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Abstract: We study the generalized Leibniz brackets on the coordinate algebra of the n-dimensional
sphere. In the case of the one-dimensional sphere, we show that each of these is a bracket of vector type.
Each Jordan bracket on the coordinate algebra of the two-dimensional sphere is a generalized Poisson
bracket. We equip the coordinate algebra of a sphere of odd dimension with a Jordan bracket whose
Kantor double is a simple Jordan superalgebra. Using such superalgebras, we provide some examples
of the simple abelian Jordan superalgebras whose odd part is a finitely generated projective module of
rank 1 in an arbitrary number of generators. An analogous result holds for the Cartesian product of
the sphere of even dimension and the affine line. In particular, in the case of the 2-dimensional sphere
we obtain the exceptional Jordan superalgebra. The superalgebras we constructed give new examples
of simple Jordan superalgebras.
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The superalgebras of Jordan brackets are of great importance in studying the structure of Jordan al-
gebras and superalgebras. Some examples of superalgebras of Jordan brackets can be obtained by the
Kantor doubling process starting from associative commutative superalgebras with a Jordan bracket
(see [1–3]). The main properties of the superalgebras of Jordan brackets such as speciality, for example,
were studied in [1–11]. In [12, 13], it was shown that the commutator with respect to the Novikov prod-
uct defines a Jordan bracket on the associative commutative part of a Novikov–Poisson algebra. The
Jordan superalgebra, constructed by this bracket, was shown to be special in [14]. The superalgebras of
Jordan brackets of vector type play a significant role in the study of prime degenerate Jordan algebras
(see [5, 6, 15]).
Note that if some Jordan bracket is given on an associative commutative algebra then the even part

of the obtained Jordan superalgebra is associative, and the odd part is an associative module over the
even part. Following [16], we call such superalgebras abelian.
The simple abelian Jordan superalgebras are close in their properties to the superalgebras of Jordan

brackets. The simple Jordan superalgebras with associative even part were studied in [17–23]. In [17, 18],
the unital simple special abelian Jordan superalgebras were described that are not isomorphic to the
superalgebra of a nondegenerate bilinear form. As it is turned out, such superalgebras are the superalge-
bras of vector type with respect to some derivations, and their odd part is a finitely generated projective
module of rank 1. Moreover, each of these superalgebras is embedded into a simple superalgebra of
vector type which is constructed by a derivation. In [18–21], some examples were constructed of simple
Jordan superalgebras of vector type with respect to two derivations. More precisely, the odd part of such
a superalgebra is a projective module of rank 1, and it is generated as a module by at least two ele-
ments. Some examples of prime abelian Jordan superalgebras of vector type whose odd part is a finitely
generated projective module of rank 1 with an arbitrary number of generators were constructed in [24].
It was shown in [23] that a simple (not necessarily special) abelian Jordan superalgebra is embedded
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into a simple superalgebra of a Jordan bracket. Moreover, the odd part of such a superalgebra as a module
over the even part is a finitely generated projective module of rank 1.
It is worthy to mention the article [25] which stated the study of the simple Jordan superalgebras

with associative even part. One of the methods of the present work is the study of action of a subalgebra
of the Lie algebra of the vector fields of the n-dimensional sphere on the algebra of the regular functions
of the n-dimensional sphere. In this connection, we distinguish the papers [26–28].
This article consists of three sections. In § 1, we study the simplicity conditions of the superalgebra

constructed by the Kantor doubling process with the help of a generalized Leibniz bracket. We find
some equivalent conditions of simplicity of a superalgebra and one of its subalgebras in terms of the
conditions for the bracket given on a Z2-graded associative commutative algebra. We also give a criterion
of simplicity of a superalgebra in terms of the differential simplicity of an algebra with respect to some
set of derivations. In § 2, we study some properties of the generalized Leibniz brackets that are defined
on the algebra of regular functions of the n-dimensional sphere. In § 3, we provide some new examples
of the unital simple abelian Jordan superalgebras not isomorphic to a superalgebra of a Jordan bracket.

§ 1. The Generalized Leibniz Brackets and the Kantor Double
Let F be a field of characteristic not 2. An algebra A = A0+A1 is a Z2-graded algebra if A0∩A1 = 0

and AiAj = Ai+jmod 2. The algebra A is a superalgebra. The space A0(A1) is the even (odd) part of the
Z2-graded algebra A. The elements in A0 ∪A1 are homogeneous. The expression |x|, where x ∈ A0 ∪A1,
denotes the parity index of a homogeneous element x:

|x| =
{
0 if x ∈ A0 (x is even),

1 if x ∈ A1 (x is odd).

Let G be the Grassmann algebra with unity 1 over F ; i.e., G is an associative algebra given by the
generators 1, e1, e2, . . . and the defining relations

e2i = 0, eiej = −ejei.
The products 1, ei1 . . . eik , where i1 < i2 < · · · < ik, form a basis for G. Let G0 and G1 be the vector
subspaces spanned by the products of even and odd lengthes, respectively. Then G = G0 + G1 is a Z2-
graded algebra.
Let A = A0+A1 be a Z2-graded algebra. Then G(A) = G0⊗A0+G1⊗A1 is a subalgebra of G⊗A

(the tensor product over a field F ), and G(A) is called the Grassmann envelope of A.
An associative superalgebra A = A0 + A1 is an associative commutative superalgebra provided that

its Grassmann envelope G(A) is an associative commutative algebra. Then

ab = (−1)|a||b|ba
in A for homogeneous elements.
Let Γ = Γ0+Γ1 be an associative commutative superalgebra over a field F , and let { , } : Γ×Γ �→ Γ be

a super-skewsymmetric bilinear mapping on Γ which is called a bracket. Given Γ and { , }, we can construct
the superalgebra J(Γ, { , }). Consider the direct sum of vector spaces J(Γ, { , }) = Γ⊕Γξ, where Γξ is an
isomorphic copy of the vector space Γ. The product (·) on J(Γ, { , }) is defined as

a · b = ab, a · bξ = (ab)ξ, aξ · b = (−1)|b|(ab)ξ, aξ · bξ = (−1)|b|{a, b},
where a, b ∈ Γ0 ∪Γ1, and ab is the product of a and b in Γ. Put A0 = Γ0+Γ1ξ and A1 = Γ0ξ+Γ1. Then
J(Γ, { , }) = A0 +A1 is a superalgebra called the Kantor double.
Let D be an even derivation of a superalgebra Γ; i.e., D(Γi) ⊆ Γi, i = 0, 1. Then { , } is a generalized

Leibniz bracket or a Leibniz D-bracket provided that

{a, bc} = {a, b}c+ (−1)|a||b|b{a, c} −D(a)bc (1)

for a, b, c ∈ Γ0 ∪ Γ1. If D = 0 then { , } is a Leibniz bracket.
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Note that if { , } is a generalized Leibniz bracket then
〈a, b〉 = {a, b} −D(a)b+ aD(b)

is a Leibniz bracket.
Let Γ be a unital superalgebra. Putting b = c = 1 in (1), we get D(a) = {a, 1}.
Given a generalized Leibniz bracket { , }, we define the Jacobian

J(a, b, c) = {a, {b, c}}+ (−1)|a||b|+|a||c|{b, {c, a}}+ (−1)|a||c|+|b||c|{c, {a, b}}
of a, b, c and put

S(a, b, c) = {a, b}D(c) + (−1)|a||b|+|a||c|{b, c}D(a) + (−1)|a||c|+|b||c|{c, a}D(b). (2)

If Γ is a unital superalgebra then S(1, a, b) = 0 for all a, b ∈ Γ.
Lemma 1. Let Γ = Γ0+Γ1 be an associative commutative superalgebra, and let { , } be a generalized

Leibniz bracket on Γ. Then

S(ab, u, v) = aS(b, u, v) + (−1)|a||b|bS(a, u, v), (3)

J(ab, u, v) = aJ(b, u, v) + (−1)|a||b|bJ(a, u, v) + ab(D({u, v})− {D(u), v} − {u,D(v)}) (4)

for homogeneous elements. If Γ is a unital superalgebra then

J(ab, u, v) = aJ(b, u, v) + (−1)|a||b|bJ(a, u, v)− abJ(1, u, v). (5)

Proof. It suffices to prove these identities for the associative commutative algebra Γ. Show (3).
Take a, b, u, v ∈ Γ. Then

S(ab, u, v) = {ab, u}D(v) + {u, v}D(ab) + {v, ab}D(u)
= (a{b, u}+ {a, u}b+ abD(u))D(v) + {u, v}D(ab) + ({v, a}b+ a{v, b} −D(v)ab)D(u)

= a({b, u}D(v) + {u, v}D(b) + {v, b}D(u))
+b({a, u}D(v) + {u, v}D(a) + {v, a}D(u)) = aS(b, u, v) + bS(a, u, v).

Identity (4) is proved analogously.
Let Γ be a unital superalgebra. Then

J(1, u, v) = −(D({u, v})− {D(u), v} − {u,D(v)}),
whence (5) follows. �
Lemma 2. Let Γ = Γ0 + Γ1 be a unital associative commutative superalgebra, and let { , } be

a generalized Leibniz bracket on Γ. Define the bracket

〈a, b〉 = {a, b} −D(a)b+D(b)a.
Then

J(a, b, c)〈,〉 = J(a, b, c) + S(a, b, c)− aJ(1, b, c)
−(−1)|a|(|b|+|c|)bJ(1, c, a)− (−1)|c|(|a|+|b|)cJ(1, a, b),

where J(a, b, c)〈,〉 is the Jacobian of 〈 , 〉.
Proof. By the definition of 〈 , 〉 we have

〈a, 〈b, c〉〉 = {a, 〈b, c〉} −D(a)〈b, c〉+ aD(〈b, c〉) = {a, {b, c}}+ {a, b}D(c) + aD({b, c})
−{a,D(b)}c+ (−1)|a||b|b{a,D(c)} −D(a){b, c} − (−1)|a||b|D(b){a, c}

−2D(a)bD(c) + 2D(a)D(b)c− aD2(b)c+ abD2(c),
whence the required result follows by direct computation. �
Let Λ = Λ0 + Λ1 be a Z2-graded associative commutative algebra. Put Γ0 = Λ, Γ1 = 0, and

Γ = Γ0 + Γ1 = Λ. Assume that a generalized Leibniz bracket is given on Λ which is consistent with the
Z2-grading of Λ. Then J(Λ0,Λ1, { , }) = Λ0 + Λ1ξ is a subsuperalgebra of J(Λ, { , }) = J(Γ, { , }).
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Theorem 1. Let Λ be a unital Z2-graded associative commutative algebra without zero divisors,
and let Λ0 = Λ1Λ1. Then the superalgebra J(Λ, { , }) is simple if and only if the subsuperalgebra J(Λ0,Λ1,
{ , }) is simple.
Proof. Let J(Λ0,Λ1, { , }) be simple. Assume that I is an ideal of J(Λ, { , }). Then I = K + Lξ.

Since I is an ideal, K and L are some ideals of Λ. Analogously,

Kξ ⊆ (KΛ)ξ ⊆ K · Λξ ⊆ Lξ, {K,Λ} ⊆ Kξ · Λξ ⊆ Lξ · Λξ ⊆ K.
PutK0 = K∩Λ0. ThenK0 is an ideal of Λ0, and {K0Λ1,Λ1} ⊆ K∩Λ0 = K0. Put R = K0+(K0Λ1)ξ.

Then R · Λ0 ⊆ R, and
R · Λ1ξ ⊆ K0 · Λ1ξ + {K0Λ1,Λ1} ⊆ R.

Hence, R is an ideal of J(Λ0,Λ1, { , }). Then either 1 ∈ K0 or K0 = 0. If 1 ∈ K0 then 1 ∈ K, and
I = J(Λ, { , }).
Let K0 = 0 and a0 + a1 ∈ K, where a0 ∈ Λ0 and a1 ∈ Λ1. Then

(a0 + a1)(a0 − a1) = a20 − a21 ∈ K ∩ Λ0 = K0 = 0.
Since Λ does not contain zero divisors, a0 + a1 = 0 and K = 0.
Thus, J(Λ, { , }) is a simple superalgebra.
Let J(Λ, { , }) be a simple superalgebra. Assume that I is an ideal of J(Λ0,Λ1, { , }). Then I =

K0 +K1ξ, where K0 is an ideal of Λ0, and K1 is a submodule of the Λ0-module Λ1. Also we get

{K0Λ1,Λ1} ⊆ (K0 · Λ1ξ) · Λ1ξ ⊆ K1ξ · Λ1ξ ⊆ K0.
Since { , } is a generalized Leibniz bracket and Λ0 = Λ1Λ1; therefore,

{K0,Λ1} ⊆ {Λ1,K0} ⊆ {Λ1,K0Λ1Λ1}
⊆ {K0Λ1,Λ1}Λ1 +K0Λ1{Λ1,Λ1}+D(Λ1)K0Λ1Λ1 ⊆ K0Λ1.

Since 1 ∈ Λ1Λ1, we have 1 =
∑
i aibi, where ai, bi ∈ Λ1. Take r ∈ K0. Then

D(r) = {r, 1} =
{
r,
∑
i

aibi

}
=
∑
i

ai{r, bi}+
∑
i

{r, ai}bi −
∑
i

D(r)aibi.

Since ∑
i

ai{r, bi}+
∑
i

{r, ai}bi ∈ {K0,Λ1}Λ1 ⊆ K0Λ1Λ1 ⊆ K0Λ0 ⊆ K0;

therefore, 2D(r) ∈ K0, whence
{K0,Λ0} ⊆ {K0,Λ1Λ1} ⊆ {K0,Λ1}Λ1 +D(K0)Λ1Λ1 ⊂ K0.

Analogously, {K0Λ1,Λ0} ⊆ K0Λ1.
Let K = K0 +K0Λ1. Then K is an ideal of Λ, and

{K,Λ} ⊆ {K0,Λ}+ {K0Λ1,Λ0}+ {K0Λ1,Λ1} ⊆ K0 +K0Λ1 = K.
So, K +Kξ is an ideal of J(Λ, { , }). Hence, either 1 ∈ K0 or K0 = 0. If 1 ∈ K0 then I = J(Λ0,Λ1, { , }).
Let K0 = 0. Then I = K1ξ. Thus,

{K1,Λ1} ⊆ K1ξ · Λ1ξ ⊆ K0 = 0.
Hence, K1Λ1 +K1ξ is an ideal of J(Λ0,Λ1, { , }). By the above, either 1 ∈ K1Λ1 or K1Λ1 = 0.
If 1 ∈ K1Λ1 then Λ1 = K1, and {Λ1,Λ1} = 0. Let a ∈ Λ1 and 1 =

∑
i aibi, where ai, bi ∈ Λ1. Then

D(a) = {a, 1} =
{
a,
∑
i

aibi

}
=
∑
i

ai{a, bi}+
∑
i

{a, ai}bi −
∑
i

D(a)aibi = −D(a).

Consequently, 2D(a) = 0, whence

{Λ1,Λ0} ⊆ {Λ1,Λ1 · Λ1} ⊆ {Λ1,Λ1}Λ1 +D(Λ1)Λ1 · Λ1 = 0.
Analogously, {Λ0,Λ0} = 0. Thus, {Λ,Λ} = 0, and Λξ is an ideal of J(Λ, { , }). Hence, 1 �∈ K1Λ1. Then
K1Λ1 = 0 and K1 = 0, since Λ1Λ1 = Λ0. Therefore, I = 0.
So, J(Λ0,Λ1, { , }) is a simple superalgebra. �
Let Λ be a unital associative commutative algebra with a generalized Leibniz bracket { , }. Given

u, v ∈ Λ, we define the mapping Du,v : Λ �→ Λ by putting Du,v(a) = {au, v} − a{u, v}.
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Lemma 3. Du,v is a derivation of Λ. If the superalgebra J(Λ, { , }) is simple then Λ is a simple
differential algebra with respect to the derivations in D = {Du,v | u, v ∈ Λ}. Conversely, if Λ is a simple
differential algebra with respect to the derivations in D then either {Λ,Λ} = 0 or J(Λ, { , }) is a simple
superalgebra.

Proof. Take a, b ∈ Λ and u, v ∈ Λ. By (1)
Du,v(ab) = {abu, v} − ab{u, v} = a{bu, v}+ {a, v}bu+D(v)abu− ab{u, v}

= aDu,v(b) + b{au, v} − ba{u, v} = Du,v(a)b+ aDu,v(b).
Hence, Du,v is a derivation of Λ.
Let J(Λ, { , }) be simple. Assume that I is an ideal of Λ invariant under the derivations in D . Then

{Iu, v} ⊆ Du,v(I) + I{u, v} ⊆ I
for all u, v ∈ Λ. Therefore, {IΛ,Λ} ⊆ I. Hence, {I,Λ} ⊆ I.
Let K = I + Iξ. Then K · Λ ⊆ K and K · Λξ ⊆ K + {I,Λ} ⊆ K. Hence, K is an ideal of J(Λ, { , }).

Since J(Λ, { , }) is simple; therefore, either K = 0 or K = J(Λ, { , }). From here we infer that either I = 0
or I = Λ.
Let Λ be a simple differential algebra under the derivations in D . Assume that I is an ideal of

J(Λ, { , }). Then I = K + Lξ, where K and L are some ideals of Λ. Furthermore,
{KΛ,Λ} ⊆ (K · Λξ) · Λξ ⊆ Lξ · Λξ ⊆ K.

Hence, K is an ideal of Λ invariant under the derivations in D . Then either 1 ∈ K or K = 0. We may
assume that K = 0. Therefore, I = Lξ, and

{L,Λ} ⊆ Lξ · Λξ ⊆ K = 0.
It follows from here that L is an ideal of Λ, which is invariant under the derivations in D . Then either
1 ∈ L or L = 0. If 1 ∈ L then L = Λ. Hence, {Λ,Λ} = 0. Therefore, if {Λ,Λ} �= 0 then 1 �∈ L, whence
L = 0 and I = 0.
The lemma is proved. �
Lemma 4. Let Λ = Λ0 + Λ1 be a unital Z2-graded associative commutative algebra, and let D be

a set of even derivations of Λ. Assume that Λ is a simple differential algebra as a Z2-graded algebra under
the derivations in D . Then either Λ1 = 0 or Λ0 = Λ1Λ1. Furthermore, either Λ is a simple differential
algebra under the derivations in D or Λ = Λ0+sΛ0, where s ∈ Λ1, s2 = 1, and D(s) = 0 for every D ∈ D .

Proof. Without loss of generality we may assume that D = {D}. Note that Λ1Λ1 + Λ1 is a Z2-
graded ideal of Λ, which is invariant under D. If Λ1Λ1 = 0 then Λ1 is a Z2-graded ideal of Λ, which is
invariant under D. Therefore, either Λ1 = 0 or Λ0 = Λ1Λ1.
Let I be a proper ideal of Λ invariant under D. We may assume that Λ1 �= 0. Put I0 = I ∩Λ0. Then

I0+ I0Λ1 is a Z2-graded ideal of Λ invariant under D. Therefore, either 1 ∈ I0 or I0 = 0. Hence, we may
assume that I0 = I∩Λ0 = 0. Put I1 = I∩Λ1. Then I1Λ1+I1 is a Z2-graded ideal of Λ invariant under D.
Thus, either I1 = Λ1 or I1 = 0. Since I1Λ1 + I1 ⊆ I; therefore, we may assume that I1 = I ∩ Λ1 = 0.
Let

I0 = {a0 ∈ Λ0 | ∃a1 ∈ Λ1, a0 + a1 ∈ I}.
Then I0 is an ideal of Λ0, and D(I0) ⊆ I0. Hence, I0 + I0Λ1 is a Z2-graded ideal of Λ invariant under D.
Therefore, either I0 = 0 or I0 = Λ0. If I0 = 0 then I ⊆ I ∩ Λ1 = 0.
Hence, I0 = Λ0. Then 1 + s ∈ I for some s ∈ Λ1, whence

(1 + s)(1− s) = 1− s2 ∈ I ∩ Λ0 = 0.
Consequently, s2 = 1 and Λ1 = sΛ0. Furthermore,

D(s) = D(1 + s) ∈ I ∩ Λ1 = 0.
The lemma is proved. �
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Lemma 5. Let Λ = Λ0+Λ1 be a unital Z2-graded associative commutative algebra and Λ0 = Λ1Λ1.
Then Λ1 is a finitely generated projective Λ0-module of rank 1.

Proof. Let Λ0 = Λ1Λ1. Then 1 =
∑
i = xiyi, where xi, yi ∈ Λ1. Hence,

Λ1 = Λ0x1 + · · ·+ Λ0xn;
i.e., Λ1 is a finitely generated Λ0-module. Consider the Λ0-module Λ1 ⊗Λ0 Λ1. Then x1⊗y1+ · · ·+xn⊗yn
generates the Λ0-module Λ1 ⊗Λ0 Λ1. Indeed,

u⊗ v = ((x1y1 + · · ·+ xnyn)u⊗ v) = x1y1u⊗ v + · · ·+ xnynu⊗ v
= x0 ⊗ y1uv + · · ·+ xn ⊗ ynuv = uv(x1 ⊗ y1 + · · ·+ xn ⊗ yn)

for all u, v ∈ Λ1. Then the mapping ∑
i

ui ⊗ vi �→
∑
i

uivi

is an isomorphism of Λ0-modules Λ1 ⊗Λ0 Λ1 and Λ0. Therefore, Λ1 is a projective Λ0-module of rank 1.
The lemma is proved. �
A generalized Leibniz bracket { , } on a superalgebra Γ = Γ0 + Γ1 is a generalized Poisson bracket

(see [29]) provided that

{a, {b, c}}+ (−1)|a|(|b|+|c|){b, {c, a}}+ (−1)|c|(|a|+|b|){c, {a, b}} = 0
for all a, b, c ∈ Γ0 ∪ Γ1; i.e., (Γ, { , }) is a Lie superalgebra. Furthermore, if D = 0 then { , } is a Poisson
bracket.
A superalgebra J = J0 + J1 is a Jordan superalgebra provided that its Grassmann envelope G(J) is

a Jordan algebra; i.e.,
xy = yx, (x2y)x = x2(yx)

in G(J).
If the Kantor double J(Γ, { , }), constructed by a bracket { , }, is a Jordan superalgebra then { , } is

a Jordan bracket.
A bracket { , } on a unital superalgebra Γ = Γ0 +Γ1 is Jordan (see [1, 2]) if and only if the following

hold:
{a, bc} = {a, b}c+ (−1)|a||b|b{a, c} − {a, 1}bc. (6)

{a, b}{c, 1}+ (−1)|a||b|+|a||c|{b, c}{a, 1}+ (−1)|a||c|+|b||c|{c, a}{b, 1}
= {a, {b, c}}+ (−1)|a||b|+|a||c|{b, {c, a}}+ (−1)|a||c|+|b||c|{c, {a, b}}, (7)

{{d, d}, d} = −{d, d}{d, 1}, (8)

where a, b, c ∈ Γ0 ∪ Γ1, d ∈ Γ1.
Thus, the bracket is Jordan if J(a, b, c) = S(a, b, c) for all a, b, c ∈ Γ0 ∪ Γ1.
The mapping D : a �→ {a, 1} is a derivation of Γ by (6). Then (6) is equivalent to

{a, bc} = {a, b}c+ (−1)|a||b|b{a, c} −D(a)bc; (9)

i.e., { , } is a generalized Leibniz bracket.
If { , } is a Jordan bracket then J(1, a, b) = S(1, a, b) = 0 for all a, b ∈ Γ. Hence, D is a derivation

of (Γ, { , }).
A Jordan bracket { , } is a bracket of vector type provided that {a, b} = D(a)b−aD(b) for all a, b ∈ Γ.

Denote a Jordan superalgebra of a bracket of vector type by J(Γ, D).
A Jordan bracket is a bracket of Poisson type provided that D(a) = 0 for every a ∈ Γ.
Let J = A+M be a Jordan superalgebra with even part A and odd part M . Let B = B0 + B1 be

an associative superalgebra with a product ∗. Defining on B the supersymmetric product
a ◦s b = 1

2
(a ∗ b+ (−1)|a||b|b ∗ a), a, b ∈ B0 ∪B1,

we obtain a Jordan superalgebra B+. A Jordan superalgebra J is special provided that J is embedded
(as a Z2-graded algebra) into a superalgebra B

+ for a suitable associative superalgebra B. A superalge-
bra J is exceptional if J is not special.
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§ 2. The Generalized Leibniz Brackets on the
Coordinate Algebra of the n-Dimensional Sphere

Let F [x0, . . . , xn] be the polynomial algebra in the variables x0, x1, . . . , xn. Consider the polynomial
Sn(x0, . . . , xn) = x

2
0 + · · ·+ x2n − 1. Let

Λ(n) = F [x0, . . . , xn]/(S
n(x0, . . . , xn))

be the quotient algebra of F [x0, . . . , xn] by the ideal (S
n(x0, . . . , xn)) generated by S

n(x0, . . . , xn).
Identify the images of x0, x1, . . . , xn under the canonical homomorphism F [x0, . . . , xn] �→ Λ(n) with
x0, x1, . . . , xn, respectively. Let Λ(n)0 be a subalgebra of Λ(n) generated by the monomials of even
degree, and let Λ(n)1 = Λ(n)0x0 + · · ·+ Λ(n)0xn. Then Λ(n) = Λ(n)0 + Λ(n)1 is a Z2-graded algebra.
Denote the product of a and b in Λ(n) by ab. The algebra Λ(n) lacks zero divisors (for example, see [30]).
By Lemma 5, Λ(n)1 is a projective Λ(n)0-module of rank 1.

Lemma 6. Let { , } be a generalized Leibniz bracket on Λ(1). Then { , } is a Jordan bracket of
vector type with respect to the derivation D : a �→ {a, 1}. If the characteristic of F is zero then the
Jordan superalgebra J(Λ(1)0,Λ(1)1, { , }) is simple with D = x1 ∂∂x0 −x0 ∂∂x1 . If the equation t2+1 = 0 is
unsolvable in F then the Λ(1)0-module Λ(1)1 is not one-generated, i.e., Λ(1)1 is not isomorphic to Λ(n)0.

Proof. Let { , } be a generalized Leibniz bracket on Λ(1). Put x = x0 and y = x1. Then
D(a) = {a, 1} = {a, x2 + y2} = 2{a, x}x+ 2{a, y}y −D(a)

for every a ∈ Λ(1). Hence,
D(a) = {a, x}x+ {a, y}y.

Thus, {
D(x) = {x, y}y,
D(y) = {y, x}x,

whence
{x, y} = {x, y}x2 + {x, y}y2 = D(x)y − xD(y).

Then { , } is a bracket of vector type by (1).
Let D = y ∂∂x − x ∂∂y . Then D is an even derivation of the Z2-graded algebra Λ(1). Therefore, the

bracket
{a, b} = D(a)b− aD(b)

is consistent with the Z2-grading of Λ(1) = Λ(1)0+Λ(1)1. Put D11 = x
2D, D22 = y

2D, and D12 = xyD.
The equalities

{ax, bx} = D11(a)b− aD11(b), {ay, by} = D22(a)b− aD22(b),
{ax, by} = ab+D12(a)b− aD12(b)

hold, where a, b ∈ Λ(1)0. If the characteristic of F is zero then J(Λ(1)0,Λ(1)1, { , }) is simple as it was
shown in [19, 20]. It was also shown there that the Λ(1)0-module Λ(1)1 is not generated by one element
if t2 + 1 = 0 is unsolvable in F . �
Lemma 7. Each Jordan bracket on Λ(2) is a generalized Poisson bracket. Let { , } be a generalized

Leibniz bracket on Λ(2). Then the following are equivalent:
(i) { , } is a Jordan bracket;
(ii) D : a �→ {a, 1} is a derivation of (Λ(2), { , });
(iii) J(1, xi, xj) = 0 for some i �= j.
Proof. Let { , } be a generalized Leibniz bracket on Λ(2). Put x = x0, y = x1, and z = x2. By

Lemma 1
S(1, x, y) = S(x2 + y2 + z2, x, y)

= 2S(x, x, y)x+ 2S(y, x, y)y + 2S(z, x, y)z = 2S(x, y, z)x.
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Since S(1, x, y) = 0, we have S(x, y, z)x = 0. Analogously, S(x, y, z)y = S(x, y, z)z = 0. Thus,

S(x, y, z) = S(x, y, z)x2 + S(x, y, z)y2 + S(x, y, z)z2 = 0.

Hence, S(a, b, c) = 0 for all a, b, c ∈ Λ(2) by Lemma 1.
It follows from here that each Jordan bracket on Λ(2) is a generalized Poisson bracket, i.e., J(a, b, c)

= 0 for all a, b, c ∈ Λ(2).
Assume (i). Then J(1, a, b) = S(1, a, b) for all a, b ∈ Λ(2). Since S(1, a, b) = 0, we have J(1, a, b) = 0.

So, (ii) holds.
Clearly, (ii) implies (iii).
Show that

J(x, y, z)x = J(1, y, z) = −D({y, z}) + {y,D(z)}+ {D(y), z}.
By Lemma 1 we get

J(1, y, z) = J(x2 + y2 + z2, y, z) = 2xJ(x, y, z)− J(1, y, z)(x2 + y2 + z2).
Hence, J(1, y, z) = xJ(x, y, z). Analogously, J(1, x, y) = zJ(x, y, z), and J(1, x, z) = −yJ(x, y, z).
Assume (iii). Consider the case J(1, y, z) = 0. Then J(x, y, z)x = 0. Since Λ(2) lacks zero divisors,

J(x, y, z) = 0. Thus, J(a, b, c) = 0 for all a, b, c ∈ Λ(2) by Lemma 1. Thus, { , } is a Jordan bracket
on Λ(2); i.e., (i) holds. �
Corollary 1. Each solution u1, u2, u3 to the system⎧⎨

⎩
u1y + u2z = 0,

u1x− u3z = 0,
u2x+ u3y = 0

in Λ(2) defines a Jordan bracket of Poisson type on Λ(2). In particular, each Leibniz bracket on Λ(2) is
a Jordan bracket of Poisson type. Each Jordan bracket on Λ(2) is a sum of Jordan brackets of vector
and Poisson types.

Proof. Let { , } be a Jordan bracket on Λ(2). Then (6) holds, and D : a �→ {a, 1} is a derivation
of Λ(2). Define the new bracket on Λ(2) by putting

〈a, b〉 = {a, b} −D(a)b+ aD(b).
Then 〈 , 〉 is a Leibniz bracket, and 〈 , 〉 is a Jordan bracket of Poisson type by Lemma 7. It follows from
here that { , } is a sum of a bracket of vector type and a Jordan bracket of Poisson type. �
Theorem 2. The algebra Λ(n) may be equipped with a Jordan bracket { , }n for every n ≥ 1, which

is consistent with the Z2-grading of Λ(n) = Λ(n)0 + Λ(n)1 and such that the following hold:
1. If n = 1 then {a, b}1 = D(a)b− aD(b) for a, b ∈ Λ(1), where D = x1 ∂∂x0 − x0 ∂∂x1 .
2. Let k be even, k ≤ n, and z(k) =∑ki=0(−1)ixi. Then {z(k), xi}n = 0 for i ≤ k.
3. The element z(2) = x0 − x1 + x2 belongs to the center of the Lie algebra (Λ(2), { , }2).
4. I = z(2)Λ(2)1 + z(2)Λ(2)0ξ is an ideal of J(Λ(2)0,Λ(2)1, { , }2).
Proof. Using the definition of Jordan bracket, put {a, b}n = −{b, a}n for all a, b ∈ Λ(n). Define

the bracket { , }n and a derivation D on the generators 1, x0, . . . , xn as follows:
{xi, xj}n = 1, 0 ≤ i < j ≤ n,

D(xi)n = {xi, 1}n = −
i−1∑
k=0

xk +
n∑

k=i+1

xk, i = 0, . . . , n.

Using (1), { , }n may be extended to Λ(n). The bracket { , }n is correctly defined.
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Show that (7) holds. By Lemma 1, it suffices to verify (7) for the generators of Λ(n). Let 0 ≤ i <
j < k ≤ n. Then

J(xi, xj , xk) = {xi, 1}n − {xj , 1}n + {xk, 1}n = D(xi)−D(xj) +D(xk).
On the other hand,

S(xi, xj , xk) = D(xk) +D(xi)−D(xj).
Hence, J(xi, xj , xk) = S(xi, xj , xk). If i = j then

J(xi, xi, xk) = S(xi, xi, xk) = 0.

By Lemma 1

J(1, xj , xk) = J

( n∑
i=0

x2i , xj , xk

)
=

n∑
i=0

2xiJ(xi, xj , xk)− J(1, xj , xk).

Consequently, J(1, xj , xk) =
∑n
i=0 xiJ(xi, xj , xk). By the above,

J(xi, xj , xk) = S(xi, xj , xk).

Hence,

J(1, xj , xk) =
n∑
i=0

xiJ(xi, xj , xk) =
n∑
i=0

xiS(xi, xj , xk) =
1

2
S(1, xj , xk)

by Lemma 1. Since S(1, xj , xk) = 0, we have J(1, xj , xk) = 0.
Thus, (7) holds, i.e., { , }n is a Jordan bracket. Clearly, { , }n is consistent with the Z2-grading

of Λ(n).
Item 1 holds by Lemma 6.
Prove Item 2: Let i ≤ k. Then

{z(k), xi}n =
i−1∑
j=0

(−1)j +
k∑

j=i+1

−(−1)j .

If i is even then
∑i−1
j=0(−1)j = 0, and

∑k
j=i+1−(−1)j = 0. Then {z(k), xi}n = 0. If i is odd then∑i−1

j=0(−1)j = 1, and
∑k
j=i+1−(−1)j = −1. Then {z(k), xi}n = 0.

Prove Item 3: By Lemma 7, (Λ(2), { , }2) is a Lie algebra. By Item 2, D(z(2)) = {z(2), 1}2 = 0 and
{z(2), xi}2 = 0, where i = 0, 1, 2. Thus, ϕ : a ∈ Λ(2) �→ {z(2), a}2 is a derivation of Λ(2) by (1). Since
ϕ(1) = ϕ(xi) = 0 for i = 0, 1, 2; therefore, ϕ = 0. Hence, {z(2),Λ(2)}2 = 0, i.e., z(2) belongs to the
center of the Lie algebra (Λ(2), { , }2).
Prove Item 4: Let I = z(2)Λ(2)1 + z(2)Λ(2)0ξ. By the definition of product in J(Λ(2)0,Λ(2)1, { , }2)

we get
I · Λ(2)0 ⊆ z(2)Λ(2)1Λ(2)0 + (z(2)Λ(2)0Λ(2)0)ξ ⊆ I.

Analogously,
z(2)Λ(2)1 · Λ(2)1ξ ⊆ (z(2)Λ(2)1Λ(2)1)ξ ⊆ z(2)Λ(2)0ξ ⊆ I.

By (1) and Item 3

Λ(2)1ξ · z(2)Λ(2)0ξ ⊆ {Λ(2)1, z(2)Λ(2)0}2
⊆ z(2){Λ(2)1,Λ(2)0}2 +D(Λ(2)1)z(2)Λ(2)0 ⊆ z(2))Λ(2)1 ⊆ I.

Hence, I is an ideal of J(Λ(2)0,Λ(2)1, { , }2).
Assume that I = J(Λ(2)0,Λ(2)1, { , }2). Then z(2)t = (x0 − x1 + x2)t = 1 for some t ∈ Λ(2)1. Since

Λ(2) = F [x0, x1]⊕ x2F [x0, x1]; therefore, t = f + x2g, where f, g ∈ F [x0, x1], whence
(x0 − x1)f +

(
1− x20 − x21

)
g = 1, f + (x0 − x1)g = 0.

Hence, ((
1− x20 − x21

)− (x0 − x1)2)g = 1.
It follows from here that 1 − 2x20 − 2x21 + 2x0x1 is invertible in F [x0, x1]. Thus, I is a proper ideal of
J(Λ(2)0,Λ(2)1, { , }2). �
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Lemma 8. The Jordan superalgebra J(Λ(2)0,Λ(2)1, { , }2) is exceptional. In particular, J(Λ(2), { , }2)
is an exceptional Jordan superalgebra.

Proof. Put x = x0, y = x1, z = x2, and u = x− y + z. Define the bracket 〈 , 〉 on Λ(2) by putting
〈a, b〉 = {a, b}2 − D(a)b + aD(b), where D is a derivation of { , }2. Then 〈Λ(2)0,Λ(2)0〉 ⊆ Λ(2)0, and
〈a, bc〉 = b〈a, c〉+ 〈a, b〉c for a, b, c ∈ Λ(2).
Let J(Λ(2)0,Λ(2)1, { , }2) be a special superalgebra. Then the subsuperalgebra J = Λ(2)0+(Λ(2)0u)ξ

is special, and J is a superalgebra of the Jordan bracket {a, b} = {au, bu}2 on Λ(2)0. By Theorem 2,
{Λ(2), u}2 = 0. Thus, { , } is a bracket of Poisson type. By [7], {{a, b}, c} = 0 for a, b, c ∈ Λ(2)0. Since
{Λ(2), u}2 = 0; therefore,

{a, b} = {au, bu}2 = {a, b}2u2 −D(a)bu2 + aD(b)u2 = 〈a, b〉u2

for a, b ∈ Λ(2)0 by (1). Hence,
0 = {{a, b}, c} = 〈〈a, b〉u2, c〉u2

= 〈〈a, b〉, c〉u4 + 〈a, b〉〈u2, c〉u2 = 〈〈a, b〉, c〉u4 + 2〈a, b〉D(c)u4

for a, b, c ∈ Λ(2)0. Thus, 〈〈a, b〉, c〉 = −2〈a, b〉D(c) for a, b, c ∈ Λ(2)0.
Let a = x2, b = y2, and c = z2. Then

〈a, b〉 = 4xy〈x, y〉 = 4xy(1− (y + z)y + x(−x+ z)) = 4xyzu.
So,

〈〈a, b〉, c〉 = 〈4xyzu, z2〉 = 8z2〈xyu, z〉 = 8z2u(x〈y, z〉+ 〈x, z〉y) + 8xyz2〈u, z〉
= 8z2u(x(1− (−x+ z)z + y(−x− y))) + y(1− (y + z)z + x(−x− y)) + 8xyz2uD(z)

= 8z2u2(x2 − y2)− 8xyz2u(x+ y).
On the other hand, 2〈a, b〉D(c) = −16xyz2u(x+ y). Hence,

8z2u2(x2 − y2)− 8xyz2u(x+ y) = 16xyz2u(x+ y).
Since Λ(2) has no zero divisors, u(x− y) = 3xy; a contradiction. Consequently, J = Λ(2)0+(Λ(2)0u)ξ is
an exceptional superalgebra.
Thus, J(Λ(2)0,Λ(2)1, { , }2) is an exceptional superalgebra. Since J(Λ(2)0,Λ(2)1, { , }2) is a subsu-

peralgebra of J(Λ(2), { , }2); therefore, J(Λ(2), { , }2) is an exceptional superalgebra. �
Lemma 9. The algebra Λ(n) may be equipped with a Leibniz bracket which is not Jordan if n ≥ 3.
Proof. Consider the Jordan bracket on Λ(n) which was defined in Theorem 2. Namely,

{xi, xi}n = 0, {xi, xj}n = 1, 0 ≤ i < j ≤ n,

D(xi)n = {xi, 1}n = −
i−1∑
k=0

xk +
n∑

k=i+1

xk, i = 0, . . . , n.

Let J(a, b, c)n be the Jacobian of { , }n, and let S(a, b, c)n be the function S of the bracket { , }n, which
is defined by (2).
Define the Leibniz bracket on Λ(n) by

〈a, b〉 = {a, b} −D(a)b+D(b)a.
Denote by J(a, b, c)〈,〉 and S(a, b, c)〈,〉 the Jacobian and the function S of 〈 , 〉. Since { , }n is a Jordan
bracket then J(1, a, b)n = 0 for all a, b ∈ Λ(n). By Lemma 2

J(a, b, c)〈,〉 = J(a, b, c)n + S(a, b, c)n.
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Hence,

J(xi, xj , xk)〈,〉 = 2(D(xi)−D(xj) +D(xk))
with 0 ≤ i < j < k ≤ n. Inserting the values D(xi), D(xj), and D(xk), we get

D(xi)−D(xj) +D(xk) = −
i−1∑
l=0

xl +
n∑

l=i+1

xl +

j−1∑
l=0

xl −
n∑

l=j+1

xl −
k−1∑
l=0

xl +
n∑

l=k+1

xl

= −
i−1∑
l=0

xl +

j−1∑
l=i+1

xl −
k−1∑
l=j+1

xl +
n∑

l=k+1

xl.

Hence, J(xi, xj , xk)〈,〉 �= 0.
On the other hand, 〈a, 1〉 = 0 for a ∈ Λ(n); i.e., S(xi, xj , xk)〈,〉 = 0. Thus, J(xi, xj , xk)〈,〉 �=

S(xi, xj , xk)〈,〉, and 〈, 〉 is not a Jordan bracket. �

§ 3. The Simple Abelian Jordan Superalgebras Defined by the n-Sphere
A superalgebra J = A + M is abelian provided that A is an associative algebra, and M is an

associative A-module. In [22] the following assertion was proved:
Let J = A+M be a simple abelian Jordan superalgebra not isomorphic to a superalgebra of a bilinear

form. Put Dx,y(a) = (ax)y − a(xy), where a ∈ A and x, y ∈ M . Then A is a simple differential algebra
with respect to the set of derivations Δ = {Dx,y | x, y ∈M} of A. Moreover, J is a unital superalgebra,
and M is a finitely generated projective A-module of rank 1.
The following theorem was proved in [18]:

Theorem 3. Let J = A +M be a unital simple special Jordan superalgebra not isomorphic to
a superalgebra of a bilinear form. Then there exist x1, . . . , xn ∈M such that M = Ax1 + · · ·+Axn, and
the product in M is given by

axi · bxj = γijab+Dij(a)b− aDji(b), i, j = 1, . . . , n,
where γij ∈ A, and Dij is a derivation of A. The algebra A is a simple differential algebra with respect to
the set of derivations Δ = {Dij | i, j = 1, . . . , n}. Moreover, J is a subalgebra of the Jordan superalgebra
of vector type J(Γ, D).

In [18–21], some examples were constructed of unital simple special abelian Jordan superalgebras
whose odd part is generated as a module by two elements and is not generated by one element. Thus,
the constructed examples of superalgebras are not isomorphic to a superalgebra of vector type J(Γ, D).
In this section, we construct some examples of unital simple exceptional abelian Jordan superalgebras

J = A+M whose even part has an arbitrary number of generators as an A-module.

Theorem 4. Let F be a field of characteristic 0, and let n be odd. Then the Jordan superalgebra
J(Λ(n), { , }n) is simple. In particular, J(Λ(n)0,Λ(n)1, { , }n) is a simple superalgebra.
Proof. Denote { , }n by { , }. By Theorem 2

{xi, xi} = 0, {xi, xj} = 1, 0 ≤ i < j ≤ n,

D(xi) = −
i−1∑
j=0

xj +

n∑
j+1

xj , i = 0, . . . , n.

Let Du,v(a) = {au, v} − a{u, v} and D = {Du,v | u, v ∈ Λ(n)}. By Lemma 3, it suffices to prove that
Λ(n) is a simple differential algebra with respect to the derivations in D .
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Assume that Λ(n) is not a simple differential algebra. Then the set of ideals of Λ(n), which are
invariant under the derivations in D , has a maximal ideal I. By [31], I is a simple ideal. Since Du,v(I) ∈ I
for all u, v ∈ Λ(n), we have

{I, u} ⊆ D1,u(I) + I{1, u} ⊆ I.
Hence, {I,Λ(n)} ⊆ I. Note that xi �∈ I, since otherwise {xi, xj} = ±1 ∈ I and I = Λ(n).
Since Λ(n) = F [x0, . . . , xn−1] + xnF [x0, . . . , xn−1] and Λ(n) has no zero divisors, F [x0, , . . . , xn−1] ∩

I �= 0.
Take u ∈ Λ(n). The mapping d : a �→ {u, a} −D(u)a is a derivation of Λ(n) by (1). Then

d
(
xi00 . . . x

in−1
n−1
)
=
n−1∑
j=0

d
(
x
ij
j

)
xi00 . . . x

ij−1
j−1 x

ij+1
j+1 . . . x

in−1
n−1

=
n−1∑
j=0

ijd(xj)x
i0
0 . . . x

ij−1
j−1 x

ij−1
j x

ij+1
j+1 . . . x

in−1
n−1 .

Hence,

{
u, xi00 . . . x

in−1
n−1
}
=

n−1∑
j=0

ij{u, xj}xi00 . . . xij−1j−1 x
ij−1
j x

ij+1
j+1 . . . x

in−1
n−1

−D(u)
(n−1∑
j=0

ij − 1
)
xi00 . . . x

in−1
n−1 .

Take f ∈ F [x0, x1, . . . , xn−1] ∩ I, f �= 0. Then f = fk + fk−1 + · · · + f0, where every nonzero fi is
a homogeneous polynomial in F [x0, x1, . . . , xn−1] of degree i, i = 0, . . . , k. Let the minimal degree of f
be k.
Assume that k > 0. Let z(n− 1) =∑n−1i=0 (−1)ixi. By Item 2 of Theorem 2, we have {z(n− 1), xi} =

{z(n− 1), xi}n = 0, i = 0, . . . , n− 1. Then

D(z(n− 1)) = {z(n− 1), 1} =
n∑
i=0

{z(n− 1), xi}xi = {z(n− 1), xn}xn = xn.

Hence,

{
z(n− 1), xi00 . . . xin−1n−1

}
= −xn

(n−1∑
j=0

ij − 1
)
xi00 . . . x

in−1
n−1 .

Thus, {z(n− 1), fi} = −(i− 1)xnfi, where i = 0, . . . , k, whence

{z(n− 1), f} = {z(n− 1), fk + fk−1 + · · ·+ f0} = (−(k − 1)fk − (k − 2)fk−1 + · · ·+ f0)xn.

Since {z(n−1), f} ∈ I, I is a simple ideal and xn �∈ I; therefore, g = −(k−1)fk−(k−2)fk−1+· · ·+f0 ∈ I.
Then

(k − 1)f + g = fk−1 + 2fk−2 + · · ·+ kf0 ∈ F [x0, x1, . . . , xn−1] ∩ I
and the degree of (k−1)f + g is less than k. By the choice of f , we may assume that f is a homogeneous
polynomial of degree k.
Let

f =
∑

i0+···+in−1=k
αi0...in−1x

i0
0 . . . x

in−1
n−1 ,
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where αi0...in−1 ∈ F . Let xj be the variable in f with the greatest index. Without loss of generality we
may assume that xj = xn−1. Put u = xn−1 − xn. Then {u, xi} = 0, i = 0, . . . , n− 2, and {u, xn−1} = 1.
Since f ∈ I, {u, f} ∈ I and

{u, f} =
∑

i0+···+(in−1−1)=k−1
in−1αi0,...,in−1x

i0
0 . . . x

in−2
n−2 x

in−1−1
n−1 − (k − 1)fD(u);

therefore, ∑
i0+···+(in−1−1)=k−1

in−1αi0,...,in−1x
i0
0 . . . x

in−2
n−2 x

in−1−1
n−1 ∈ I.

By the choice of f , we get ∑
i0+···+(in−1−1)=k−1

in−1αi0,...,in−1x
i0
0 . . . x

in−2
n−2 x

in−1−1
n−1 = 0,

whence ∑
i0+···+in−2=k−in−1

αi0,...,in−1x
i0
0 . . . x

in−2
n−2 = 0

if in−1 �= 0. Thus, xn−1 does not appear in f ; a contradiction. Hence, k = 0, f ∈ F , and I = Λ(n).
Thus, the superalgebra J(Λ(n), { , }n) is simple. By Theorem 1, we infer that J(Λ(n)0,Λ(n)1, { , }n) is

a simple superalgebra. �
Let X = Sn × Am be the Cartesian product of the n-dimensional sphere and the m-dimensional

affine space. Then X is an irreducible variety. So, the coordinate algebra F [X] = Λ(n,m) of X has no
zero divisors. Furthermore,

Λ(n,m) = F [x0, x1, . . . , xn, y1, . . . , ym]/(S
n(x0, . . . , xn))

is the quotient of F [x0, x1, . . . , xn, y1, . . . , ym] by S
n(x0, . . . , xn)F [x0, x1, . . . , xn, y1, . . . , ym]. So, Λ(n,m)

= Λ(n,m)0 + Λ(n,m)1 is a Z2-graded algebra, where Λ(n,m)0 is a subalgebra of Λ(n,m) generated by
the monomials of even degree, and Λ(n,m)1 = Λ(n,m)0x0 + · · ·+Λ(n,m)0xn. By Lemma 5, Λ(n,m)1 is
a projective Λ(n,m)0-module of rank 1. Note that Λ(n) is a subalgebra of Λ(n,m).

Lemma 10. The algebra Λ(n,m)may be equipped with a Jordan bracket { , }n,m, which is consistent
with the Z2-grading of Λ(n,m) = Λ(n,m)0 + Λ(n,m)1 for all n ≥ 1 and m. Moreover, (Λ(n), { , }n) is
a subalgebra of (Λ(n,m), { , }n,m).
Proof. Define the bracket { , }n,m on Λ(n,m) by putting {a, b}n,m = {a, b}n on Λ(n), and by

{xi, yj} = 1, {yj , yj} = 0, {yj , yk} = 1, j < k,
D(yj) = {yj , 1} = −(x0 + · · ·+ xn), i = 0, . . . , n, j, k = 1, . . . ,m,

at the generators y1, . . . , ym.
Using (1), { , }n,m may be extended to Λ(n,m). The bracket { , }n,m is given correctly and is con-

sistent with the Z2-grading of Λ(n,m) = Λ(n,m)0 + Λ(n,m)1. Clearly, (Λ(n), { , }n) is a subalgebra
of (Λ(n,m), { , }n,m).
Show that (7) holds. By Lemma 1, it suffices to verify (7) for the generators of Λ(n,m). By

Theorem 2, J(a, b, c) = S(a, b, c) for a, b, c ∈ Λ(n).
Let 0 ≤ i < j ≤ n and 1 ≤ k ≤ m. Then

J(xi, xj , yk) = {xi, 1}n − {xj , 1}n + {yk, 1}n = D(xi)−D(xj) +D(yk).
However, S(xi, xj , yk) = D(yk) + D(xi) − D(xj). Hence, J(xi, xj , yk) = S(xi, xj , yk). Analogously,
J(xi, yj , yk) = S(xi, yj , yk) and J(yj , yk, yl) = S(yj , yk, yl) for 0 ≤ i ≤ n and 1 ≤ j < k < l ≤ m.
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By Lemma 1

J(1, a, b) = J

( n∑
i=0

x2i , a, b

)
=

n∑
i=0

2xiJ(xi, a, b)− J(1, a, b)

for a, b ∈ Λ(n,m). Thus, J(1, a, b) =∑ni=0 xiJ(xi, a, b). Let a, b ∈ {x0, . . . , xn, y1, . . . , ym}. Then by the
above J(xi, a, b) = S(xi, a, b), i = 0, . . . , n. Hence,

J(1, a, b) =
n∑
i=0

xiJ(xi, a, b) =
n∑
i=0

xiS(xi, a, b) =
1

2
S(1, a, b)

by Lemma 1. Since S(1, a, b) = 0, we have J(1, a, b) = 0.
Thus, (7) holds, i.e., { , }n,m is a Jordan bracket. �
Theorem 5. Let F be a field of characteristic 0, and let n be even. Then the Jordan superalgebra

J(Λ(n, 1), { , }n,1) is simple. In particular, J(Λ(n, 1)0,Λ(n, 1)1, { , }n,1) is a simple superalgebra. If n = 2
then J(Λ(n, 1)0,Λ(n, 1)1, { , }n,1) is an exceptional superalgebra.
Proof. Denote the bracket { , }n,1 by { , }. By Lemma 10

{xi, xj} = 1, i < j, {xi, y1} = 1, i, j = 0, . . . , n,

D(xi) = −
i−1∑
j=0

xj +

n∑
j+1

xj , i = 0, . . . , n,D(y1) = −(x0 + · · ·+ xn).

Repeating the arguments of Theorem 4, we may assume that Λ(n, 1) has a simple ideal I such that
{I,Λ(n, 1)} ⊆ I and xi �∈ I.
Since Λ(n, 1) = F [x0, . . . , xn−1, y1]+xnF [x0, . . . , xn−1, y1] and Λ(n, 1) has no zero divisors, F [x0, , . . . ,

xn−1, y1] ∩ I �= 0.
Let z(n) =

∑n
i=0(−1)ixi. By Item 2 of Theorem 2, we have {z(n), a} = {z(n), a}n = 0 for every

a ∈ Λ(n). Hence, the mapping ϕ : Λ(n, 1) �→ Λ(n, 1), defined by the rule ϕ(a) = {z(n), a}, is a derivation.
Furthermore, φ(I) = {z(n), I} ⊆ I.
Let f ∈ F [x0, . . . , xn−1, y1] ∩ I and f �= 0. Then

f = f0y
k
1 + f1y

k−1
1 + · · ·+ fk,

where fi ∈ F [x0, . . . , xn−1], i = 0, . . . , k. Assume that f is a polynomial of minimal degree k ≥ 1. Then

φ(f) =
(
kf0y

k−1
1 + (k − 1)f1yk−21 + · · ·+ fk−1

)
φ(y1) ∈ I,

because of φ(fi) = 0, i = 0, . . . , k. Since I is a simple ideal, we get ϕ(y1) ∈ I by the choice of f . Hence,
I = Λ(n, 1), because of ϕ(y1) = {z(n), y1} = 1. Thus, f ∈ F [x0, . . . , xn−1] ∩ I.
Let f ∈ F [x0, x1, . . . , xn−1] ∩ I, f �= 0. Then f = fk + fk−1 + · · · + f0, where each nonzero fi is

a homogeneous polynomial in F [x0, x1, . . . , xn−1] of degree i, i = 0, . . . , k. Let f be of minimal degree k.
Assume that k > 0. Let u = xn − y1. Then {u, xi} = 0, i = 0 . . . , n− 1, and D(u) = xn. Repeating

the arguments of Theorem 4, we get

{
u, xi00 . . . x

in−1
n−1
}
= −
(n−1∑
j=0

ij − 1
)
D(u)xi00 . . . x

in−1
n−1 = −

(n−1∑
j=0

ij − 1
)
xnx

i0
0 . . . x

in−1
n−1 .

Thus, {u, fi} = −(i− 1)xnfi, where i = 0, . . . , k, whence
{u, f} = (−(k − 1)fk − (k − 2)fk−1 + · · ·+ f0)xn.
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Since {u, f} ∈ I, I is the simple ideal, and xn �∈ I; therefore,
g = −(k − 1)fk − (k − 2)fk−1 + · · ·+ f0 ∈ F [x0, x1, . . . , xn−1] ∩ I.

Then (k− 1)f + g ∈ I, and the degree of (k− 1)f + g is less than k. By the choice of f , we may assume
that f is a homogeneous polynomial of degree k.
Repeating the arguments of Theorem 4, we get k = 0, f ∈ F , and I = Λ(n, 1).
Thus, the superalgebra J(Λ(n, 1), { , }n,1) is simple. Then J(Λ(n, 1)0,Λ(n, 1)1, { , }n,1) is a simple

superalgebra by Theorem 1. By Lemmas 8 and 10, J(Λ(2, 1)0,Λ(2, 1)1, { , }2,1) is an exceptional superal-
gebra. �
The Λ(n)0-module Λ(n)1 of the Z2-graded algebra Λ(n) is equal to Λ(n)0x0+· · ·+Λ(n)0xn; i.e., Λ(n)1

is generated by n + 1 elements. The question arises of the number of generators of Λ(n)1. To this end,
we have

Theorem 6 [32]. Let R be the field of reals, Λ(n) = R[x0, . . . , xn]/(S
n(x0, . . . , xn)), let Λ(n)0 be the

subalgebra of Λ(n) generated by the monomials of even degree, and let Λ(n)1 = Λ(n)0x0+ · · ·+Λ(n)0xn.
Then the Λ(n)0-module Λ(n)1 cannot be generated by less than n+ 1 elements.

Let C be the field of complexes, and put Λ(n) = C[x0, . . . , xn]/(S
n(x0, . . . , xn)). Then, as shown

in [30], the module Λ(n)1 is generated either by
n+1
2 elements if n is odd or by

n
2 + 1 elements if n is

even. Namely, uk = x2k + ix2k+1, k = 0, . . . ,
n+1
2 − 1 if n is odd, and uk = x2k + ix2k+1, k = 0, . . . , n2 − 1,

un
2
= xn if n is even. Thus, the Λ(n)0-module Λ(n)1 cannot be generated by at most

[
n
2

]
+ 1 elements.

This leads to

Theorem 7. Let F = R (C) be the field of reals (complexes), and let J = A +M be a Jordan
superalgebra. Assume that J = J(Λ(n)0,Λ(n)1, { , }n) if n is odd, and J = J(Λ(n, 1)0,Λ(n, 1)1, { , }n,1)
if n is even. Then J is a simple superalgebra. The number of generators of M as an A-module is at
least n+ 1 if F = R, and it is at least

[
n
2

]
+ 1 if F = C. The superalgebra J(Λ(2, 1)0,Λ(2, 1)1, { , }2,1) is

exceptional. Moreover, if n > 1 or F = R then J is not isomorphic to a superalgebra of a Jordan bracket.

Proof. Prove the last assertion. Let n > 1. Assume that J = A +M is isomorphic to the super-
algebra of the Jordan bracket J(Γ, { , }) where Γ = Γ0 + Γ1 is an associative commutative superalgebra.
Then Γ0 + Γ1ξ is the even part and Γ1 + Γ0ξ is the odd part of J(Γ, { , }). Given a ∈ Γ1, we have
aξ · a = −a2ξ = 0. Hence, the (Γ0+Γ1ξ)-module Γ1+Γ0ξ is a module with torsion. Since the A-module
M is torsion free, Γ1 = 0. Thus, the odd part Γ0ξ of J(Γ, { , }) is a one-generated Γ0-module. Then the
A-module M is generated by one element; a contradiction. The case F = R is proved analogously.
Thus, J is not isomorphic to a superalgebra of the Jordan bracket. �
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