moreover, we can use the standard arguments to verify boundary conditions (3.15) on ~;
see [1,11]. As we have already noted, these boundary conditions are typical for problems of this form.
Furthermore, insert into (3.11) the test functions (@,v,w) = (u,v,w) £ (4,0, w), where (@,0,w) € K,,
with [%,] = 0 on v. This yields

/ o (w)e(@) — / fi+ / v + / (w1 + kv)(. + ko) = 0.
Q

v v 51 51

Integrating by parts, we obtain

_/[Uu]ﬂu - /[Urﬂr] +/U,1111f) - /(’w,1 + kv) 1w

Y ol S1 S1

+ /(’w71 + kv)k:f} + U,11@71’91 - 1}7111{1’91 + (’Ll),l + kv)ﬁ)\gl =0. (319)

S1

Suppose firstly that in (3.19) the test functions satisfy o = 01 = w = 0 for ; = —1,0—. This yields the
following identity, valid for all chosen functions:

- [0do- [low- [loo~ [lorm+ [vame

7 7 72 72 S1

— /(w,1 + ]{21)),1’(1} + /(w,l + kv)k@ =0. (3.20)

S1 S1
(3.20) implies (3.13) and, moreover,
/[ay]pf) + /[UT]pﬁ) — 0 forall (3,@) € L(0,1), (0) = 0, W(0) = 0.
S9 S9
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Return to (3.19). Since the solution is smooth, [v(0)], = [w(0)], = 0. Hence, we obtain the second group
of boundary conditions of (3.14) and also v,11(0—) = 0. Therefore, (3.19) implies the identity

/[ay]ﬁ + /[JT]TU +2,111(0-)3(0) — (w1 + kv)(0—)w(0) = 0, (3.21)

72 "2

valid for all (9, w), which coincides with (3.18).

Observe that (3.21) is a corollary of (3.18). Thus, all relations in (3.12)—(3.18) are justified on
using (3.10) and (3.11).

Let us show that (3.12)—(3.18) imply (3.10) and (3.11). From (3.12) and (3.13) for (u,v,w) € K,,

upon integration we obtain
/[al/(a —u)] + /J(u)s(ﬂ —u) — /f(ﬂ —u)
Q'Y

Y Qy

+/U’11(1~),11 — 1)711) + /(w’l + kv)(@J + kv — w1 — kv)

- [lep(@ - w) - [lep -
—U,H(l_)’l — U,l)’(ll + 1)7111(1_) — v)\(il — (w,l + k?])(w — w)](ll = 0. (3.22)

In order to deduce (3.11) from (3.22), it suffices to demonstrate that

Jiouta—w+ [l —w)

7 71

+ [t —wl + [lor@r =)~ [lorlptw = w) - [lolpo - v)

+(v111(0 —v))(0—) — ((w1 + kv)(wW — w))(0—) < 0.

The validity of the last inequality is not difficult to verify using (3.15), (3.16), and (3.18).
The proof of Proposition 2 is complete. [

Thus, the differential statement of (3.10), (3.11) as (3.12)—(3.18), along with junction condition (3.17),
includes (3.18). This identity involves both a nonlocal term (the integral over s2), and the values of the
required functions at 0—.

The results remain valid in the case of linear boundary conditions on the crack faces. Let us state
the corresponding boundary value problems. Problem (2.1)—(2.7) becomes the following. Find the dis-
placement vector u = (u1,u2) and the stress tensor o = {oy;}, for ¢,j = 1,2, defined on Q,, as well as
the displacements v and w of points of the thin inclusions defined on s; U s9 such that

—dive=f, o—Be(u)=0 in Q,,
v +k(wy +kv) =lo)p ons;, 1=1,2,
—w11 — (kv)1 = [o;]p ons;, i=1,2,
u=0 onl; vi=vin=wi+kv=0 =z =-1,1,

ot

[0(0)]p = [w(0)]p = [v,111(0)]" = [(w1 + kv)(0)]" =0,  v11(0£) = 0.

v=0, v=wu,, w=u, onv,
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Limit junction boundary value problem (3.12)—(3.18) for elastic and rigid thin inclusions also changes
in the case of linear boundary conditions on the crack faces. The statement takes the following form:
Find the displacement vector u = (u1,u2) and the stress tensor o = {0y;}, for i,j = 1,2, defined on Q,,
as well as the displacements v and w of points of the thin inclusions defined on s; U s such that

—dive=f, o—Be(u)=0 1in Q,,

v + k(wy + kv) = [ou]p, —w 11 — (kv)1 = [o-]p on s,
u=0onl; vi=vin=wi+kv=0 z1=-1,

v=0, v=u,, w=u; onv; (u,,u;)y €L(0,1),

v T

[0(0)]p = [w(0)], =0, ©v11(0-) =0,

/[al,]pz_) + /[UT}pw—i— v111(0—)v(0) — (w1 + kv)(0—)w(0) = 0 for all (v,w) € L(0,1).

S92 S9

4. The equilibrium problem. No corner case. This section presents the results of analysis
of the equilibrium problem for an elastic body with two weakly curved inclusions ; and 7 in the case
lacking a corner at the point (0,0). The absence of a corner at (0,0) means that the inclusions y; and 2
are connected to each other. Actually we have one inclusion v with a smoothness violation of the median
line possible at (0,0). Since the smoothness of the function ¢ can be violated at 0, as in Section 2, we
should write down equilibrium equations for «; and 7. Therefore, we still consider two inclusions ~y;
and 2, while at (0,0) we must impose junction conditions. One of these conditions is the conservation of
the angle between the inclusions during deformation. As above, assume for simplicity that ¢ 1(0+) = 0.

The statement of the corresponding equilibrium problem is as follows: Find the displacement vector
u = (u1, u2) and the stress tensor o = {0;;}, for i, j = 1,2, defined on (2., as well as the displacements v
and w of points of the thin inclusions defined on s; U s9 such that

—dive=f, o—Be(u)=0 in Q,, (4.1)

vl + k(wa + kv) = [ou]p, —wi1 — (kv)1 =[o7]p ons;, i=1,2, (4.2)
u=0 onIl; vi=vin=wi+kv=0, z;=-1,1, (4.3)

[u,] >0, v=u,, w=u,, o} <0, of =0, offu,]=0 onr, (4.4)
[0(0)]p = [w(0)]p = [v,1(0)] = 0, (4.5)

[0.11(0)] = [0111(0)]” = [(w,1 + kv)(0)]” =0, (4.6)

where [m(0)] = m(0+) — m(0—). Clearly, along with the conservation of the angle between the inclu-
sions at the junction, the jump of the momentum at (0,0) also vanishes. Problem (4.1)—(4.6) admits
a variational statement. Introduce the set of admissible displacements

K° = {(u,v,w) | u € HNQy)? v € H*(s;), w € H'(s;), i =1,2,
[uy] >0, v=u,, w=u; on~, [v1(0)] =0}.

v

As above, the energy functional is
1 1¢ 1g
m(u,v,w) = 5 /a(u)s(u) - /fu +3 Z/v?n t3 Z/(ual + kv)?,
Q, Q, =l =l
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while the minimization problem

find (u,v,w) € K° such that 7(u,v,w) = 111(1(?71'

has a unique solution satisfying the variational inequality

(u,v,w) € K°, (4.7)

/a(u)a(a —u) —J flu—u)+ iiii/v,n(@,ll —v11)

Qy

2
—1—2/{(11),1 +kv) (W1 + ko —wy —kv)} >0 foral (@,v,w) e K

We can verify that problems (4.7), (4.8) and (4.1)—(4.6) are equivalent on the class of smooth solutions
in the sense that we can obtain (4.7), (4.8) from (4.1)—(4.6) and, conversely, all relations in (4.1)—(4.6)
follow from (4.7) and (4.8).

As in Section 3, we can introduce a parameter § > 0 into the model (4.1)—(4.6) and study passage
to the limit as the parameter tends to infinity, while fixing the rigidity of the inclusion v; at the value 1,
and the rigidity of the inclusion =9 equal to 6. Consider the variational inequality

(8,08, wP) € KO, (4.9)
2
/a(u‘s)s(ﬂ —u’)+ > / 5l (0,11 —v7)y)
&, =17
—i—Z/él H( w1+kv)w1+kv—w1 kv®) )} - /f %) > 0 for all (@,7,w) € K. (4.10)

It turns out that, as 6 — oo, the inclusion 72 becomes rigid; i.e., the displacement field for this
inclusion has prescribed structure.

In order to state the limit problem corresponding to § — oo, introduce the set of admissible displace-
ments
K? = {(w,v,w) |u e HE(Q,)?, v e H(s1), we H'(s1),

[uy] >0, v=u,, w=u; onv, (u,,u;)l € L0,1), [v:1(0)] =0}.

v T

The set L(0, 1) is defined in the same way as in Section 3. Skipping details, note that from the sequence
of solutions to problems (4.9), (4.10) we can extract a subsequence so that, as 6 — oo, we have

(u®, 0%, w’) = (u,v,w) weakly in HE(Q,)? x H?(s;) x H'(s;), i=1,2, (4.11)
v(z1) =ao +arz1; wi(zr)+k(z)v(z) =0, 1 € s2; ap,a1 € R. (4.12)

Furthermore, the limit functions u, v, and w satisfy the variational inequality

(u,v,w) € K2, (4.13)
/0 (7 — u) /f /v,11(17,11 —v11)
Q,
+ /(w,l +kv) (W1 + kv —wy —kv) >0 forall (w,v,w) € K. (4.14)

S1

We state the result as the next theorem:
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Theorem 2. As§ — oo, the solutions to problems (4.9), (4.10) converge in the sense of (4.11), (4.12)
to the solution to (4.13), (4.14).

Finally, let us present the differential statement of (4.13), (4.14). We need to find the displacement
vector u = (u1,u2) and the stress tensor o = {oy;}, for i,j = 1,2, defined on ,, as well as the
displacements v and w of points of the thin inclusions defined on s; U s such that

—dive=f, o—Be(u)=0 in Q,, (4.15)
viin +k(wa + kv) = [o]p, —wi1— (kv) 1 = [o.]p on s, (4.16)
u=0onl; viu=vin=wi+kv=0 z=-1, (4.17)
)20, oF <0, of=0, offw]=0 onv, (4.18)
v=u,, w=u; onvy; (u,,u;)l, € L(0,1), (4.19)
[0(0)]p = [w(0)], = [v1(0)] = O, (4.20)

/ [0 Jp7 + / (0210 + 111 (0-)3(0)

S92 So

—v11(0—)v,1(0) — (w1 + kv)(0—)w(0) =0 for all (v,w) € L(0,1). (4.21)

Clearly, in comparison with the corresponding boundary condition (3.18), in the statement of the
equilibrium problem with a corner between inclusions nonlocal boundary condition (4.21) involves the
second derivative of the function v at 0 from the left.

On the class of smooth solutions, problems (4.13), (4.14) and (4.15)—(4.21) are equivalent. We omit
the details of the proof because they are generally similar to those in Section 3.

As in the end of Section 3, in the no-corner case considered in Section 4 we can state the junction
problem for two thin elastic weakly curved inclusions, as well as the junction problem for elastic and rigid
inclusions in the case of linear boundary conditions on the crack faces. But we will omit the details.

We emphasize that all results of this article are established for nonlinear models excluding mutual
penetration of the opposite crack faces. At the same time, similar results hold in the simpler case of
classical linear boundary conditions on the crack faces.
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