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EXPONENTIAL CHEBYSHEV INEQUALITIES FOR

RANDOM GRAPHONS AND THEIR APPLICATIONS
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Abstract: We prove some exponential Chebyshev inequality and derive the large deviation principle
and the law of large numbers for the graphons constructed from a sequence of Erdős–Rényi random
graphs with weights. Also, we obtain a new version of the large deviation principle for the number of
triangles included in an Erdős–Rényi graph.
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1. Introduction, Main Notation, and Definitions

Consider a collection of independent random variables Xij , where 1 ≤ i < j ≤ n, distributed
identically with a random variable X. Assume that

P(X ∈ [0, 1]) = 1, (1.1)

and
P(X ∈ [0, ε]) > 0, P(X ∈ [1− ε, 1]) > 0 (1.2)

for every ε > 0.
Given n vertices, associate an edge with weight Xij to each pair (i, j) of vertices for 1 ≤ i < j ≤ n.

The resulting random graph is called an Erdős–Rényi graph with weights and denoted by Γn. Observe
that if

P(X = 0) = 1− p, P(X = 1) = p, (1.3)

then we have an ordinary Erdős–Rényi graph; see [1, 2].
Let us define a graphon. Consider a triangle in the plane R2; i.e.,

� := {(x, y) ∈ R2 : x, y ∈ [0, 1], y ≥ x}.
Refer as the graphon space W to the set of all nonnegative measurable functions f(x, y) mapping � to
the segment [0, 1].
We will introduce the main metric spaces. We can interpret each graphon f ∈ W as the density of

some measure on �. Then to each f ∈ W we assign its “distribution function”

F (u, v) :=

u∫

0

( v∫

x

f(x, y) dy

)
dx, (u, v) ∈ �.

Define the metric ρW = ρW (f, g) on W by putting

ρW (f, g) := sup
(u,v)∈�

|F (u, v)−G(u, v)|,
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where |F (u, v) − G(u, v)| is the distance between the distribution functions F and G for two graphons
f, g ∈ W . The metric space (W , ρW ) is complete and separable. Moreover, W is compact in this space.
Define the metric d = d(f, g) on W , see [3, 4], by putting

d(f, g) := sup
a,b∈H

∣∣∣∣
1∫

0

a(x)

( 1∫

x

b(y)(f(x, y)− g(x, y) dy
)
dx

∣∣∣∣,

whereH is the set of all measurable functions from the segment [0, 1] to [−1, 1]. The metric space (W , d)
is complete and separable. In this space W is not compact.
It is obvious that ρW (f, g) ≤ d(f, g) for all f, g ∈ W ; i.e., the metric d is stronger than ρW .
Given f ∈ W , define the rate function

I(f) :=

∫

(x,y)∈Δ
Λ(f(x, y)) dxdy,

where Λ(α) := supλ∈R{αλ− logEeλX} is the deviation function of a random variable X.
Observe that if conditions (1.1) and (1.2) are met then Λ(α) is a convex function, bounded on [ε, 1−ε]

for every 0 < ε < 1, and equal to ∞ for α /∈ [0, 1] and zero at the unique point a := EX.
In the case of ordinary Erdős–Rényi graphs, i.e. in case that (1.3) holds, the deviation function is of

the form

Λp(α) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

log
(
1
1−p
)

if α = 0,

(1− α) log(1−α1−p
)
+ α log

(
α
p

)
if α ∈ (0, 1),

log
(
1
p

)
if α = 1,

∞ if α /∈ [0, 1].
Given an integer n ≥ 1, define sn = sn(x, y) ∈ W by putting sn(x, y) = Xi,j for (x, y) ∈ �i,j and

sn(x, y) = a for (x, y) ∈ �′n, where
(i) �i,j = �i,j,n :=

(
i−1
n ,

i
n

) × ( j−1n , jn
)
is some open square of side length 1n and the upper right

vertex at
(
i
n ,
j
n

)
which lies entirely in �; it is not difficult to see that there are exactly kn := 1

2n(n− 1)
of these squares;
(ii) �′n consists of all points of � beyond the union of �i,j,n; i.e.,

�′n := � \
⋃

1≤i<j≤n
�i,j,n.

The function sn ∈ W is the graphon corresponding to Γn. For fixed n to each Erdős–Rényi graph
with weights there corresponds the appropriate graphon.
We are interested in the large deviation principle (LDP) and the law of large numbers for the

sequence of graphons sn. These problems for ordinary Erdős–Rényi graphs are solved; see [3, 4] and
a survey therein. We will compare our result with others in more detail in Section 2 after the main
statements.
Given a metric ρ, denote by Bρ(W ) the Borel σ-algebra of subsets of the metric space (W , ρ).

Granted B ∈ Bρ(W ), denote its interior and closure in (W , ρ) by (B)ρ and [B]ρ.
Recall the definition of LDP.

Definition 1.1. A family of random functions sn satisfies the LDP in a metric space (W , ρ) with the
rate function I = I(f) : W → [0,∞] and the normalization function such that ψ(n) : limn→∞ ψ(n) =∞
whenever {f ∈ W : I(f) ≤ c} is compact in (W , ρ) for each c ≥ 0 and every B ∈ Bρ(W ) satisfies

lim sup
n→∞

1

ψ(n)
logP(sn ∈ B) ≤ −I([B]ρ), lim inf

n→∞
1

ψ(n)
logP(sn ∈ B) ≥ −I((B)ρ),

where I(B) = infy∈B I(y) and I(∅) =∞.
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The rest of this article has the following structure: Section 2 contains the main statements, and
by way of example we obtain the LDP for the number of triangles in ordinary Erdős–Rényi graphs and
compare our results with those available. In Section 3 we prove the main statements. Section 4 is devoted
to auxiliary results.

2. The Main Results

In many problems, in particular that of establishing an LDP, we need to find upper bounds for the
probability that a sequence of random elements belongs to some set. The exponential inequalities of
Chebyshev-type are a convenient tool for these estimates. The following theorem provides exponential
Chebyshev-type inequalities for a sequence of graphons sn in (W , ρW ).

Theorem 2.1. Let B ∈ BρW (W ) be convex and satisfy one of the following:
(1) B is open in (W , ρW );
(2) B is closed in (W , ρW );
(3) I((B)ρW ) <∞.
Then P(sn ∈ B) ≤ e−n2I(B).
Remark 2.2. Similar inequalities for the sums of random vectors and trajectories of random walks

were previously obtained in [5; 6, Section 4.3].
Put (g)ε,d := {f ∈ W : d(f, g) < ε}. The following lemma contains a lower bound in a local large

deviation principle for the sequence of graphons sn. This property was obtained in [3, 4] for ordinary
Erdős–Rényi graphs. We propose some analog for Erdős–Rényi graphs with weights.

Lemma 2.3. Given ε > 0 and g ∈ W , we have

lim inf
n→∞

1

n2
logP(sn ∈ (g)ε,d) ≥ −I(g).

Remark 2.4. The stronger the metric, the more complicated it is to prove lower bounds in the
local LDP. The metric d is “strongest” among those for which this is possible. If instead of d we had
considered the stronger metric

ρL = ρL(f, g) :=

1∫

0

( 1∫

x

|(f(x, y)− g(x, y)| dy
)
dx (f, g ∈ W ) (2.1)

then the claim of Lemma 2.3 would be false.
The next result is the LDP for the sequence of graphons sn.

Theorem 2.5. Suppose that W is equipped with a metric ρ and the following hold:
(i) ρW (f, g) ≤ ρ(f, g) ≤ d(f, g) for all f, g ∈ W ;
(ii) W is compact in (W , ρ).
Then the sequence of random functions sn satisfies the LDP in (W , ρ) with the normalization function

ψ(n) = n2 and the rate function I(f).

We also prove the law of large numbers for the sequence of graphons sn.

Theorem 2.6. The sequence of random functions sn satisfies the following law of large numbers:

lim
n→∞P(sn ∈ (ga)ε,d) = 1

for every ε > 0, where ga(x, y) ≡ a and (x, y) ∈ �.
Graphons make a convenient tool for proving limit theorems for the elements of the structure of

random graphs. We were exhibit an example of application of Theorem 2.5.
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Consider an ordinary Erdős–Rényi graph, meaning that (1.3) gives the distribution of X. Given
v ∈ [0, 1), denote by Tn,v the number of triangles included in the graph Γn and lacking vertices with
index less than vn. Consider the sequence of random variables

tn,v :=
1

n3
Tn,v.

Let us state a corollary to Theorem 2.5 which is the LDP for the sequence of tn,v.

Corollary 2.7. The sequence of random variables tn,v satisfies the LDP in the metric space R with
normalization function ψ(n) = n2 and rate function

I�,v(u) := inf
f∈W :Avf=u

∫

(x,y)∈Δ
Λp(f(x, y)) dxdy,

where

Avf :=

1∫

v

1∫

x

1∫

y

f(x, y)f(y, z)f(x, z) dxdydz.

Remark 2.8. The case v = 0, meaning the LDP for the number of triangles included in the graph,
was already considered; see [4] for instance.
We will compare our results with those obtained previously. Several other definitions of a graphon

are available [3, 4, 7–9]; see also a detailed survey in [4]: The function f(x, y) is extended by symmetry
across the diagonal y = x to the whole square � := [0, 1]2. Denote the space of these extended functions
by W�.
In [3, 4, 7–9], the cut-metric is defined on W� as

d�(f, g) := sup
S,T⊆[0,1]

∣∣∣∣
∫

S

∫

T

f(x, y) dxdy −
∫

S

∫

T

g(x, y) dxdy

∣∣∣∣.
Using the symmetry of f, g ∈ W� and the definition of d�, we can show that

ρW (f, g) ≤ 1
2
d�(f, g) = d(f, g).

Therefore, if W� were compact in (W�, d�) then the LDP in this space would follow from Theorem 2.5.
However, we can show that W� is not compact in (W�, d�). If we consider an ordinary Erdős–Rényi
graph then the rate function is finite at each function in W�. Consequently, the compactness condition
for this set is necessary for the LDP to hold in the sense of Definition 1.1. This problem is solved in [3, 4]
by considering the weaker metric

δ�(f, g) := inf
σ
sup

S,T⊆[0,1]

∣∣∣∣
∫

S

∫

T

f(σ(x), σ(y)) dxdy −
∫

S

∫

T

g(x, y) dxdy

∣∣∣∣,
where the infimum is taken over all measure-preserving bijections from [0, 1] to [0, 1]. Furthermore, W�
is “enlarged” by considering the space W̃� constructed from the cosets of δ�(f, g).
The “enlargement” is insensitive to the vertex enumeration in the graph, which prevents us from

obtaining limit theorems in the cases that this is important. For instance, knowing the LDP for a sequence

of graphons sn in (W̃�, δ�), we cannot deduce Corollary 2.7 when v 
= 0. Moreover, this enlargement
complicates the study of moderate deviations for random graphs.
Summarizing, we highlight the main differences of our result from the others.
(1) We study more general graphs; i.e., the Erdős–Rényi graphs with weights.
(2) The metrics we consider enjoy a series of convenient properties: The set W is compact in (W , ρ),

the set (f)ε,ρ is convex, and the functional I(f) is lower semicontinuous on (W , ρ).
(3) We obtain the exponential Chebyshev inequality, a convenient tool for various upper bounds.
(4) The metrics we use enable us to naturally study moderate deviations for random graphs (graphons)

and obtain Gaussian approximation in the domain of normal deviations; the authors are planning to ad-
dress these problems in the next article.
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3. Proofs of the Main Results

Proof of Theorem 2.1. Given an integer n ≥ 1, denote by Sn the class of functions in W with
f(x, y) = xi,j ∈ [0, 1] for (x, y) ∈ �i,j and f(x, y) = a for (x, y) ∈ �′n.
Consider the mapping H : Sn → R 12n(n−1) that assigns to each f ∈ Sn the vector

Hf = 	x := (x1,2, . . . , x1,n, x2,3, . . . , x2,n, . . . , xn−2,n−1, xn−2,n, xn−1,n).

The mapping H is clearly bijective and continuous with respect to the metric ρW on Sn and the Euclidean

norm on R
1
2
n(n−1). This mapping assigns to a random graphon sn(x, y) the random vector

Hsn = X := (X1,2, . . . , X1,n, X2,3, . . . , X2,n, . . . , Xn−2,n−1, Xn−2,n, Xn−1,n).

Recall that {Xi,j} are independent and identically distributed with a random variable X.
Assume that condition (1) is met. Observe that for every open convex set B ⊆ W the imageH(B∩Sn)

is open and convex in R
1
2
n(n−1). Therefore, Theorem 4.8 of Section 4 yields

P(sn ∈ B) = P(sn ∈ B ∩ Sn) = P(X ∈ H(B ∩ Sn)) ≤ e−ΛX(H(B∩Sn)), (3.1)

where for A ⊆ R 12n(n−1) by definition
ΛX(A) := inf

�x∈A
ΛX(	x).

Here ΛX(	x) is the deviation function for X.
Since the coordinates of X are independent and identically distributed with X, it follows that ΛX(	x)

is of the form

ΛX(	x) =

n−1∑
i=1

n∑
j=i+1

Λ(xi,j) = n
2

∫

(x,y)∈�\�′n

Λ(f(x, y)) dxdy, (3.2)

where f = H−1	x.
Observe that for every function f ∈ Sn we have Λ(f(x, y)) = 0 for (x, y) ∈ �′n; hence,∫

(x,y)∈�\�′n

Λ(f(x, y)) dxdy =

∫

(x,y)∈�
Λ(f(x, y)) dxdy = I(f). (3.3)

Therefore, P(sn ∈ B) ≤ e−n2I(B) by (3.1)–(3.3).
Assume that condition (2) is met. Put

Bε := {f ∈ W : inf
g∈B

ρW (f, g) < ε}.

The set W is compact in (W , ρW ); therefore, so is the closed set B. Lemma 4.3 of Section 4 implies that
the functional I(f) is lower semicontinuous. Since B is compact, we obtain

P(sn ∈ B) ≤ lim inf
ε↓0

P(sn ∈ Bε) ≤ lim inf
ε↓0

e−n
2I(Bε) ≤ e−n2I(B).

Assume that condition (3) is met. The set [B]ρW then satisfies condition (2). Hence, Lemma 4.5 of
Section 4 yields

P(sn ∈ B) ≤ P(sn ∈ [B]ρW ) ≤ e−n
2I([B]ρW ) = e−n

2I(B). �
Proof of Lemma 2.3. Firstly consider the particular case that

g(x, y) ∈ (δ, 1− δ) for all (x, y) ∈ � (3.4)
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for some δ > 0. Since d(g, f) ≤ ρL(g, f), see the definition of ρL(g, f) in (2.1), by Lemma 4.6, see
Section 4, for all f, g ∈ W there is some integer m0 = m0(g, ε) <∞ such that

d(g, gm) ≤ ε

2

for all m ≥ m0. See Section 4 for the definition of gm. The triangle inequality implies that
d(sn, g) ≤ d(sn, gm) + d(gm, g) ≤ d(sn, gm) + ε

2
,

and so
P(sn ∈ (g)ε,d) ≥ P(sn ∈ (gm) ε

2
,d). (3.5)

Therefore, we start with verifying the inequality

lim inf
n→∞

1

n2
logP(sn ∈ (gm) ε

2
,d) ≥ −I(gm)

in the particular case (3.4).
By Lemma 5.6 of [4],

d(sn, gm) = sup
a,b∈H ′

∣∣∣∣
∫

(x,y)∈�
a(x)b(y)(sn(x, y)− gm(x, y)) dxdy

∣∣∣∣, (3.6)

where H ′ :=H ′
n is the class of step functions c ∈H constant on each interval

(
i−1
n ,

i
n

) ∈ [0, 1]. Put
�m,n :=

⋃
�r,l,m∈�

⋃
�i,j,n∈�r,l,m

�i,j,n, �m,n := � \�m,n.

We can obviously choose m1 ≥ m0 so that
lim sup
n→∞

μ(�m,n) ≤
ε

8
(3.7)

for every m ≥ m1, where μ(A) is the Lebesgue measure of A. By (3.6) and (3.7),

d(sn, gm) ≤ sup
a,b∈H ′

∣∣∣∣
∫

�m

a(x)b(y)(sn(x, y)− gm(x, y)) dxdy
∣∣∣∣+2μ(�m,n) ≤

∑
r,l

Yr,l +
ε

4
(3.8)

with

Yr,l := I�(�r,l,m)
1

n2
sup
a,b∈H ′

∑
i,j

aibj(Xi,j − gr,l,m)I�r,l,m(�i,j,n),

where aibj are the values of a(x)b(y) on the squares �i,j,n and gr,l,m are the values of gm(x, y) on the
squares �r,l,m, while

IA(B) :=

{
1 if B ⊆ A,
0 otherwise.

Noticing that (3.8) involves exactly m(m−1)2 ≤ m2 terms Yr,l, we see that

P

(
d(sn, gm) <

ε

2

)
≥ P
(∑
r,l

Yr,l <
ε

4

)
≥ P
(⋂
r,l

{
Yr,l <

ε

4m2

})
. (3.9)

Since {Yr,l : �r,l,m ⊂ �} is obviously a collection of independent random variables, (3.9) yields

P

(
d(sn, gm) <

ε

2

)
≥
∏
r,l

P

(
Yr,l <

ε

4m2

)
. (3.10)
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Bound each factor on the right-hand side of (3.10) from below by

Pr,l,m

(
ε

4m2N

)
:= P

(
Cr,l,m

(
ε

4m2N

))
, (3.11)

where the parameters r and l satisfying �r,l,m ⊆ �, the parameter N ≥ 1 is chosen below, and the event
Cr,l,m

(
ε

4m2N

)
is defined as

Cr,l,m

(
ε

4m2N

)
:=

{
sup
a,b∈H ′

1

n2

∣∣∣∑
i,j

aibj(Xi,j − gr,l,m)I�r,l,m(�i,j,n)
∣∣∣ < ε

4m2N

}
.

Prior to bounding the terms of (3.11) from below, we mention some useful properties of the deviation
function Λ(α). Put A(λ) := logEeλX .
It follows from (3.4) that the constant ĝ := gr,l,m satisfies ĝ ∈ (δ, 1 − δ). Since Λ(α) is an analytic

function on the interval (0, 1), the constant

λ̂ := λ(ĝ), where λ(α) := Λ′(α),

is determined. Since

Λ(α) = λ(α)α−A(λ(α)), A′(λ(α)) = α, Eeλ(α)XX = eA(λ(α))α

for all α ∈ (0, 1), we have
Λ(ĝ) = λ̂ĝ −A(λ̂), Eeλ̂XX = eA(λ̂)ĝ.

Let us bound (3.11) from below. The event Cr,l,m
(

ε
4m2N

)
obviously includes the event

{
1

n2

∣∣∣∑
i,j

(Xi,j − ĝ)I�r,l,m(�i,j,n)
∣∣∣ < ε

4m2N

}
.

Consequently, for all sufficiently large n the relations
∣∣∣∣1
k̂
S
k̂
− ĝ
∣∣∣∣ < εn2

4m2Nk̂
, −λ̂S

k̂
≥ −k̂λ̂ĝ − k̂|λ̂| ε

4N
(3.12)

hold of this event, where

k̂ :=
∑
i,j

I�r,l,m(�i,j,n) ∼
n2

m2
as n→∞, S

k̂
:=
∑
i,j

Xi,jI�r,l,m(�i,j,n).

By (3.12),

Pr,l,m

(
ε

4m2N

)
= E

(
eλ̂Sk̂−λ̂Sk̂ ; Cr,l,m

(
ε

4m2N

))
ek̂A(λ̂)−k̂A(λ̂)

= ek̂A(λ̂)Ê

(
e−λ̂Sk̂ ; Cr,l,m

(
ε

4m2N

))
≥ ek̂A(λ̂)−k̂λ̂ĝ−k̂|λ̂| ε4N P̂

(
Cr,l,m

(
ε

4m2N

))

= e−k̂
(
Λ(ĝ)+|λ̂| ε

4N

)
P̂

(
Cr,l,m

(
ε

4m2N

))
, (3.13)

where Ê is the expectation of the distribution P̂ defined as P̂(B) := e−k̂A(λ̂)E(eλ̂Sk̂ ; B) using the
parameter λ̂, and B is an arbitrary measurable set.
To continue the proof, we need the following auxiliary assertion:
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Lemma 3.1. We have
lim
n→∞ P̂(Cr,l,m(γ)) = 1

for every γ > 0.

Proof. By Lemmas 5.9 and 5.10 of [4], for every δ > 0 there exists a set of functions K ′ ⊂ H ′
such that

sup
a,b∈H ′

1

n2

∣∣∣∑
i,j

aibj(Xi,j − ĝ)I�r,l,m(�i,j,n)
∣∣∣

≤ 1

1− 2δ supa,b∈K ′

1

n2

∣∣∣∑
i,j

aibj(Xi,j − ĝ)I�r,l,m(�i,j,n)
∣∣∣ (3.14)

and |K ′| ≤ (3/δ)n, where |K ′| is the cardinality of K ′.
Choosing δ = 1/4 and applying (3.14), we find that |K ′| ≤ 12n and

P̂(Cr,l,m(γ)) ≥ 1− P̂
(
sup
a,b∈K ′

∣∣∣∣ 1n2
∑
i,j

aibj(Xi,j − ĝ)I�r,l,m(�i,j,n)
∣∣∣∣ ≥ γ

2

)

= 1− P̂
( ⋃
a,b∈K ′

{∣∣∣∣ 1n2
∑
i,j

aibj(Xi,j − ĝ)I�r,l,m(�i,j,n)
∣∣∣∣≥ γ

2

})

≥ 1−
∑
a,b∈K ′

P̂

(∣∣∣∣ 1n2
∑
i,j

aibj(Xi,j − ĝ)I�r,l,m(�i,j,n)
∣∣∣∣ ≥ γ

2

)
. (3.15)

Since ÊX = ĝ, using Theorem 4.2 of [4], for all ε > 0 and a, b ∈ K ′ we obtain

P̂

(∣∣∣∣ 1n2
∑
i,j

aibj(Xi,j − ĝ)I�r,l,m(�i,j,n)
∣∣∣∣ ≥ γ

2

)
≤ 2e−n

2γ2

8m2 . (3.16)

Now (3.15) and (3.16) yield

lim
n→∞ P̂(Cr,l,m(γ)) ≥ 1− limn→∞ 2 · 12

2ne
−n2γ2
8m2 = 1. �

Resume proving Lemma 2.3. Using (3.10), (3.13), and Lemma 3.1, we infer that

lim inf
n→∞

1

n2
logP

(
d(sn, gm) <

ε

2

)
≥ − 1

m2

∑
r,l

Λ(gr,l,m)− |λ̂|ε
N

.

Choosing N arbitrarily large, we can remove the second term on the right-hand side. Therefore, (3.5),
(3.9), and the convexity of Λ(α) yield

lim inf
n→∞

1

n2
logP(sn ∈ (g)ε,d) ≥ lim inf

n→∞
1

n2
logP

(
d(sn, gm) <

ε

2

)

≥ − 1
m2

∑
r,l

Λ(gr,l,m) =
∑
r,l

∫

�r,l

Λ(gm(x, y)) dxdy

= −
∑
r,l

μ(�r,l)Λ
(

1

μ(�r,l)

∫

�r,l

g(x, y) dxdy

)

≥ −
∫
⋃
r,l

�r,l

Λ(g(x, y)) dxdy ≥ −
∫

(x,y)∈�
Λ(g(x, y)) dxdy = −I(g).

The claim of Lemma 2.3 is now established with the additional assumption (3.4).
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Assume now that (3.4) is not satisfied. Construct the graphon

g(δ)(x, y) := min{max{g(x, y), δ}, 1− δ},
where δ > 0 is sufficiently small so that

δ ≤ min
{
ε

4
,
a

4
,
1− a
4

}
.

Since
d(g, g(d)) ≤ sup

(x,y)∈�
|g(δ)(x, y)− g(x, y)| ≤ δ,

it follows that
P(d(sn, g) < ε) ≥ P(d(sn, g(δ)) < ε/2).

Applying the already established claim to the graphon g(δ), we obtain

lim inf
n→∞

1

n2
logP(d(sn, g) < ε) ≥ −I(g(δ)).

It remains to observe that the deviation function Λ(α) increases for α > a and decreases for α < a;

therefore, −I(g(δ)) ≥ −I(g). Thus, in the last inequality we can replace the right-hand side by −I(g). �
Proof of Theorem 2.5. By Lemma 4.1.23 of [10], for the sequence of measures generated by sn

it suffices to establish the two claims:
the local LDP: every function g ∈ W satisfies

lim
ε→0 lim supn→∞

1

n2
logP(ρ(sn, g) < ε) = lim

ε→0 lim infn→∞
1

n2
logP(ρ(sn, g) < ε) = −I(g);

the exponential tightness: for every c ∈ R there exists a compact set Kc ⊆ W such that

lim sup
n→∞

1

n2
logP(sn /∈ Kc) ≤ −c.

Let us prove the local LDP. Since every ε-neighborhood is convex in (W , ρW ) and I(g) is lower
semicontinuous, Theorem 2.1 and condition (i) imply that

lim
ε→0 lim supn→∞

1

n2
logP(ρ(sn, g) < ε) ≤ lim

ε→0 lim supn→∞
1

n2
logP(ρW (sn, g) < ε)

≤ lim
ε→0 lim supn→∞

1

n2
log e−n

2I((g)ε,W ) ≤ −I(g), (3.17)

where (g)ε,W := {f ∈ W : ρW (f, g) < ε}.
By Lemma 2.3 and condition (i),

lim inf
n→∞

1

n2
logP(ρ(sn, g) < ε) ≥ lim inf

n→∞
1

n2
logP(d(sn, g) < ε) ≥ −I(g) (3.18)

for every ε > 0. From (3.17) and (3.18) we obtain the local LDP for sn.
The exponential tightness of the sequence of measures generated by sn follows from condition (ii).

Combined with Lemma 4.3 of Section 4, this condition also implies that {f ∈ W : I(f) ≤ c} is compact
for every c ≥ 0. �
Proof of Theorem 2.6. From (3.5) and (3.10) we obtain

P(sn ∈ (ga)ε,d) ≥
∏
r,l

P

(
1

n2
sup
a,b∈H ′

∣∣∣∣
∑
i,j

aibj(Xi,j − a)I�r,l,m(�i,j,n)
∣∣∣∣ < ε

4m2

)
. (3.19)
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If ĝ = a then P and P̂ coincide; hence, Lemma 3.1 shows that

lim
n→∞P

(
sup
a,b∈H ′

∣∣∣∣ 1n2
∑
i,j

aibj(Xi,j − a)I�r,l,m(�i,j,n)
∣∣∣∣ ≤ ε

4m2

)
= 1 (3.20)

for every ε > 0.
Now (3.19) and (3.20) yield limn→∞P(sn ∈ (g)ε,d) = 1. �
Proof of Corollary 2.7. Put cn,v := min(c ∈ N : c ≥ vn). Since the random variable X has the

Bernoulli distribution; therefore,

tn,v =
1

n3

n−2∑
i=cn,v

n−1∑
j=i+1

n∑
k=j+1

XijXjkXik

=
1

n3

n−2∑
i=cn,v

n−1∑
j=i+1

n∑
k=j+1

sn(x, y)sn(y, z)sn(x, z)I(x,y)(�i,j)I(y,z)(�j,k)I(x,z)(�i,k). (3.21)

We have

n−2∑
i=cn,v

n−1∑
j=i+1

n∑
k=j+1

1

n3
=
(n− cn,v + 1)(n− cn,v)(n− cn,v − 1)

6n3

=

1∫
cn,v
n

1∫

x

1∫

y

dxdydz − n− cn,v
6n3

. (3.22)

Since sn(x, y) belongs to [0, 1] and is constant for (x, y) ∈ �i,k, we infer from (3.21) and (3.22) that
1∫

v

1∫

x

1∫

y

sn(x, y)sn(y, z)sn(x, z) dxdydz −
cn,v
n∫

v

1∫

x

1∫

y

dxdydz − n− cn,v
6n3

≤ tn,v ≤
1∫

v

1∫

x

1∫

y

sn(x, y)sn(y, z)sn(x, z) dxdydz =: t̃n,v.

Consequently, for every ε > 0 we have

lim sup
n→∞

1

n2
logP(|tn,v − t̃n,v| > ε)

≤ lim sup
n→∞

1

n2
logP

( cn,v
n∫

v

1∫

x

1∫

y

dxdydz +
n− cn,v
6n3

> ε

)
= −∞.

So, Lemma 4.2.13 of [10] implies that if a sequence t̃n,v satisfies the LDP then tn,v satisfies the same LDP.
Thus, it suffices to obtain the LDP for t̃n,v.
Consider the metric

ρAv(f, g) :=
1

3
|Avf −Avg|, f, g ∈ W .

Furthermore, equip W with the metric ρ�,v(f, g) := max(ρW (f, g), ρAv(f, g)). It is easy to see that W is
compact in the space (W , ρ�,v). Lemma 4.7 of Section 4 implies that ρAv(f, g) ≤ d(f, g). Consequently,
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the metric space (W , ρ�,v) satisfies the hypotheses of Theorem 2.5. Thus, the sequence sn satisfies the
LPD in this space with the normalization function ψ(n) = n2 and the rate function I(f).
Observe that Avsn = t̃n,v. Also it is obvious that the operator A from (W , ρ�,v) to R is continuous.

Therefore, according to Theorem 2.5 and the “contraction principle” (see [11, Theorem 3.1] for instance)
the sequence t̃n,v satisfies the LPD with the normalization function ψ(n) = n

2 and the rate function

I�,v(u) = inf
f∈W :Avf=u

∫

(x,y)∈Δ
Λp(f(x, y)) dxdy. �

4. Auxiliary Results

Lemma 4.1. The functional I(f) is convex.

Proof. Take r, s ∈ [0, 1] with r + s = 1. For all f, g ∈ W we have

rI(f) + sI(g) =

∫

(x,y)∈�
(rΛ(f(x, y)) + sΛ(g(x, y))) dxdy

≥
∫

(x,y)∈�
(Λ(rf(x, y) + sg(x, y)) dxdy = I(rf + sg),

where the inequality ≥ follows from the convexity of the deviation function Λ(α). �
Lemma 4.2. If limn→∞ ρW (fn, f) = 0 then for every ε > 0 and every measurable set A ⊆ � we

have ∣∣∣∣
∫

A

fn(x, y) dxdy −
∫

A

f(x, y) dxdy

∣∣∣∣ ≤ εμ(A)

for all sufficiently large n.

Proof. If μ(A) = 0 then the inequality is obvious. Assume that μ(A) > 0.
Since A is measurable and μ(A) > 0, by [12, Chapter 5, § 3, Definition 2] there are an integer m(A, ε)

and a collection of disjoint rectangles Bk, for 1 ≤ k ≤ m(A, ε), such that

μ

(
A�

m(A,ε)⋃
k=1

Bk

)
≤ ε

4
μ(A),

where � stands for symmetric difference.
Since limn→∞ ρW (fn, f) = 0 and μ(A) > 0 for n sufficiently large, we have

m(A,ε)∑
k=1

∣∣∣∣
∫

Bk

fn(x, y) dxdy −
∫

Bk

f(x, y) dxdy

∣∣∣∣ ≤ ε

2
μ(A).

Hence, ∣∣∣∣
∫

A

fn(x, y) dxdy −
∫

A

f(x, y) dxdy

∣∣∣∣ ≤
m(A,ε)∑
k=1

∣∣∣∣
∫

Bk

fn(x, y) dxdy −
∫

Bk

f(x, y) dxdy

∣∣∣∣

+2max( sup
(x,y)∈�

fn(x, y), sup
(x,y)∈�

f(x, y))μ

(
A�

m(A,ε)⋃
k=1

Bk

)
≤ εμ(A). �
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Lemma 4.3. Consider a function Λ(α) : R→ [0,∞] satisfying the following:
(1) Λ(α) is bounded and convex on [ε, 1− ε] for every ε > 0;
(2) there exist possibly infinite limits

Λ(0) := lim
ε↓0
Λ(ε) and Λ(1) := lim

ε↓0
Λ(1− ε).

If limn→∞ ρW (fn, f) = 0 for f ∈ W and fn ∈ W then

lim inf
n→∞ I(fn) ≥ I(f),

where

I(g) :=

∫

(x,y)∈�
Λ(g(x, y)) dxdy, g ∈ W .

Proof. Consider the case that limε↓0 Λ(ε) = limε↓0 Λ(1− ε) =∞.
Put

Aε := {(x, y) ∈ � : ε ≤ f(x, y) ≤ 1− ε}, A0 := {(x, y) ∈ � : f(x, y) = 0},
A1 := {(x, y) ∈ � : f(x, y) = 1}.

By Theorem 16.1 of [13],

∫

(x,y)∈�
Λ(f(x, y)) dxdy =

∫

�\(A0∪A1)
Λ(f(x, y)) dxdy + μ(A0)Λ(0) + μ(A1)Λ(1)

= lim
ε↓0

∫

�\(A0∪A1)
Λ(f(x, y))If(x,y)([ε, 1− ε]) dxdy + μ(A0)Λ(0) + μ(A1)Λ(1)

= lim
ε↓0

∫

Aε

Λ(f(x, y)) dxdy + μ(A0)Λ(0) + μ(A1)Λ(1),

where we put 0 · ∞ = 0.
Applying again Theorem 16.1 of [13], we obtain

∫

(x,y)∈�
Λ(fn(x, y)) dxdy = lim

ε↓0

∫

Aε

Λ(fn(x, y)) dxdy +

∫

A0

Λ(fn(x, y)) dxdy

+

∫

A1

Λ(fn(x, y)) dxdy =: lim
ε↓0

In,ε + In,0 + In,1. (4.1)

Consider the first term on the right-hand side. Since Λ(α) is a bounded convex function on [ε, 1− ε],
it is also continuous there. Since the function f(x, y) is measurable and bounded, there is a sequence of

simple functions f̂m(x, y) with

lim
m→∞ sup

(x,y)∈�
|f(x, y)− f̂m(x, y)| = 0,

lim
m→∞

∫

Aε

Λ(f̂m(x, y)) dxdy =

∫

Aε

Λ(f(x, y)) dxdy.
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Hence, for every γ > 0 there are an integer mγ , measurable sets Ak,γ , and constants f̂k,γ , for 1 ≤ k ≤ mγ ,
such that Ak,γ ∩Aj,γ = ∅ for k 
= j with

⋃mγ
k=1Ak,γ = Aε and f̂m(x, y) ≡ f̂k,γ for (x, y) ∈ Ak,γ , and

sup
(x,y)∈Ak,γ

|f(x, y)− f̂k,γ | < γ (4.2)

for all 1 ≤ k ≤ mγ . By Lemma 4.2, for all γ > 0 and 1 ≤ k ≤ mγ we have∣∣∣∣
∫

Ak,γ

fn(x, y) dxdy −
∫

Ak,γ

f(x, y) dxdy

∣∣∣∣ < γμ(Ak,γ) (4.3)

for n sufficiently large. Since Λ(α) is uniformly continuous on [ε/2, 1− ε/2], for every δ > 0 there exists
γ := γ(δ) ∈ (0, ε/2) such that

sup
s∈[−γ,γ]

|Λ(α+ s)− Λ(α)| < δ (4.4)

for all α ∈ [ε, 1− ε].
Using Jensen’s inequality, (4.3) and (4.4), for 1 ≤ k ≤ mγ and n sufficiently large we obtain∫

Ak,γ

Λ(fn(x, y)) dxdy ≥ μ(Ak,γ)Λ
(

1

μ(Ak,γ)

∫

Ak,γ

fn(x, y) dxdy

)

≥ μ(Ak,γ) inf
s∈[−γ,γ]

Λ

(
1

μ(Ak,γ)

∫

Ak,γ

f(x, y) dxdy + s

)

≥ μ(Ak,γ)
(
Λ

(
1

μ(Ak,γ)

∫

Ak,γ

f(x, y) dxdy

)
− δ
)
. (4.5)

From (4.2), (4.4), and (4.5) we infer that∫

Ak,γ

Λ(fn(x, y)) dxdy ≥ μ(Ak,γ) inf
s∈[−γ,γ]

(
Λ

(
1

μ(Ak,γ)

∫

Ak,γ

f̂k,γ dxdy + s

)
− δ
)

≥ μ(Ak,γ)
(
Λ

(
1

μ(Ak,γ)

∫

Ak,γ

f̂k,γ dxdy

)
− 2δ
)
= μ(Ak,γ)(Λ(f̂k,γ)− 2δ)

=

∫

Ak,γ

Λ(f̂k,γ) dxdy − 2δμ(Ak,γ). (4.6)

Then (4.2), (4.4), and (4.6) yield∫

Ak,γ

Λ(fn(x, y)) dxdy ≥
∫

Ak,γ

inf
s∈[−γ,γ]

Λ(f(x, y) + s) dxdy − 2δμ(Ak,γ)

≥
∫

Ak,γ

Λ(f(x, y)) dxdy − 3δμ(Ak,γ). (4.7)

By (4.7), for all ε > 0, δ > 0, and sufficiently large n we have

In,ε =

∫

Aε

Λ(fn(x, y)) dxdy =

mγ∑
k=1

∫

Ak,γ

Λ(fn(x, y)) dxdy

≥
mγ∑
k=1

( ∫

Ak,γ

Λ(f(x, y)) dxdy − 3δμ(Ak,γ)
)
≥
∫

Aε

Λ(f(x, y)) dxdy − 3δ. (4.8)
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Let us estimate In,0 from below. By Lemma 4.2, for every ε > 0 and sufficiently large n we have

0 ≤
∫

A0

fn(x, y) dxdy < εμ(A0). (4.9)

Put A0,ε,n := {(x, y) ∈ A0 : fn(x, y) > 2ε}. From (4.9) we find that

2εμ(A0,ε,n) ≤
∫

A0

fn(x, y) dxdy < εμ(A0).

Thus,

μ(A0 \A0,ε,n) ≥ μ(A0)

2
.

Hence,

In,0 =

∫

A0

Λ(fn(x, y)) dxdy ≥
∫

A0\A0,ε,n

Λ(fn(x, y)) dxdy ≥ μ(A0)

2
inf

α∈[0,2ε]
Λ(α) (4.10)

for n sufficiently large.
Similar arguments show that

In,1 =

∫

A1

Λ(fn(x, y)) dxdy ≥ μ(A1)

2
inf

α∈[1−2ε,1]
Λ(α). (4.11)

If max(μ(A0), μ(A1)) = 0 then (4.1) and (4.8) show that for all ε > 0 and δ > 0 we have

lim inf
n→∞

∫

(x,y)∈�
Λ(fn(x, y)) dxdy

≥ lim inf
n→∞

∫

Aε

Λ(fn(x, y)) dxdy ≥
∫

Aε

Λ(f(x, y)) dxdy − 3δ.

Passing to the limit as δ → 0, for every ε > 0 we obtain

lim inf
n→∞

∫

(x,y)∈�
Λ(fn(x, y)) dxdy ≥

∫

Aε

Λ(f(x, y)) dxdy.

This implies that

lim inf
n→∞

∫

(x,y)∈�
Λ(fn(x, y)) dxdy ≥ lim

ε↓0

∫

Aε

Λ(f(x, y)) dxdy =

∫

(x,y)∈�
Λ(f(x, y)) dxdy.

If max(μ(A0), μ(A1)) > 0 then (4.10) and (4.11) yield

lim inf
n→∞

∫

(x,y)∈�
Λ(fn(x, y)) dxdy

≥ lim
ε↓0
max

(
μ(A0)

2
inf

α∈[0,2ε],
Λ(α),

μ(A1)

2
inf

α∈[1−2ε,1]
Λ(α)

)
=∞.

Thus, Lemma 4.3 is established in the case that limε↓0 Λ(ε) = limε↓0 Λ(1− ε) =∞. The remaining cases
are similar. �
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Lemma 4.4. If f, g ∈ W with I(g) <∞ then
lim
ε↓0

I((f)ε,W ) = I(f), (4.12)

lim
r↑1

I((1− r)g + rf) = I(f). (4.13)

Proof. Lemma 4.3 shows that I(f) is lower semicontinuous, and so (4.12) holds.
Lemma 4.1 implies that I(f) is convex. Using the inequality I(g) <∞, we infer that

lim
r↑1

I((1− r)g + rf) ≤ lim
r↑1
((1− r)I(g) + rI(f)) = I(f). (4.14)

On the other hand, lower semicontinuity yields

lim
r↑1

I((1− r)g + rf) ≥ I(f). (4.15)

Finally, (4.14) and (4.15) force (4.13). �
Lemma 4.5. If B ∈ BρW (W ) is a convex set with I((B)ρW ) <∞ then

I((B)ρW ) = I(B) = I([B]ρW ). (4.16)

Proof. Let us prove firstly that if B is a convex set then so are the following sets:
(i) (B)ρW ;
(ii) [B]ρW ;
(iii) [B]ρW ∩ I<∞, where I<∞ := {f : I(f) <∞}.
(i) To verify that (B)ρW is convex, take f1, f2 ∈ (B)ρW . Then (f1)δ,W , (f2)δ,W ⊂ B for some δ > 0,

and since B is convex, we have
r(f1)δ,W + s(f2)δ,W ⊂ B, where r, s ∈ [0, 1] with r + s = 1. Since

(rf1 + sf2)δ,W ⊂ r(f1)δ,W + s(f2)δ,W ,
it follows that (rf1 + sf2)δ,W ⊂ B. This means that f = rf1 + sf2 lies in B together with some
neighborhood; i.e., f belongs to (B)ρW . The convexity of (B)ρW is established.
(ii) To verify that [B]ρW is convex, take f, g ∈ [B]ρW . This means that there exist two sequences

fn ∈ B and gn ∈ B converging respectively to f and g. Since B is convex; rfn + sgn ∈ B, where
r, s ∈ [0, 1] with r + s = 1. Since

ρW (rfn + sgn, rf + sg) ≤ rρW (fn, f) + sρW (gn, g)→ 0,
it follows that rfn+sgn → rf+sg. This means that rf+sg lies in the closure [B]ρW of B. The convexity
of [B]ρW is established.
(iii) Verify that [B]ρW ∩ I<∞ is convex. By Lemma 4.1 the functional I(f) is convex, and so I<∞ is

convex. Hence, so is [B]ρW ∩ I<∞ as the intersection of two convex sets.
By assumption I((B)ρW ) < ∞; hence, (B)ρW ∩ I<∞ is nonempty. Choose f0 ∈ (B)ρW ∩ I<∞ and

f1 ∈ [B]ρW ∩ I<∞ and consider the half-open interval
[f0, f1) := {fr := rf1 + (1− r)f0 : r ∈ [0, 1)}.

Let us show that
[f0, f1) ⊂ (B)ρW . (4.17)

Both points f0 and f1 lie in the convex set [B]ρW ∩ I<∞, and so fr lies in [B]ρW ∩ I<∞ for every r ∈ [0, 1].
To justify (4.17), we must exclude the possibility that fr ∈ ∂B for all r ∈ [0, 1). However, if fr ∈ ∂B
then there exists a sequence gn 
∈ [B]ρW with gn → fr. In this case

hn :=
gn − rf1
1− r → f0 as n→∞.
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Since f0 ∈ (B)ρW , it follows that hn ∈ (B)ρW for all sufficiently large n. Since gn = rf1+(1−r)hn and f1 ∈
[B]ρW , it follows that gn ∈ [B]ρW for n sufficiently large. The resulting contradiction establishes (4.17).
From (4.17) we infer that

I((B)ρW ) ≤ I(rf1 + (1− r)f0), 0 ≤ r < 1. (4.18)

Since f0, f1 ∈ I<∞, by claim (4.13) of Lemma 4.4 the right-hand side of (4.18) converges to I(f1) as r ↑ 1.
Thus, I((B)ρW ) ≤ I(f1). Since f1 ∈ [B]ρW ∩ I<∞ is arbitrary, we arrive at

I((B)ρW ) ≤ I([B]ρW ∩ I<∞) = I([B]ρW ).
This inequality together with the obvious inequalities

I((B)ρW ) ≥ I(B) ≥ I([B]ρW )
justifies claim (4.16) of Lemma 4.5. �
Recall that �r,l = �r,l,m :=

(
r−1
m , rm

)× ( l−1m , lm
)
are open squares of side length 1m , for m ∈ N, with

the upper right vertices at
(
r
m ,

l
m

)
, which lie entirely in �.

Given g ∈ W , put

gm(x, y) :=

⎧⎨
⎩

1
μ(�r,l)

∫
�r,l

g(x, y) dxdy, (x, y) ∈ �r,l if (x, y) ∈ �r,l,

a if (x, y) ∈ �m,
where �m :=

⋃
r,l�r,l and �m := � \�m.

Lemma 4.6. For all g ∈ W and ε > 0 there is an integer m = m(ε, g) such that ρL(g, gm) ≤ ε.
Proof. By Luzin’s Theorem (the version for Rd, see [14, Theorem 3.6.1]) there are a continuous

function g̃ = g̃(x, y) : �→ [0, 1] and a measurable set A ⊆ � such that

μ(A) ≤ ε

6
, A := � \A, (4.19)

and for all (x, y) ∈ A we have
g(x, y) = g̃(x, y). (4.20)

Since g̃(x, y) is a continuous function on �, there is an integer m = m(g, ε) such that

sup
(x,y)∈�m

|g̃(x, y)− g̃m(x, y)| ≤ 2ε
3

and μ(�m) ≤
ε

6
. (4.21)

The triangle inequality yields

ρL(g, gm) ≤ ρL(g, g̃) + ρL(g̃, g̃m) + ρL(g̃m, gm), (4.22)

and it suffices to estimate each term on the right-hand side of (4.22).
Estimate the first term. From (4.19) and (4.20), using the inequality sup(x,y)∈� |g(x, y)− g̃(x, y)| ≤ 1,

we infer that

ρL(g, g̃) =

∫

A

|g(x, y)− g̃(x, y)| dxdy +
∫

A

|g(x, y)− g̃(x, y)| dxdy ≤ μ(A) ≤ ε

6
. (4.23)

Estimate the second term in (4.22). By (4.21), taking into account the inequality

sup
(x,y)∈�

|g̃(x, y)− g̃m(x, y)| ≤ 1,
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we conclude that

ρL(g̃, g̃m) =

∫

�m

|g̃(x, y)− g̃m(x, y)| dxdy +
∫

�m

|g̃(x, y)− g̃m(x, y)| dxdy

≤ 2ε
3
μ(�m) + μ(�m) ≤

ε

2
. (4.24)

To estimate the third term in (4.22), inspect firstly for (x, y) ∈ �r,l the variable |g̃m(x, y)−gm(x, y)|.
Since sup(x,y)∈� |g̃(x, y)− g(x, y)| ≤ 1, we have

|g̃m(x, y)− gm(x, y)| =
∣∣∣∣ 1

μ(�r,l)

∫

�r,l

(g̃(u, v)− g(u, v)) dudv
∣∣∣∣

≤ 1

μ(�r,l)

∫

�r,l∩A
|g̃(u, v)− g(u, v)| dudv + 1

μ(�r,l)
μ(�r,l ∩A)

=
1

μ(�r,l)
μ(�r,l ∩A). (4.25)

Using (4.19), (4.21), and (4.25), as well as sup
(x,y)∈�

|g̃m(x, y)− g̃m(x, y)| ≤ 1, we obtain

ρL(g̃m, gm) ≤
∫

�m

|g̃m(x, y)− gm(x, y)| dxdy +
∫

�m

|g̃m(x, y)− gm(x, y)| dxdy

≤
∑
r,l

μ(�r,l ∩A) + ε

6
≤ μ(A) + ε

6
≤ ε

3
. (4.26)

Finally, (4.22)–(4.24) and (4.26) show that ρL(g, gm) ≤ ε. �
Lemma 4.7. ρAv(f, g) ≤ d(f, g) for all f, g ∈ W .

Proof. Put h(x, y) := f(x, y)− g(x, y). It is easy to see that
3ρAv(f, g) ≤ I1 + I2 + I3,

where

I1 :=

∣∣∣∣
1∫

v

( 1∫

x

( 1∫

y

H1(x, y, z) dz

)
dy

)
dx

∣∣∣∣, H1(x, y, z) := f(x, y)h(y, z)f(x, z);

I2 :=

∣∣∣∣
1∫

v

( z∫

v

( y∫

v

H2(x, y, z) dx

)
dy

)
dz

∣∣∣∣, H2(x, y, z) := h(x, y)g(y, z)f(x, z);

I3 :=

∣∣∣∣
1∫

v

( y∫

v

( 1∫

y

H3(x, y, z) dz

)
dx

)
dy

∣∣∣∣, H3(x, y, z) := g(x, y)g(y, z)h(x, z).

To estimate I1, observe that

I1 ≤
1∫

v

I1(x) dx, I1(x) :=

∣∣∣∣
1∫

x

( 1∫

y

H1(x, y, z) dz

)
dy

∣∣∣∣.

Put Hx := {a ∈H : a(y) ≡ 0 for y ∈ [0, x]}.
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Since

I1(x) ≤ sup
a,b∈H

∣∣∣∣
1∫

x

a(y)

( 1∫

y

b(z)(f(y, z)− g(y, z)) dz
)
dy

∣∣∣∣

= sup
a∈Hx,b∈H

∣∣∣∣
1∫

0

a(y)

( 1∫

y

b(z)(f(y, z)− g(y, z)) dz
)
dy

∣∣∣∣

≤ sup
a,b∈H

∣∣∣∣
1∫

0

a(y)

( 1∫

y

b(z)(f(y, z)− g(y, z)) dz
)
dy

∣∣∣∣ = d(f, g)

for every fixed x ∈ [v, 1], we see that

I1 ≤
1∫

v

d(f, g) dx ≤ d(f, g).

The inequalities I2 ≤ d(f, g) and I3 ≤ d(f, g) are established similarly. �
For the reader’s convenience, we state Theorem 1.3.1 of [6].

Theorem 4.8. Suppose that a random vector X ∈ Rm, with m ≥ 1, satisfies Cramér’s condi-
tion [C0]: There exists λ > 0 such that Ee

λ|X| <∞. Then for every convex open set B ⊆ Rm we have
P(X ∈ B) ≤ e−ΛX(B).
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