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EXPONENTIAL DECAY ESTIMATES FOR SOME COMPONENTS

OF SOLUTIONS TO THE NONLINEAR DELAY DIFFERENTIAL
EQUATIONS OF THE LIVING SYSTEM MODELS

N. V. Pertsev UDC 517.929

Abstract: Studying the behavior of solutions to the Cauchy problem for a family of nonlinear functional
differential equations with delay which arise in the living system models, we establish the conditions
that provide some exponential decay estimates for components of solutions. We find the parameters of
simultaneous exponential estimates as solutions to nonlinear inequalities built from the majorants of the
mappings on the right-hand sides of the differential equations. We present the results of constructing
the exponential estimates for the variables in an epidemic dynamics model.
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Introduction. Many mathematical models describing the dynamics of living systems can be ex-
pressed as the Cauchy problem

dx(t)

dt
= f(t, xt)− (μ+ g(t, xt))x(t), t ≥ 0, (1)

x(t) = ψ(t), t ∈ Iω = [−ω, 0], (2)

for a system of delay differential equations. In (1) and (2) we use the notation

x(t) = (x1(t), . . . , xm(t))
T , ψ(t) = (ψ1(t), . . . , ψm(t))

T ,

f(t, xt) = (f1(t, xt), . . . , fm(t, xt))
T , g(t, xt) = diag(g1(t, xt), . . . , gm(t, xt)),

μ = diag
(
μ1, . . . , μm

)
, m ≥ 2,

where x(t) is the sought function; the delayed variable xt : Iω → Rm is defined as xt(θ) = x(t+ θ) with
θ ∈ Iω for each fixed t ≥ 0; while ψ(t) is the initial function, fi(t, xt) and gi(t, xt) are some mappings,
and μi are constants for 1 ≤ i ≤ m. By dx(t)/dt we understand the componentwise right-hand derivative.
In applications the function x(t) can represent the number of elements of some living system: cells,

viruses, bacteria, microorganisms, individuals of various types or groups, and so on. Given 1 ≤ i ≤ m,
the mapping fi(t, xt) describes the appearance rate of the elements of type i, the mapping gi(t, xt) is
such that gi(t, xt)xi(t) determines the extinction or transformation rate of elements of type i due to the
interaction of the elements or the influence of the environment. The expression μixi(t) means the natural
death or migration rate of type i elements, as well as the transition rate of type i elements.
Solutions x(t) to (1), (2) were studied for linear and nonlinear systems (1) in [1–3]. These articles

showed that x(t) is nonnegative under a few conditions and proposed an approach to constructing com-
ponentwise upper estimates for x(t). An important feature of some nonlinear models is the structure of
equations in (1) which we can express as two blocks. In these systems the right-hand sides of the equa-
tions in the first and second blocks involve the components of f(t, xt) admitting upper estimates by linear
mappings or constants. The presence of these estimates enables us to use the well-developed theory of
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monotone operators [4, Chapter 1, Section 3; 5; 6, Chapter 2, Subsection 2.3; Chapter 7, Subsection 7.1]
and construct the estimates for the components of the solution x(t) to (1), (2).
The goal of this article is to obtain the conditions that provide exponential decay estimates for some

components of the solution x(t) to (1), (2) on [0,∞).
1. The main assumptions. We use the notation and assumptions of [3]. Denote the norm

of v ∈ Rm by ‖v‖Rm =
∑m

i=1 |vi|. Given J = [a, b] ⊂ R and A ⊆ Rm, denote by C(J,A) the set of all
continuous functions z : J → A equipped with the norm

‖z‖ = max
θ∈J
(‖z(θ)‖Rm), z ∈ C(J,Rm).

Consider the ball Bd = {z ∈ C(Iω, R
m) : ‖z‖ ≤ d} in C(Iω, Rm). If u,w ∈ Rm then the inequalities

u < 0, u > 0, u ≤ w, and u ≥ w are understood componentwise. If x, y ∈ C(J,A) then we understand
the relation x(t) ≤ y(t) with t ∈ J as inequality between the vectors.
Assume that the mappings, functions, and constants in (1) and (2) satisfy for each 1 ≤ i ≤ m the

following that are denoted by (H0):
(1) fi, gi : R+ × C(Iω, Aξ)→ R, where Aξ = {u ∈ Rm : u ≥ ξ} for some ξ ∈ Rm with ξ < 0;
(2) fi, gi : R+ × C(Iω, Rm+ )→ R+;
(3) fi(t, z) and gi(t, z) are continuous in (t, z) ∈ R+ ×C(Iω, Aξ) and locally Lipschitz in z: For each

d ∈ R with d > 0 there exist constants L(i)f = L(i)f (ξ, d) > 0 and L(i)g = L(i)g (ξ, d) > 0 such that

|fi(t, z1)− fi(t, z2)| ≤ L(i)f ‖z1 − z2‖,

|gi(t, z1)− gi(t, z2)| ≤ L(i)g ‖z1 − z2‖
for all z1, z2 ∈ Bd ∩ C(Iω, Aξ) and t ∈ [0,∞);
(4) ψi : Iω → R+ is a continuous function;
(5) μi > 0.
Following [7, Chapter 2, Subsection 2.1; 8, Chapter 1, Subsections 2.1 and 2.2], refer as a solution

to (1), (2) on [0,∞) to a function x(t) continuous on every finite interval Iω ∪ [0, τ ] with τ > 0 which
possesses a continuous derivative on [0, τ) and satisfies (2) and (1) for all t ∈ [0, τ). Integrating (1) by the
variation of constants formula with (2) taken into account, we arrive at the system of integral equations
with initial data:

x(t) = e
−
t∫

0

(μ+g(s,xs))ds

ψ(0) +

t∫

0

e
−
t∫

a

(μ+g(s,xs))ds

f(a, xa) da, t ≥ 0, (3)

x(t) = ψ(t), t ∈ Iω. (4)

In (3) by

e
−
t∫

a

(μ+g(s,xs))ds

, 0 ≤ a ≤ t,
we understand the diagonal matrix that is constructed from the diagonal matrix μ + g(s, xs). Refer as
a solution to (3), (4) on [0,∞) to a function x(t) continuous on every interval Iω ∪ [0, τ ] with τ > 0 and
satisfying (4) and (3) for all t ∈ [0, τ ]. Using the standard approach [7, Chapter 2, Subsection 2.1], we
find that problems (1), (2) and (3), (4) are equivalent. Consequently, we can apply (3), (4) to study the
behavior of a solution x(t) to (1), (2).
As shown in [3], Assumption (H0), together with some additional assumptions on f(t, xt) and the

entries of g(t, xt), guarantees the existence, uniqueness, and nonnegativity of the solution x(t) to (3), (4)
on [0,∞). Moreover, some upper estimates for the components of x(t) are constructed whose form
depends on the assumptions.
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The next section is devoted to constructing some upper estimates for the solution x(t) to (3), (4)
that involve exponential decay estimates for part of the components of x(t).

2. The additional assumption and the main result. Introduce the notations: k is a fixed
index, 1 ≤ k < m; while η = (ηk+1, . . . , ηm)

T is a vector with nonnegative components; and Dη ⊂ Rm+ is
as follows:

Dη = {u ∈ Rm+ : 0 ≤ uj ≤ ηj , k + 1 ≤ j ≤ m}.
Let us state Assumption (H1) on f(t, xt). Assume that for some 1 ≤ k < m the mapping f(t, xt) is

expressed as
f(t, xt) = (f1(t, xt), . . . , fk(t, xt), fk+1(t, xt), . . . , fm(t, xt))

T

and satisfies the following:
(1) for all (t, xt) ∈ R+ × C(Iω, Rm+ ) we have

(fk+1(t, xt), . . . , fm(t, xt))
T ≤ p = (pk+1, . . . , pm)T , (5)

where pk+1 > 0, . . . , pm > 0 are some constants;
(2) the vector η = (ηk+1, . . . , ηm)

T > 0 with components

ηj =
pj

μj
, k + 1 ≤ j ≤ m, (6)

is such that for all (t, xt) ∈ R+ × C(Iω, Dη) we have the estimate

(f1(t, xt), . . . , fk(t, xt))
T ≤ L(x(k)t

)

=
n∑

i=0

Lk,ix
(k)(t− ωi) +

0∫

−ω
Lk,n+1(θ)x

(k)(t+ θ) dθ, (7)

where x(k)(t) = (x1(t), . . . , xk(t))
T , the delays satisfy 0 < ωi ≤ ω < ∞ for 1 ≤ i ≤ n, and ω0 = 0,

while Lk,0, . . . , Lk,n, Lk,n+1(θ) are nonnegative matrices of size k×k, the nonzero entries of Lk,n+1(θ) are
Riemann integrable, and each row of the matrix

L[k] =
n∑

i=0

Lk,i +

0∫

−ω
Lk,n+1(θ) dθ (8)

is nonzero.
Resting on Assumption (H1), put

μ[k] = diag
(
μ1, . . . , μk

)
, I[k] = diag(1, . . . , 1), ψ[k](t) = (ψ1(t), . . . , ψk(t))

T .

Using the expression for L(x
(k)
t ) in (7), consider the Cauchy problem for y(t) = (y1(t), . . . , yk(t))

T :

dy(t)

dt
= L(yt)− μ[k]y(t)

=
n∑

i=0

Lk,iy(t− ωi) +
0∫

−ω
Lk,n+1(θ)y(t+ θ) dθ − μ[k]y(t), t ≥ 0, (9)

y(t) = ψ[k](t), t ∈ Iω. (10)

717



Refer as a solution to (9), (10) on [0,∞) to a function y(t) continuous on every finite interval Iω∪[0, τ ]
with τ > 0, which possesses a continuous derivative on [0, τ), and satisfies (10) and (9) for all t ∈ [0, τ);
for t = 0 we understand by dy(t)/dt the componentwise right-hand derivative. Integrating (9) by the
variation of constants formula with (10) taken into account, we pass to the system of linear integral
equations with the prescribed initial condition:

y(t) = e−μ[k]tψ(0) +
t∫

0

e−μ[k](t−a)L(ya) da, t ≥ 0, (11)

y(t) = ψ[k](t), t ∈ Iω. (12)

Refer as a solution to (11), (12) on [0,∞) to a function y(t) continuous on every finite interval Iω ∪ [0, τ ]
with τ > 0 which satisfies (12) and (11) for all t ∈ [0, τ ]. Finding a solution to (9), (10) is equivalent to
solving (11), (12).
Observe that in the framework of Assumption (H1) the matrix L[k] given in (8) is nonnegative, while

the offdiagonal entries of μ[k] − L[k] are nonpositive. This means that μ[k] − L[k] is a matrix of a special
form. Say that μ[k] − L[k] is a nonsingular M -matrix whenever it is invertible and the inverse matrix
(μ[k] − L[k])−1 is nonnegative. The series of criteria [9, Chapter 6; 10, Chapter 2, Section 36] enable us
to test whether μ[k] − L[k] belongs to the family of nonsingular M -matrices.
Lemma 1. Suppose that the matrix L[k] in (H1) is such that μ[k] −L[k] is a nonsingular M -matrix.

Then the solution y(t) to (9), (10) satisfies the estimate

0 ≤ y(t) ≤ ce−rt, t ∈ Iω ∪ [0,∞), (13)

where c ∈ Rk and r ∈ R are such that

c > 0,

(
μ[k] − rI[k] −

n∑

i=0

erωiLk,i −
0∫

−ω
e−rθLk,n+1(θ) dθ

)
c ≥ 0, (14)

c ≥ max
t∈Iω
(ertψ[k](t)), 0 < r < min(μ1, . . . , μk). (15)

Proof. Take some c ∈ Rk and r ∈ R. Introduce the function
v(t) = ce−rt, t ∈ Iω ∪ [0,∞). (16)

Resting on the hypotheses, apply Theorem 3 of [1] to (9), (10) or (11), (12). We infer that there are
c ∈ Rk and r ∈ R satisfying (14), (15) and such that v(t) in (16) satisfies

e−μ[k]tψ[k](0) +
t∫

0

e−μ[k](t−a)L(va) da ≤ v(t), 0 ≤ t <∞, (17)

ψ[k](t) ≤ v(t), t ∈ Iω. (18)

Moreover, (11), (12), (17), and (18) imply that for all t ∈ Iω∪ [0,∞) the solution y(t) to (9), (10) satisfies
0 ≤ y(t) ≤ v(t) = c exp(−rt); i.e., (13) holds. �
The methods for finding c ∈ Rk and r ∈ R in (13) appear in Section 3 of [1] and Section 2 of [2].
Proceed to constructing the exponential decay estimates for the solution x(t) to (1), (2) for the first k

components. We use the approach of [3]. Fix τ > 0. By Cψ ⊂ C([−ω, τ ], Rm) we understand the set of
all functions x ∈ C([−ω, τ ], Rm) with x(t) = ψ(t) for t ∈ Iω. Refer as a solution to (3), (4) on [0, τ ] to
x ∈ Cψ such that x(t) satisfies (3) for all t ∈ [0, τ ].
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Denote by Cψ,0 ⊂ Cψ the set of all functions x ∈ Cψ with x(t) ≥ 0 for t ∈ [−ω, τ ]. Take some function
υ = υ(t) = (υ1(t), . . . , υm(t))

T continuous on [−ω, τ ] and having nonnegative components. Denote the
set of functions x ∈ Cψ with 0 ≤ x(t) ≤ υ(t) for t ∈ [−ω, τ ] by Cψ,0,υ.
Basing on (3) and (4), introduce the operator F that associates to each x ∈ Cψ,0 the function

F (x) ∈ Cψ,0 defined as
F (x)(t) = ψ(t), t ∈ Iω,

F (x)(t) = e
−
t∫

0

(μ+g(s,xs))ds

ψ(0) +

t∫

0

e
−
t∫

a

(μ+g(s,xs))ds

f(a, xa) da, t ∈ [0, τ ].

Lemma 2. Suppose that Assumptions (H0) and (H1) are satisfied, while μ[k]−L[k] is a nonsingular
M -matrix and the components of the initial function ψ satisfy

max
t∈Iω

ψj(t) ≤ ηj , k + 1 ≤ j ≤ m.

Then there are β ∈ Rm, r ∈ R, β > 0, and r > 0 such that for
υ(t) = (β1e

−rt, . . . , βke−rt, βk+1, . . . , βm)T , t ∈ R,
and each τ > 0 the set Cψ,0,υ is invariant under F .

Proof. Using the hypotheses, assume that the components of the vector

υ(t) = (υ1(t), . . . , υk(t), υk+1(t), . . . , υm(t))
T ,

appearing in the definition of Cψ,0,υ, are of the form

υ(k)(t) = (υ1(t), . . . , υk(t)) = (c1e
−rt, . . . , cke−rt),

(υk+1(t), . . . , υm(t)) = (ηk+1, . . . , ηm), t ∈ R,
where c = (c1, . . . , ck)

T and r are the parameter of (16), while the constants ηk+1, . . . , ηm are given by (6).
Put

μ∗ = diag
(
μk+1, . . . , μm

)
, ψ∗(t) = (ψk+1(t), . . . , ψm(t))T , t ∈ Iω.

Fix τ > 0. Take x ∈ Cψ,0,υ. By assumption, ψ∗(t) ≤ η for all t ∈ Iω. Invoking (15), we infer that
0 ≤ F (x)(t) = ψ(t) ≤ υ(t)

for t ∈ Iω.
Express F (x)(t) componentwise:

F (x)(t) = (F1(x)(t), . . . , Fk(x)(t), Fk+1(x)(t), . . . , Fm(x)(t))
T , t ∈ Iω ∪ [0, τ ].

Verify that 0 ≤ F (x)(t) ≤ υ(t) for all t ∈ [0, τ ]. Constructing the estimates presented below, we appreciate
the inequalities 0 ≤ x(t) ≤ υ(t) for t ∈ [−ω, τ ].
Resting on (5) and (6), we find that

(Fk+1(x)(t), . . . , Fm(x)(t))
T

≤ e−μ∗tψ∗(0) +
t∫

0

e−μ∗(t−a)(fk+1(t, xa), . . . , fm(t, xa))Tda

≤ e−μ∗tη +
t∫

0

e−μ∗(t−a)p da = η = (υk+1(t), . . . , υm(t))T , t ∈ [0, τ ].
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Using (6), (7), and Lemma 1, we obtain

(F1(x)(t), . . . , Fk(x)(t))
T ≤ e−μ[k]tψ[k](0)

+

t∫

0

e−μ[k](t−a)(f1(t, xa), . . . , fk(t, xa))T da

≤ e−μ[k]tψ[k](0) +
t∫

0

e−μ[k](t−a)L
(
x(k)a
)
da

≤ e−μ[k]tψ[k](0) +
t∫

0

e−μ[k](t−a)L
(
υ(k)a
)
da

≤ (υ1(t), . . . , υk(t))T , t ∈ [0, τ ].
Consequently, F (x) ∈ Cψ,0,υ holds for all x ∈ Cψ,0,υ. The parameters of the function υ(t) are independent
of τ . Since the choice of τ is arbitrary, the proof of Lemma 2 is complete. �
Theorem. In the hypothesis of Lemma 2 problem (1), (2) on [0,∞) admits a unique solution x(t),

and for all t ∈ Iω ∪ [0,∞) we have the componentwise estimates
0 ≤ xi(t) ≤ cie−rt, 1 ≤ i ≤ k, (19)

0 ≤ xj(t) ≤ ηj , k + 1 ≤ j ≤ m, (20)

where c = (c1, . . . , ck)
T and r satisfy (14), (15), while ηk+1, . . . , ηm are given in (6).

Proof. Using the hypotheses together with Lemmas 1 and 2, we infer that Cψ,0,υ is invariant
under F for every τ > 0. Applying Lemma 2 of [3], we establish that problem (3), (4) on [0, τ ] admits
a unique solution x = x(t); furthermore, x ∈ Cψ,0,υ. Since the choice of τ is arbitrary and the components
of υ(t) are independent of τ , we conclude that (3), (4) admits a unique solution x = x(t) on [0,∞) and
this solution satisfies (19) and (20). �
3. Example. Consider the mathematical model describing the spread of infection in the population

of some domain. Its variables are the number x1(t) of latently infected (not infectious) individuals and
the number x2(t) of sick (infectious) individuals, and the number x3(t) of individuals susceptible to the
infection. The model equations are of the form

dx1(t)

dt
= σ1βx2(t− ω1)x3(t− ω1)− (λ1 + γ)x1(t) + σ3ηx2(t− ω3), (21)

dx2(t)

dt
= σ2βx2(t− ω2)x3(t− ω2) + γx1(t)− (λ2 + η)x2(t), t ≥ 0, (22)

dx3(t)

dt
= ρ(t)− λ3x3(t)− βx2(t)x3(t), (23)

x1(0) = x
(0)
1 , x2(t) = x

(0)
2 (t), x3(t) = x

(0)
3 (t), t ∈ Iω = [−max{ω1, ω2, ω3}, 0]. (24)

In the initial data (24) the functions x
(0)
2 (t) and x

(0)
3 (t) are nonnegative and continuous, while x

(0)
1 ≥ 0.

The function ρ(t) is nonnegative, continuous, and bounded above by some constant ρ∗ > 0, with t ∈
[0,∞). All parameters in (21)–(23) are positive. The meaning of ρ(t) is the growth rate of the group
of susceptible individuals. The parameters λ1, λ2, and λ3 determine the death rate of individuals and
the rate of migration to other domains. The parameter β reflects the contact rate of susceptible and
sick individuals. The parameters σ1 > 0 and σ2 > 0, with σ1 + σ2 < 1, count the share of susceptible
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individuals, who upon getting infected develop either latent or active stage of the disease. The durations
of this passage from the infection time are described by the delay constants ω1 and ω2. The parameter γ
stands for the rate of spontaneous development of the disease in latently infected individuals. The
parameter η determines the rate of passage of sick individuals into the noninfectious stage of the disease
as a consequence of beginning self-treatment or treatment in medical institutions. The duration of this
stage is described by the delay constant ω3. After being in the noninfectious stage of the disease, the
share 0 < σ3 < 1 of the previous individuals joins the group of latently infected individuals.
Observe that the parameter η can account for the rate of diagnostic process of sick individuals with

various methods. The function ρ(t) and the parameter β can vary depending on the various measures
taken by the healthcare system of the domain.
We may regard (21)–(24) as a version of the mathematical model of the spread of tuberculosis. In

contrast to the available models [11, 12], we can complement (21)–(23) with the variables w1(t) and w2(t)
reflecting the individuals in the intermediate (latent) stages of infection, as well as the variable w3(t)
describing the number of sick individuals in the noninfectious stage of the disease:

w1(t) =

t∫

t−ω1
e−λ3(t−a)ν1βx2(a)x3(a) da,

w2(t) =

t∫

t−ω2
e−λ3(t−a)ν2βx2(a)x3(a) da,

w3(t) =

t∫

t−ω3
e−λ3(t−a)ηx2(a) da, t ≥ 0,

where ν1 > 0 and ν2 > 0 with ν1+ ν2 = 1 are some constants. To derive these relations, we used [13, 14].
We can reduce the integral relations for w1(t), w2(t), and w3(t) to the Cauchy problem of the form

dw1(t)

dt
= ν1βx2(t)x3(t)− λ3w1(t)− e−λ3ω1ν1βx2(t− ω1)x3(t− ω1),

dw2(t)

dt
= ν2βx2(t)x3(t)− λ3w2(t)− e−λ3ω2ν2βx2(t− ω2)x3(t− ω2),

dw3(t)

dt
= ηx2(t)− λ3w3(t)− e−λ3ω3ηx2(t− ω3), t ≥ 0,

w1(0) =

0∫

−ω1
eλ3aν1βx

(0)
2 (a)x

(0)
3 (a) da, w2(0) =

0∫

−ω2
eλ3aν2βx

(0)
2 (a)x

(0)
3 (a) da,

w3(0) =

0∫

−ω3
eλ3aηx

(0)
2 (a) da.

Accounting for the structure of equations for wi(t), where i = 1, 2, 3, we can express the parameters
σ1, σ2, and σ3 in (21) and (22) as

σ1 = e
−λ3ω1ν1, σ2 = e

−λ3ω2ν2, σ3 = e
−λ3ω3 .

System (21)–(23) with initial data (24) corresponds to (1), (2). The right-hand sides of (21)–(23)
satisfy Assumption (H0). Assume moreover that

x
(0)
3 (t) ≤ x(∗)3 = ρ∗/λ3, t ∈ Iω. (25)
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From the structure of the right-hand sides of this system, we find that the nonnegative continuous
functions x1(t), x2(t), and x3(t) satisfy the estimates 0 ≤ x3(t) ≤ x∗3 for t ∈ Iω ∪ [0,∞), and

dx1(t)

dt
≤ σ1βx∗3x2(t− ω1)− (λ1 + γ)x1(t) + σ3ηx2(t− ω3),

dx2(t)

dt
≤ σ2βx∗3x2(t− ω2) + γx1(t)− (λ2 + η)x2(t),

dx3(t)

dt
≤ ρ∗ − λ3x3(t), t ≥ 0.

Consequently, we can express the vector p and the matrices Lk,i, Lk, and μ[k]−L[k] in Assumption (H1)
for m = 3, k = 2, and k + 1 = 3, namely:

p = p3 = ρ
∗, f3(t, xt) ≤ p3 = ρ∗,

μ[2] =

(
λ1 + γ 0
0 λ2 + η

)
, L2,0 =

(
0 0
γ 0

)
, L2,1 =

(
0 σ1βx

∗
3

0 0

)
,

L2,2 =

(
0 0
0 σ2βx

∗
3

)
, L2,3 =

(
0 σ3η
0 0

)
, L2,4(θ) ≡ 0, θ ∈ Iω,

L[2] =

(
0 σ1βx

∗
3 + σ3η

γ σ2βx
∗
3

)
, μ[2] − L[2] =

(
λ1 + γ −σ1βx∗3 − σ3η
−γ λ2 + η − σ2βx∗3

)
.

Turning to the hypotheses of the theorem, we require that μ[2] − L[2] be a nonsingular M -matrix.
Apply the criterion that all principal minors of μ[2] −L[2] be positive [9, Chapter 6, Section 2]. The first
minor equals λ1+γ and is obviously positive. The second principal minor coincides with the determinant
of the matrix in question and is of the form

det(μ[2] − L[2]) = (λ1 + γ)(λ2 + η)(1−R0),
where

R0 =
σ3γη

(λ1 + γ)(λ2 + η)
+
β(λ1σ2 + γ(σ1 + σ2))

(λ1 + γ)(λ2 + η)
x∗3.

Putting
R0 < 1, (26)

we infer that μ[2] − L[2] is a nonsingular M -matrix.
Consequently, if (25) and (26) hold then the components x1(t) and x2(t) of the solution to (21)–(24)

satisfy the estimates

0 ≤ x1(t) ≤ c1e−rt, 0 ≤ x2(t) ≤ c2e−rt, t ∈ Iω ∪ [0,∞). (27)

Put c[2] = (c1, c2)
T and ψ[2](t) =

(
x
(0)
1 , x

(0)
2 (t)

)T
for t ∈ Iω, as well as

H(r) = (hij(r)) = μ[2] − rI[2] − L2,0 − erω1L2,1 − erω2L2,2 − erω3L2,3, r ∈ R.
To find the constants c1, c2, and r in (27), use (14) and (15) to obtain

c[2] > 0, H(r)c[2] ≥ 0, (28)

c[2] ≥ max
t∈Iω
(ertψ[2](t)), 0 < r < min(λ1 + γ, λ2 + η). (29)
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Following [2], seek the constant r as the positive root of the equation

detH(r) = (λ1 + γ − r)(λ2 + η − r − erω2σ2βx∗3)− γ(erω1σ1βx∗3 + erω3σ3η) = 0. (30)

Observe that H(0) = μ[2] − L[2] and detH(0) > 0 by (26). Using (30), pass to the equation for the
required constant r:

λ2 + η − r − erω2σ2βx∗3 = γ
erω1σ1βx

∗
3 + e

rω3σ3η

λ1 + γ − r , 0 ≤ r < min(λ1 + γ, λ2 + η). (31)

It is clear that the left-hand side of (31) is a decreasing function ϕ1(r), while the right-hand side is
an increasing function ϕ2(r). Since detH(0) > 0, it follows that ϕ1(0) > ϕ2(0). Consequently, there
exists a unique root 0 < r∗ < min(λ1 + γ, λ2 + η) of (31) and accordingly (30).
To find the vector c[2], use (28) and consider the equation H(r∗)u = 0, where u = (u1, u2)T ∈ R2:

h11(r∗)u1 + h12(r∗)u2 = 0, h21(r∗)u1 + h22(r∗)u2 = 0.

Since detH(r∗) = 0 and h11(r∗) = λ1 + γ − r∗ �= 0, the required u is of the form

u = (u1, u2)
T = αu∗ = α(u∗1, 1)

T ,

where α ∈ R is an arbitrary constant, while

u∗1 = (e
r∗ω1σ1βx

∗
3 + e

r∗ω3σ3η)/(λ1 + γ − r∗).

Putting α > 0, we establish that r∗ and c[2] = αu∗ satisfy (28). We can choose the vector c[2] as
c[2] = α∗u∗, where the constant α∗ > 0 is determined by the condition that (29) holds, and it obviously
depends on the components of the initial function ψ[2](t).

Observe that the additional variables w1(t), w2(t), and w3(t) satisfy the estimates similar to (27),
namely:

0 ≤ wi(t) ≤ die−rt, i = 1, 2, 3, t ∈ [0,∞), (32)

where the constants d1 > 0, d2 > 0, and d3 > 0 can be expressed in terms of c2, x
(∗)
3 , and the parameters

appearing in the integral expressions for these variables.

In the framework of this model, we may interpret (25) and (26) as conditions for the exponential
decay of the epidemic process in the selected population. Following the accepted terminology [15, 16],
we refer to the constant R0 appearing in (26) as the basic reproduction number. This constant reflects
the average number of sick (infectious) individuals reproduced in the population relative to one latently
infected individuum, one sick individuum, and x∗3 susceptible individuals.
Using the expression for R0 and the parameters σ1, σ2, and σ3, we obtain the estimate

R0 < R̂0 =
γe−λ3ω3
λ1 + γ

+
β(γν1e

−λ3ω1 + (λ1 + γ)ν2e−λ3ω2)x∗3
(λ1 + γ)(λ2 + η)

. (33)

It is clear from (33) that for each collection of parameters of the model there are sufficiently large ω3
and η and sufficiently small γ, β, and x∗3 for which, in some combination, the inequality R̂0 < 1 holds.
The values of these parameters and estimates (27) and (32) can be used for planning the work of the
healthcare system of the domain to diagnose and treat sick individuals, as well as to eradicate the infection
in the course of some span of time.
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