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ON σ-SUBNORMAL SUBGROUPS OF FINITE GROUPS

S. F. Kamornikov and V. N. Tyutyanov UDC 512.542

Abstract: Let p be a prime and let σ = {{p}, {p}′} be a partition of the set P of all primes. We prove
the following conjecture by Skiba: If each complete Hall set of type σ in a finite group G is reducible
to some subgroup H of G then H is σ-subnormal in G.
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1. Introduction

Answering a question of Kegel [1] and Wielandt [2], Kleidman proved in [3] that a subgroup H
of a finite group G is subnormal in G if H ∩P is a Sylow p-subgroup in H for every Sylow p-subgroup P
in G and every prime p.
This result led to the corresponding question for the σ-subnormal subgroups of a finite group which

was posed by Skiba in [4] as Question 19.86 (see also Question 7.2 in [5]).

Problem 1. Let σ = {σi | i ∈ I} be a partition of the set P of all primes and let G be a finite
group having a Hall σi-subgroup for each i ∈ I. Let H be a subgroup in G such that H ∩ Si is a Hall
σi-subgroup in H for each i ∈ I and every Hall σi-subgroup Si in G. Is it true that H is a σ-subnormal
subgroup in G?

It was Skiba who proposed in [7] the concept of σ-subnormal subgroup which develops the idea
of a subnormal subgroup from [6]. This concept bases on the following definitions:
Let P be the set of primes, π ⊆ P, and π′ = P \ π. If n is a natural then π(n) is the set of all

primes dividing n; in particular, π(G) = π(|G|) is the set of all primes dividing the order |G| of G.
In what follows, σ is always a partition of P into pairwise disjoint subsets σi (i ∈ I), i.e., P =

⋃
i∈I σi

and σi ∩ σj = ∅ for all i �= j. Following [8], we say that a group G is σ-primary if G is a σi-subgroup
for some i ∈ I.
A subgroup H in a group G is called σ-subnormal if there exists a chain of subgroups

H = H0 ⊆ H1 ⊆ · · · ⊆ Hn = G
such that for each i = 1, 2, . . . , n either the subgroupHi−1 is normal inHi or the subgroupHi/CoreHi(Hi−1)
is σ-primary. Clearly, a subgroupH is subnormal in G if and only if it is σ-subnormal in G for theminimal
partition σ = {{2}, {3}, {5}, . . . }.
Problem 2 below is more general as compared with Problem 1. This is connected with existence of

the subgroups having several classes of conjugate Hall subgroups.
Following [8], we say that a system Σ = {S1, S2, . . . , Sk} of σ-primary Hall subgroups in a group G

is a complete Hall set of type σ of G provided that
(1) (|Si|, |Sj |) = 1 for all i �= j ∈ {1, 2, . . . , k};
(2) π(G) = π(S1) ∪ π(S2) ∪ · · · ∪ π(Sk).
If Σ = {S1, S2, . . . , Sk} is a complete Hall set of type σ of G; then, obviously, Σg =

{
S
g
1 , S

g
2 , . . . , S

g
k

}

is also a complete Hall set of type σ in G for every g ∈ G. A group G is called σ-complete if G possesses
S. F. Kamornikov was supported by the Ministry of Education of the Republic of Belarus (Grant GR 20191056).

Original article submitted August 3, 2019; revised September 9, 2019; accepted October 18, 2019.

266



at least one Hall set of type σ (clearly, for some partitions σ, there exist groups for which the set of all
complete Hall sets of type σ is empty).
We say that a complete Hall set Σ of type σ in a group G is reduced to a subgroup H of G if H ∩ Si

is a Hall σi-subgroup in H for each i = 1, 2, . . . , k (it is possible that H ∩Si = 1 for some i = 1, 2, . . . , k).
Problem 2. Let σ be a partition of the set P of all primes and let Σ = {S1, S2, . . . , Sk} be a complete

Hall set of type σ in a finite group G. Let H be a subgroup in G such that Σg is reduced to H for every
g ∈ G. Is it true that H is a σ-subnormal subgroup in G?
While Problem 1 requires that each complete Hall set Σ of type σ in G be reduced to a subgroup H

in G, Problem 2 deals only with complete Hall sets Σg (g ∈ G) for some given complete Hall set Σ in G.
Therefore, the affirmative solution of Problem 2 leads to the solution to Problem 1.
In this article, Problems 1 and 2 are solved for a partition σ = {{p}, {p}′}, where p is a prime. Our

main goal is to prove the following theorem:

Theorem 1.1. Let p be a prime, σ = {{p}, {p}′}, and let Σ be a complete Hall set of type σ
in a finite group G. If H is a subgroup in G such that Σg is reduced to H for every g ∈ G then H is
σ-subnormal in G.

The key to proving Theorem 1.1 is given by Lemma 2.4 establishing the structure of a minimal
counterexample for every partition σ, together with Kazarin’s Theorem (see [9]) which describes simple
nonabelian groups containing a Hall p′-subgroup.

2. Definitions and Preliminary Results

The present work deals only with finite groups and uses the definitions and notations of [10]. As
regards the terminology of the theory of σ-subnormal subgroups, the reader is referred to [7, 8].
We use the following notations:
If π is a set of primes then Hallπ(G) is the set of all Hall π-subgroups in a group G.
If Σ = {S1, S2, . . . , Sk} is a complete Hall set of type σ in G and N is a normal subgroup in G then

ΣN/N = {S1N/N,S2N/N, . . . , SkN/N}.
If n is a natural then σ(n) = {σi ∩ π(n) | i ∈ I, σi ∩ π(n) �= ∅}.
σ(G) = σ(|G|).
The basic properties of σ-subgroups are given as some lemmas whose proofs are straightforward.

Lemma 2.1. Let H and N be subgroups in G, where N is normal in G. Then
(1) if H σ-subnormal in G then the subgroup HN/N is σ-subnormal in G/N ;
(2) if N ⊆ H then H is σ-subnormal in G if and only if H/N is σ-subnormal in G/N .
Lemma 2.2. Let H and K be subgroups in G, where H is σ-subnormal in G. Then
(1) if K ⊆ H and K is σ-subnormal in H then K is σ-subnormal in G;
(2) K ∩H is σ-subnormal in K;
(3) if H ⊆ K then H is σ-subnormal in K.
Following [8], we say that a group G is σ-nilpotent (or σ-decomposable) if G is the direct product of

some σ-primary groups; i.e., G is representable as a direct product of its Hall σi-subgroups for some i ∈ I.
A straightforward check shows that the class Nσ of all σ-nilpotent groups is a hereditary Fitting

formation. This implies in particular that every group G contains some least normal subgroup the
quotient group by which is σ-nilpotent. This subgroup is denoted by GNσ and called the σ-nilpotent
residual (or the Nσ-residual) of G.

Lemma 2.3. A subgroup H is σ-subnormal in G if one of the following is fulfilled:
(1) G is σ-nilpotent;
(2) GNσ ⊆ H;
(3) |σ(G)| = 1.
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Suppose that H is a subgroup in a σ-complete group G, while σ(G) = {σ1, σ2, . . . , σk}, and Σ =
{S1, S2, . . . , Sk} is a complete Hall set of type σ in G. We say that a pair (G,H) is a counterexample
to Problem 2 if for every g ∈ G the complete Hall set Σg is reduced to H but the subgroup H is not
σ-subnormal in G. If, moreover, the pair (G,H) is such that the sum |G|+ |H| is minimal; then we refer
to the counterexample (G,H) as a minimal counterexample to Problem 2.

Lemma 2.4. Let σ = {σi | i ∈ I} be a partition of the set P of all primes. If (G,H) is a minimal
counterexample to Problem 2 then G and H are simple nonabelian groups.

Proof. Let N be a minimal normal subgroup in G and let Σ = {S1, S2, . . . , Sk} be a complete
Hall set of type σ in G. By Lemma 2.3, k = |σ(G)| ≥ 2. By hypothesis, H ∩ Sgi is a Hall σi-subgroup
in H for all g ∈ G and i = 1, 2, . . . , k. Since N � G, we infer that N ∩ Sgi � Sgi and N ∩ Sgi is a Hall
σi-subgroup in N . It is easy to conclude from this that S

g
i ∩ HN is a Hall σi-subgroup in HN . Now,

since SgiN/N ∩HN/N =
(
S
g
i ∩HN

)
N/N ; therefore, SgiN/N ∩HN/N is a Hall σi-subgroup in HN/N .

Thus, the complete Hall set ΣgN/N of type σ in G/N is reduced to HN/N for every g ∈ G. Hence,
by the minimality of the counterexample, HN/N is σ-subnormal in G/N . But then HN is a σ-subnormal
subgroup in G by Lemma 2.1. Therefore, N is not in H; in particular, CoreG(H) = 1. Clearly, H ∩ Sxi
is a Hall σi-subgroup in H for all x ∈ HN , and

{
HN ∩ Sx1 , HN ∩ Sx2 , . . . , HN ∩ Sxk

}
is a complete Hall

set of type σ in HN which is reduced to H. If |HN | < |G|; then the subgroup H is σ-subnormal in HN
by the minimality of the counterexample. Then H is a σ-subnormal subgroup in G by Lemma 2.2, which
contradicts the assumption.
Thus, we assume in what follows that G = HN .
Suppose first that N is an elementary abelian p-subgroup for some p ∈ π(G). Then the index |G : H|

is a power of p. This and k ≥ 2 imply that there exists σi ∈ σ for which σi ∩ π(G) ∈ σ(G) and p /∈ σi.
Then H includes each Hall σi-subgroup S

g
i for every g ∈ G and also Sgi �= 1. Hence,

〈
S
g
i | g ∈ G

〉 ⊆ H.
Since 1 �= 〈Sgi | g ∈ G

〉
� G; therefore, CoreG(H) �= 1. This is impossible.

Consequently, N is a direct product of isomorphic simple nonabelian groups. Put K = H ∩ N .
Obviously, K � H. Therefore, the complete Hall set Σg of type σ in G is reduced to K for every g ∈ G.
Thus, (G,K) satisfies the hypothesis of the lemma. If K = H then G = N is a simple nonabelian
group. Hence, K �= H. By the minimality of the counterexample, K is σ-subnormal in G. But then,
by Lemma 2.2, K is σ-subnormal in N . Hence, there exists a chain of subgroups

K = K0 ⊆ K1 ⊆ · · · ⊆ Kn−1 ⊆ Kn = N
such that, for each i = 1, 2, . . . , n, either Ki−1 is normal in Ki or Ki/CoreKi(Ki−1) is σ-primary.
Suppose that K �= 1 and consider the three possible cases:
Case 1. LetN be a simple nonabelian group. ThenKn−1 is not normal inN . Thus, N/CoreN (Kn−1)

= N/1 = N is a σi-group for some i ∈ {1, . . . , k}. Since G = HN and k ≥ 2; it follows that H contains
all Hall σj-subgroups S

g
j (j �= i) for all g ∈ G. Consequently CoreG(H) �= 1, which is impossible.

Case 2. Let N = N1 ×N2, where N1 and N2 are isomorphic simple groups. If Kn−1 is not normal
in N then N/CoreN (Kn−1) is a σi-group for some i = 1, 2, . . . , k. Clearly, either CoreN (Kn−1) = 1
or CoreN (Kn−1) ∈ {N1, N2}. If CoreN (Kn−1) = 1 then N/CoreN (Kn−1) = N is a σi-group. If
CoreN (Kn−1) ∈ {N1, N2}; then, due to the isomorphism N/CoreN (Kn−1) 	 N1, the subgroup N1 is
a σi-group, which implies that N is a σi-group too. Next, as in the case when N is a simple nonabelian
group, we get a contradiction to CoreG(H) �= 1.
If Kn−1 is normal in N then Kn−1 ∈ {N1, N2}, i.e., Kn−1 is a simple nonabelian group. If K ⊂ Kn−1;

then, as in Case 1, we get a contradiction. Consequently, Kn−1 = K. Then K = H ∩ N � N and
K = H ∩N � H. Therefore, K � 〈N,H〉 = HN = G. Since K ⊆ H, this yields CoreG(H) �= 1. We get
a contradiction once again.

Case 3. Suppose that N = N1 × N2 × · · · × Nt, where t ≥ 3 and N1, N2, . . . , Nt are isomorphic
simple groups. Inducting on t, as in Cases 1 and 2, we conclude that either N is a σ-primary group or
CoreG(H) �= 1. This contradicts the above.
268



Thus, K = H ∩ N = 1, and so G = N �H is the semidirect product of N and H. If Si ∈ Σ then
Si = Ñ � H̃, where Ñ ∈ Hallσi(N) and H̃ ∈ Hallσi(H). Consider the group N � H̃ which includes Si.
By hypothesis, H ∩ Sxi are Hall σi-subgroups in H for all x ∈ NH̃. Hence, Sxi ∩ H ⊆ NH̃ ∩ H =
(N ∩ H)H̃ = H̃. Consequently, Sxi ∩ H = H̃, whence we infer that H̃ ⊆ Sxi for all x ∈ NH̃. Hence,
H̃ ⊆ Oσi(NH̃). If Oσi(N) �= 1 then N is a σi-group. As shown above, this is impossible. Thus,
Oσi(N) = 1, and the Hall σi-subgroup H̃ in H centralizes N . Since this holds for each i ∈ {1, . . . , k};
therefore, G = N ×H and H � G, which is impossible. Thus, G is a simple nonabelian group.
Show that H is simple. Suppose that H contains a proper normal subgroup L �= 1. Obviously, (G,L)

satisfies the hypothesis of the lemma. Since |G|+ |L| < |G|+ |H|, the subgroup L is σ-subnormal in G.
This means that there exists some chain of subgroups

L = L0 ⊆ L1 ⊆ · · · ⊆ Ln−1 ⊆ Ln = G
such that, for each i = 1, 2, . . . , n, either Li−1 is normal in Li or Li/CoreLi(Li−1) is σ-primary. This and
the simplicity of G imply that G is a σi-group for some i ∈ {1, . . . , k}. Since k ≥ 2, this is impossible.
Consequently, H is a simple nonabelian group. The lemma is proved.

Remark. As follows from [3], the structure of a minimal counterexample to the Kegel–Wielandt
conjecture is the same as in Lemma 2.4, i.e., G and H are simple nonabelian groups.
The simplicity of G of the minimal counterexample to Problem 2 implies

Lemma 2.5. Let (G,H) be a minimal counterexample to Problem 2 and let σ(G) = {σ1, σ2, . . . , σk}.
Then π(H) � σi for each i ∈ {1, 2, . . . , k}.
Additional information about the structure of a minimal counterexample to Problem 2 is given by the

following proposition, which is of interest in its own right. Note only that if H is a subgroup of G and p
is a prime; then, by [12], the notation H ≤p G means that H is p-subnormal in G, i.e., for every Sylow
p-subgroup P in G, the intersection P ∩H is a Sylow p-subgroup in H.
Proposition 2.6. For every partition σ, any group G in a minimal counterexample (G,H) to Prob-

lem 2 cannot be an alternating group.

Proof. Suppose that G 	 An, n ≥ 5. Since H is a simple nonabelian group, n ≥ 6. By [11], G is
σ-complete for a nonminimal partition σ if and only if either n = p is a prime or n = 8.
Let n = 8. Then G has a Hall {2, 3}-subgroup and is σ-complete only for those nonminimal parti-

tions σ for which σ(G) = {{2, 3}, {5}, {7}}. Since H is a simple nonabelian group, π(H) contains at least
one of the numbers 5 or 7. Let 5 ∈ π(H). Then H ≤5 G and, by [12, Theorem 1.4], n = s· 5a > 5, where
1 ≤ s < 5. Since n = 8, this is impossible. It is demonstrated similarly that the case of 7 ∈ π(H) is
impossible either.
Let n = 7. Then G is σ-complete only for those nonminimal partitions σ for which σ(G) =

{{2, 3}, {5}, {7}} or σ(G) = {{2, 3, 5}, {7}}. The first case is excluded like for n = 8. In the sec-
ond case, in view of Lemma 2.5, we have 7 ∈ π(H) and H ≤7 G. Then, by Theorem 1.4 from [12],
7 = s· 5a > 7, where 1 ≤ s < 7, which is impossible.
If n = p ≥ 11 then G is σ-complete only for those nonminimal partitions σ for which σ(G) =

{π((p − 1)!), {p}}. Obviously, p ∈ π(H) and H ≤p G. By [12, Theorem 1.4], p = s· pa > p, where
1 ≤ s < p, which is impossible. The proposition is proved.
We will also need the following number-theoretic result from [13] establishing that if a and b are

naturals such that a ≥ 2, b ≥ 3, and (a, b) �= (2, 6) then there is a prime r that divides ab − 1 but does
not divide al − 1 for all l = 1, 2, . . . , b− 1. Such r is called primitive with respect to the pair (a, b).

3. Proof of Theorem 1.1

Let (G,H) be a minimal counterexample. Then, by Lemma 2.4, G and H are simple nonabelian
groups. Since G is σ-complete, G has a Hall p′-subgroup M . By [9, Theorem 7], one of the following
cases is possible:
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(a) G = Ap and M 	 Ap−1;
(b) G = PSLn(q), where q = r

m, m ≥ 1, r is a prime, andM is a parabolic subgroup in G; moreover,
|G :M | = (qn − 1)/(q − 1) = pk and n is a prime;
(c) G = PSL2(11), p = 11, and M 	 A5;
(d) G =M11, p = 11, and M 	M10;
(e) G =M23, p = 23, and M 	M22.
By Proposition 2.6, the alternating group Ap cannot be a counterexample to Problem 2.
Consider case (b). Suppose first that n ≥ 3. If (q, n) �= (2, 6) then there is a prime t primitive

with respect to (q, n). By Fermat’s Theorem, t ≥ n+ 1, and so t ≥ 5. Since M is a parabolic subgroup,
(|M |, t) = 1. Lemma 2.5 implies that H ≤t G. This case is excluded by [12, Theorem 1.4]. Thus,
(q, n) = (2, 6) and G = SL6(2). Since 6 is not a prime, the group G = SL6(2) does not satisfy
condition (b).
Thus, G = PSL2(q), where q + 1 = p

k. By [13, Lemma 1.2], only the following cases are possible.
Suppose first that r = 2. Then 2m + 1 = pk. The two cases are possible:
(1) k = 1 and p is a Fermat prime, where m is a power of 2. Then G = PSL2(2

2) 	 A5 for m = 2.
This case was considered above. Form = 22 = 4, we obtain p = 17. By Lemma 2.5, H ≤t G where t ≥ 17.
This case is impossible since it is excluded by [12, Theorem 1.4].
(2) m = 3, p = 3, k = 2, and G = PSL2(9). Since 9 + 1 = 10 is not a prime power, this case is

impossible too.
Thus, r is an odd prime and rm + 1 = 2k. In this case m = 1 and r = 2k − 1 is a Mersenne prime.

Since G = PSL2(r), we have H 	 A5 (if such a subgroup exists). Since σ = {σ1, σ2}, where σ2 = {2},
the group A5 contains a subgroup of order 15, which is impossible.
The analysis of cases (c), (d), and (e) shows that they are impossible in view of Lemma 2.5 and

[12, Theorem 1.4]. The theorem is proved.
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