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EQUATIONAL NOETHERICITY OF METABELIAN r-GROUPS

N. S. Romanovskii UDC 512.5

Abstract: The author had earlier defined the concept of an r-group, generalizing the concept of a rigid
(solvable) group. This article proves that every metabelian r-group is equationally Noetherian; i.e., each
system of equations in finitely many variables with coefficients in the group is equivalent to some finite
subsystem.
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1. Introduction

The author introduced the concept of a rigid (solvable) group more than a decade ago. Then he
developed algebraic geometry and model theory for the class of rigid groups jointly with Myasnikov;
see [1–8]. The recent article [9] defines some more general class of r-groups that includes, for instance,
the solvable Baumslag–Solitar groups as well as studies the basic properties of r-groups. The author
has also noted that many important properties of rigid groups are unlikely to carry over to r-groups.
However, there is a hope for that in the metabelian case. Thus, the deeper study of metabelian r-groups
has begun in [10], and the present article is a continuation. Algebraic geometry over rigid groups includes
the fundamental result with a rather intricate proof: The equational Noethericity holds in an arbitrary
rigid group [2]. Here we prove the following statement.

Theorem. Every metabelian r-group is equationally Noetherian.

Recall that a group is called equationally Noetherian whenever each system of equations over it
is equivalent to some finite subsystem. The equational Noethericity of a group G is equivalent to the
Noethericity of the Zariski topology on the affine space Gn for all n. The latter property is very important,
and the above theorem makes it possible to develop algebraic geometry over metabelian r-groups. We
should note that the equational Noethericity is sufficiently obvious for every finitely generated metabelian
group G because then the coordinate group of the affine space Gn is a finitely generated metabelian group;
consequently, it satisfies the maximality condition for normal subgroups, and so everything is straightfor-
ward. However, in case that the finite generation condition is dropped, the article [2] exhibits an example
of a rather good metabelian group (length 2 nilpotent and torsion-free) which is not equationally Noethe-
rian. In future, we intend to study algebraic geometry over the divisible metabelian r-groups that are
mostly not finitely generated.
We prove the theorem along the lines of the proof of the author’s theorem on the equational Noetheric-

ity of rigid groups. Many steps simplify because the group is metabelian, but some become more intricate
since the group is not rigid in general.

2. Definitions and Auxiliary Statements

2.1. Assume that a group G has some normal series

G = G1 > G2 > · · · > Gm > Gm+1 = 1 (1)

with abelian quotients Gi/Gi+1. The action of G on Gi by conjugation, x → xg = g−1xg, determines
on Gi/Gi+1 the structure of a (right) module over the group ring Z[G/Gi]. Denote by Ri the quotient
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ring of Z[G/Gi] by the annihilator of Gi/Gi+1, so that we can regard Gi/Gi+1 as a right Ri-module.
The group G is called an r-group whenever Gi/Gi+1 is Ri-torsion-free and the canonical mapping
Z[G/Gi] → Ri is injective on G/Gi. As [9] shows, if series (1) exists then it is uniquely determined
by G; the notation Gi = ρi(G) was introduced for the terms of this r-series (rigid series). A subgroup
ofG is also an r-group; we obtain its r-series by intersecting with (1) and omitting repetitions. The ring Ri
defined above is called the ring associated to the quotient Gi/Gi+1 of (1). Note that Ri is a (left and
right) Ore domain, and so it embeds into a skew field of fractions. The concept of a divisible r-group G
was defined: every module Gi/Gi+1 in G must be a divisible Ri-module and then we can regard the latter
as a (right) vector space over the skew field of fractions of Ri.

2.2. The following construction appears in [10]. Given a pair (p, q) of primes with p dividing qn − 1
for some positive integer n and a cardinal α ≥ 1, we can construct a length 2 solvable periodic r-group
to be denoted by E(p, q, α). Let Fq stand for the field with q elements and F q, for its algebraic closure.

In the multiplicative group F
∗
q choose the cyclic subgroup A of order p, which is unique. Consider the

subring generated by A in F q; actually, this is the subfield Fqn . Take the vector space T over Fqn with

basis of cardinality α. Put E(p, q, α) equal to the group of matrices

(
A 0
T 1

)
. This group is an r-group

with the r-series (
A 0
T 1

)
>

(
1 0
T 1

)
> 1.

In this example the ring associated to the first quotient of the series equals Fp, and to the second, Fqn .
We need also the two propositions that are extracted from [10].

Proposition 1. Each metabelian r-group embeds into a divisible metabelian r-group.

Proposition 2. Up to isomorphism, each divisible metabelian r-group is one of the following groups:
(1) an abelian group of prime period p;
(2) the direct sum of several copies of the additive group Q of rational numbers;
(3) E(p, q, α);

(4)

(
A 0
T 1

)
, where A is a nontrivial group of type (2) lying in the multiplicative group R∗ of

a commutative integral domain R and, furthermore, R is generated by A as a Z-module, while T is
a nontrivial vector space over the fraction field F of R.

Let us state another available property. The first claim here is quite obvious and the second is proved
in [11].

Proposition 3. The class of equationally Noetherian groups is closed under subgroups and finite
extensions.

Recall that by an equation in x1, . . . , xn over a group G we usually mean an expression of the form
v = 1, where v lies in the free product of G and the free group 〈x1, . . . , xn〉. However, often it is convenient
to consider a more general situation. Refer as the group of equations over G in x1, . . . , xn to an arbitrary
group D generated by G and x1, . . . , xn provided that D is such that each mapping (x1, . . . , xn) → Gn
extends to a G-epimorphism D → G. Then we can take the expressions v = 1 with v ∈ D as equations
over G.

2.3. Assume in this subsection that the group G =

(
A 0
T 1

)
is of type (4) in Proposition 2. Note

that G is a length 2 solvable r-group and a semidirect product of its subgroups

(
A 0
0 1

)
and

(
1 0
T 1

)
,

which are identified respectively with A and the additive group of T . Take a basis {tk | k ∈ K} for T . Call
the set of variables X = X1 ∪X2, where X1 = {x11, . . . , x1n} and X2 = {x21, . . . , x2n}, special whenever
the variables x1i take values only in A, whenever the variables x2i, only in T . The usual variables
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x1, . . . , xn can be expressed in terms of the special ones as x1 = x11x21, . . . , xn = x1nx2n. Conversely, we
can understand the special variables as the usual ones satisfying the additional equations [x1i, a] = 1 and
[x2i, b] = 1, where a and b are fixed elements subject to the conditions 1 	= a ∈ A and 1 	= b ∈ ρ2(G). Let
us construct the group of equations over G in the special variables X.
Consider the direct product C = A × 〈x11〉 × · · · × 〈x1n〉 of A and the free abelian group with

basis X1, the ring R(X1) of Laurent polynomials in X1 with coefficients in R, and the ring F (X1) of
Laurent polynomials in X1 with coefficients in the field F . Consider the R(X1)-module

T ′ =
∑
K

tk · F (X1) + x21 ·R(X1) + · · ·+ x2n ·R(X1),

which amounts to the direct sum of the free F (X1)-module with basis {tk | k ∈ K} and the free R(X1)-
module with basis X2. Clearly, T lies in T

′ and the module T ′ is generated by T ∪ X2. Furthermore,
put D =

(
C 0
T ′ 1

)
� G. Identify the variable x1i with the matrix

(
x1i 0
0 1

)
, and the variable x2i, with

the matrix

(
1 0
x2i 1

)
. With this convention, D is generated by G and X. Moreover, each mapping

(x11, . . . , x1n) → An, (x21, . . . , x2n) → Tn extends to a G-epimorphism D → G. Thus, D is a group of
equations over G in the special variables X.
Observe that the affine space An is endowed with the Zariski topology defined by the group equations

of the form xm111 . . . x
mn
1n a = 1 with coefficients a is A. We also consider ring equations of the form

f(X1) = 0, where f ∈ R(X1), seeking the values of the variables x1i in A. Without loss of generality,
we may assume that f lies in the ring of polynomials F [X1]. Classical algebraic geometry shows that A
is equationally Noetherian. Observe that each ring equation f(X1) = 0 is realized as a group equation

over G; for instance, as

(
1 0
t · f 1

)
=

(
1 0
0 1

)
, where 0 	= t ∈ T . Thus, An is endowed with both the

group Zariski topology and the ring Zariski topology, and the second is stronger in general.

3. Proof of the Theorem

By Proposition 1, each metabelian r-group embeds into a divisible group, and once we prove that
every divisible metabelian r-group is equationally Noetherian, Proposition 3 will imply that so are its
subgroups.
Thus, suppose that G is a divisible metabelian r-group. Proposition 2 describes such groups. Abelian

groups are known to be equationally Noetherian. Moreover, basing on Proposition 3, we may assert that
so are all almost abelian groups. Since the group E(p, q, α) is almost abelian, the only remaining nontrivial
case is of the group G of type (4) in Proposition 2. Below we assume that and use the construction of
Section 2 of the group of equations D in the special variables X. Since the usual variables can be
expressed in terms of the special ones, it suffices to show that G is Noetherian with respect to the latter.
Assume on the contrary that G is not Noetherian with respect to the special variables. Then there

exists a system equations
{dl = 1 (l ∈ L), (2)

where dl =

(
fl 0
vl 1

)
∈ D, which is not equivalent to any finite subsystem. This system is equivalent to

the union of the two systems
{fl(X1) = 1 (l ∈ L), (3)

{vl(X) = 0 (l ∈ L). (4)

Since A is equationally Noetherian, system (3) is equivalent to some finite subsystem and it determines
in An a subset S which is algebraic in the group Zariski topology, and so algebraic in the ring Zariski
topology. This subset is nonempty; otherwise, the set of solutions to system (2) would be empty, and (2)
would be equivalent to some finite subsystem.
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We may now assert that system (4) under the condition X1 ∈ S is not equivalent to any finite
subsystem. Suppose that we have found in S a proper nonempty algebraic subset P in the ring Zariski
topology such that system (4) under the condition X1 ∈ P is not equivalent to any finite subsystem.
Then we replace S with P . Since the ring Zariski topology on An is Noetherian, the process of similar
replacements stops in finitely many steps. Thus, we may assume that there exists a nonempty algebraic
subset S ⊆ An in the ring Zariski topology such that system (4) under the condition X1 ∈ S is not
equivalent to any finite subsystem, but for every proper nonempty algebraic subset P ⊂ S in the ring
Zariski topology system (4) under the condition X1 ∈ P is equivalent to some finite subsystem. Below
we arrive at a contradiction with this assumption, and therefore establish the theorem.

Lemma 1. Under the above assumption, S is an irreducible algebraic subset of An in the ring
Zariski topology.

Proof. Suppose that S is the union of proper algebraic subsets S1 and S2. Then under the condition
X1 ∈ Si for i = 1, 2 system (4) is equivalent to some finite subsystem Σi. It is obvious that under the
condition X1 ∈ S system (4) is equivalent to the subsystem Σ1 ∪ Σ2; a contradiction. �
Denote by FS the quotient ring F (X1)/Θ(S), where Θ(S) is the annihilator of S in F (X1). Since S

is an irreducible algebraic subset of An in the ring Zariski topology, FS is an integral domain. Denote
the image of R(X1) in FS by RS = R(X1)/(R(X1) ∩ Θ(S)). To avoid tricking notation, we denote the
image of the set X1 of variables by X1 as well. Moreover, let CS stand for the multiplicative subgroup
of R∗S generated by A and X1. Consider the RS-module

TS =
∑
K

tk · FS + x21 ·RS + · · ·+ x2n ·RS ,

which is the canonical image of the R(X1)-module T
′, and the group DS =

(
CS 0
TS 1

)
.

The next lemma is easy.

Lemma 2. The group DS is a group of equations over G in the special variables X under the
condition X1 ∈ S, i.e., every mapping X1 → S, X2 → Tn, extends to a G-epimorphism DS → G.
Resting on Lemma 2, we may assume that the left-hand sides of the equations in (4) lie in the RS-

module TS . Denote by E the field of fractions of the ring RS (or FS); by TS · E, the natural extension
of TS to a vector space over the field E with basis {tk | k ∈ K} ∪X2, and by V the subspace in TS · E
generated by the left-hand sides vl for l ∈ L of the equations of (4).
Lemma 3. We have (∑

K

tk · E
)
∩ V = 0.

Proof. Assume on the contrary that (
∑
K tk · E) ∩ V 	= 0. Then(∑

K

tk ·RS
)
∩
(∑
L

vl ·RS
)
	= 0.

Suppose for instance that

t1u1 + · · ·+ tmum ∈
∑
L

vl ·RS ,

where 0 	= ui ∈ RS . We infer that the equation u1(X1) = 0 under the condition X1 ∈ S is a corollary of
some finite subsystem Σ1 of (4). This equation selects in S a proper subset P . If it is empty then the
set of solutions to (4) under the condition X1 ∈ S is empty and this system is equivalent to Σ1, which
contradicts the above assumption on S. Assume that P is nonempty. Then (4) under the condition
X1 ∈ P is equivalent to some finite subsystem Σ2. This implies that (4) under the condition X1 ∈ S is
equivalent to Σ1 ∪ Σ2; again we arrive at a contradiction. �
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Lemma 3 implies that the projection of V to the space x21 ·E+ · · ·+x2n ·E is an injective mapping;
and, in particular, the space V is finite-dimensional. Take a basis v1, . . . , vr for V . Refer as elementary
transformations over RS of the tuple (v1, . . . , vr) to the following operations:
(1) the transposition vi ↔ vj ;
(2) the replacement of vi by viα+ vjβ, where α, β ∈ RS , α 	= 0, i 	= j.
Using elementary transformations, we can obtain from the tuple (v1, . . . , vr) a tuple (w1, . . . , wr) such

that the matrix of coefficients of the expansions of wi with respect to x21 . . . , x2n modulo
∑
K tk · E, up

to a permutation of its columns, is of the form

⎛
⎜⎝
u 0 . . . 0 ∗ . . . ∗
0 u . . . 0 ∗ . . . ∗
· · · · · · · · · · ·
0 0 . . . u ∗ . . . ∗

⎞
⎟⎠ , 0 	= u = u(X1) ∈ RS .

By construction, the equations w1 = 0, . . . , wr = 0 under the condition X1 ∈ S are corollaries of the
system Σ1 consisting of the equations v1 = 0, . . . , vr = 0. Represent an arbitrary element vl for l ∈ L
modulo

∑
K tk · FS as x21vl1 + · · ·+ x2nvln, where vl1, . . . , vln ∈ RS . Since {w1, . . . , wr} is a basis for V ,

we have vlu = w1vl1 + · · ·+ wrvlr. Suppose that
x11 = a1, . . . , x1n = an, x21 = h1, . . . , x2n = hn,

where (a1, . . . , an) ∈ S and hi ∈ T , is a solution to the system Σ1 and u(a1, . . . , an) 	= 0. Then it is also
a solution to every equation vl(X) = 0 of (4). Therefore, (4) under the conditions X1 ∈ S and u(X1) 	= 0
is equivalent to the system Σ1. The equation u(X1) = 0 selects in S a proper subset P . If it is empty
then (4) under the condition X1 ∈ S is equivalent to Σ1. If it is nonempty then by assumption (4) under
the condition X1 ∈ P is equivalent to some finite subsystem Σ2. We infer that (4) under the condition
X1 ∈ S is equivalent to its finite subsystem Σ1 ∪ Σ2; this is a contradiction.
The proof of the theorem is complete. �
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