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CONSTRUCTION AND APPLICATIONS OF AN ADDITIVE
BASIS FOR THE RELATIVELY FREE ASSOCIATIVE ALGEBRA
WITH THE LIE NILPOTENCY IDENTITY OF DEGREE 5

S. V. Pchelintsev UDC 512.552.4:512.572

Abstract: We construct an additive basis for the relatively free associative algebra F (5)(K) with the
Lie nilpotency identity of degree 5 over an infinite domainK containing 16 . We prove that approximately

half of the elements in F (5)(K) are central. We also prove that the additive group of F (5)(Z) lacks the
elements of simple degree ≥ 5. We find an asymptotic estimation of the codimension of T-ideal, which
is generated by the commutator [x1, x2, . . . , x5] of degree 5.

DOI: 10.1134/S0037446620010127

Keywords: Lie nilpotency identity of degree 5, additive basis, central polynomial, kernel polynomial,
codimension of a T -ideal

Introduction

We consider only associative algebras over an infinite domain K that contains 16 . In what follows,
we use the notations:

F = FAss[X] is the free associative K-algebra over an infinite countable set X = {x1, x2, . . . } of free
generators;

Xn = {x1, . . . , xn};
[x1, . . . , xn] is a right-normed commutator of degree n ≥ 2, i.e., [x1, x2] = x1x2−x2x1 and [x1, . . . , xn]

= [[x1, . . . , xn−1], xn];
LN(n) : [x1, . . . , xn] = 0 is the identity of left nilpotency of degree n;

T (n) and V (n) are the T -ideal and T -space of F , which are generated by the commutator [x1, . . . , xn];
if S ⊂ F then (S)T and (S)V denote the T -ideal and T -space that are generated by S;
F (n) = F/T (n) is the relatively free algebra of countable rank with the identity LN(n);
Pn(A) is the space of multilinear polynomials over Xn with respect to a free algebra A;
Z∗(A) is the kernel of A (the greatest ideal of A which lies in the center Z(A) of A).
The study of algebras with the Lie nilpotency identity was initiated in [1–3].

The codimensions of T (3) and T (4) are known (see [4–6]):

cn(T
(3)) = 2n−1, cn(T

(4)) = 2n−1 + 2
(
n

4

)
+ 2

(
n

3

)
.

Moreover, in [6] some algebra was distinguished that generates the variety of Lie nilpotent algebras
of degree 4.
The state of the art in the theory of Lie nilpotent algebras is rather well-detailed in the introductions

of [7–10]. The proper central polynomials for the algebras F (5) and F (6) over a field of characteristic 0
were studied in [7, 8]. Furthermore, some hypotheses were stated in [7] about the center and the kernel

that are confirmed in particular in [8]. The model algebra E(2) and some auxiliary superalgebras play an
important role in these articles (see [7, 8]).
In [9], the case was elaborated of relatively free algebras with the identity LN(n) in two and three

generators over a ring K.
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The plan of construction of an additive basis for F (5) was outlined in [10]. It was supposed to consider

a sequence of T -ideals T (4) ⊃ H ⊃ H ′ of F (5), where H and H ′ are the T -ideals generated by the Hall
element [[x1, x2]

2, x3] and the weak Hall element [[x1, x2]
2, x2], respectively. Some additive basis for the

algebra modulo H ′ was presented and it was proved that H ′ coincides with the ideal of identities of the
model algebra E(2) and with the kernel Z∗(F (5)) of F (5).
In this article we realize the above plan of constructing an additive basis for F (5) and show some

applications of the so-constructed basis that were announced in [10]. The article consists of five sections.
In § 1 some available results we will need are contained. In § 2 we construct an additive basis for the
ideal H ′. In § 3 we obtain an asymptotic estimation of the codimension of the T -ideal T (5); i.e.,

cn(T
(5)) ≈ n2 · 2n−2, i.e., lim

n→∞
cn

n2 · 2n−2 = 1.

Note that it is impossible to obtain this result by the methods of [8], since [8] used the technique that
is based on the application of either the skew-symmetric elements or the superalgebras generated by one
odd element.
In § 4 the centers of the free Lie nilpotent algebras F (3), F (4), and the free metabelian algebra F(2)

are described. It is proved that
cn(F

(3)) = 2ξn(F
(3)), n ≥ 2,

where ξn(F
(3)) = dimK(Z(F

(3)) ∩ Pn(F (3))) and cn(F (3)) = dimK Pn(F (3)).
Moreover, we prove some asymptotic relations ξn(F

(4))/cn(F
(4)) → 1

2 and ξn(F(2))/cn(F(2)) → 0
as n→∞.
In § 5 we describe the center of F (5) and prove that if the main field K is of characteristic 0

then Z(F (5)) as a T -space is generated by the following elements:

[x1, x2, x3, x4], [[x1, x2, x3] · x4, x5], [[x1, x2]
2, x2].

If p = char(K) ≥ 5 then the center Z(F (5)) is generated by
xp, [x1, x2, x3, x4], [[x1, x2, x3] · x4, x5], [[x1, x2]

2, x2].

In the center, some essential part of an additive basis was distinguished, and it was proved that

ξn(F
(5))/cn(F

(5))→ 1
2
as n→∞.

Thus, about half of the elements in F (n) (n = 3, 4, 5) are central. Note that even for F (3) this result
is new.
Note that an additive basis for Z(F (5)) is unknown.

§ 1. The Main Notions and Available Results
1.1. Proper polynomials. Let A# be an algebra obtained from an algebra A by externally

adjoining the unity. A variety M is unitarily closed provided that M contains A# for all A ∈M.
Let F = FM[X] be the relatively free algebra of countable rank of an unitarily closed varietyM. The

set of free generators X = {x1, . . . , xn, . . . } is assumed to be ordered by increasing indices.
A subalgebra of F generated by the Lie monomials (the commutators in generators) of degree ≥ 2 is

the subalgebra of proper polynomials.
A variety is unitarily closed if and only if it can be defined by some set of proper identities (see [11, 12]).
Let Γn(F ) be the space of the proper multilinear polynomials of F which depend on the variables

in Xn. We write Γn(M) instead of Γn(FM) as well.

1.2. Codimensions of some T -ideals. Together with Γn(F ) consider the space Pn(F ) generated
by the multilinear polynomials in Xn.
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If F is a free associative algebra Ass[X] and T is its T -ideal (or the verbal ideal) then we put
Tn = Pn ∩ T . The sequence of codimensions cn(T ) is an important numerical characteristic of the
T -ideal T . It is known (see [4–6]) that

cn(T
(3)) = 2n−1, cn(T

(4)) = 2n−1 + 2
(
n

4

)
+ 2

(
n

3

)
.

In [13], the codimensions were found of the ideal of identities T 0(2) of the variety of metabelian associative

algebras:

cn
(
T 0(2)
)
= (n− 1)2n−1 + 2

(
n

4

)
−
(
n

2

)
+ 1, n ≥ 4.

There were also pointed out the codimensions of the ideal of identities T(2) of the variety of metabelian
alternative algebras:

cn(T(2)) = (n
2 − n− 1)2n−4 + 2

(
n

4

)
− 2
(
n

3

)
+

(
n

2

)
− 2
(
n

1

)
+ 1, n ≥ 5.

1.3. Some available results.

Latyshev’s Lemma [3]. [x, y, z, a][a, t] = 0 in F (5).

Volichenko’s Lemma [5]. (T (3))2 ⊆ T (5).
Denote by x◦y = xy+yx the Jordan product of x and y. Recall that (a, b, c)+ = (a◦b)◦c−a◦ (b◦c)

stands for the Jordan associator of a, b, and c.

Lemma 1.1 [7]. In F (5), the Hall polynomials possess the properties h ∈ Z(F (5)) and h′ ∈ Z∗(F (5)).
Lemma 1.2 [8]. In F (5), the properties hold:
(a) [x, a, a, y][a, z] 
= 0 is skew-symmetric in x, y, and z;
(b) (u, v, t)+ = 0 if two elements in u, v, and t are commutators.

1.4. Auxiliary results. Recall some notations and results that were proved in [10]:
h = [[x1, x2]

2, x3] and h
′ = [[x1, x2]2, x2] are Hall polynomials;

H = var〈LN(5), h〉 and E = var〈LN(5), h′〉 are Hall varieties;
A = FE[X] is the free algebra of the variety E = var(E

(2)).
Agree that we symmetrize the variables that are marked with a bar; i.e., if f(x1, x2, x3) is a multilinear

polynomial then we put

f(x1, x2, x3) =
∑
σ∈S(3)

f(x1σ, x2σ, x3σ),

where S(3) is the symmetric group of degree 3.
Also, we put

ϕ(a, x, y, b) = [a, x̄] ◦ [ȳ, b], ψ(a, b, x, y, z) = [ϕ(a, b, x, y), z];

Φ = ϕ(X,X,X,X), Ψ = ψ(X,X,X,X), U = [X,X].

Denote by Hi the linear spans of proper polynomials:

H1 =
∑
m≥0

K · [Φ, X]Um, H2 =
∑
m≥0

K · ΦUm,

H3 =
∑
m≥0

K · V (3)Um, H4 =
∑
m≥0

K · V (4)Um.

It was proved in [10] that an additive basis Γn(A) ∩ T (4) consists of the following elements:
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(1) the right ψ-words; i.e., the elements that lie in [Φ, X]Um;

(2) the right ϕ-words; i.e., the elements that lie in ΦUm;

(3) the right η-words; i.e., the elements that lie in V (3)Um;

(4) the right V (4)-words; i.e., the elements that lie in V (4)Um.

Moreover, it is proved that the elements of types (1) and (4) are central. The remaining basis elements
are linearly independent modulo the center. Below, we also need the eight remarks that are given in [10]
under the same numbers.

Remark 1. dimK(Γ4(H) ∩ T (4)) = 6.
Remark 2. dimK(Γ5(H)∩ T (4)) = 10. Furthermore, the following 10 elements are linearly indepen-

dent modulo Z(A):

a12 = [x3x1x4][x2x5], a13 = [x2x1x4][x3x5],

a14 = [x2x1x3][x4x5], a15 = [x2x1x3][x5x4],

b12 = [x3x1x5][x2x4], b13 = [x2x1x5][x3x4],

b14 = [x2x1x5][x4x3], b15 = [x2x1x4][x5x3],

c12 = [x4x1x3][x2x5], c13 = [x4x1x2][x3x5].

Remark 3. dimK(Γ5(E) ∩H1) = 5.
Remark 4. dimK(Γ4(E) ∩K · Φ) = 2.
Remark 5. dimK(Γ2m ∩H2) = (2m− 3)m, m ≥ 3.
Remark 6. dimK(Γ2m+3 ∩Ψ) = 2

(
2m
1

)
+
(
2m
2

)
= 2m2 + 3m, m ≥ 2.

Remark 7. Let H1,3 = H1 +H3. Then dim(Γ2m+1 ∩H1,3) = 4m2 − 1, m ≥ 3.
Remark 8. Let H2,4 = H2 +H4. Then dim(Γ2m ∩H2,4) = 4m2 − 4m, m ≥ 3.

§ 2. The T -Ideal H′ of the Weak Hall Elements in F (5)
2.1. Preliminary lemmas. A triple of elements a, b, and c is J-associative provided that all

Jordan associators in a, b, and c are zero. A triple of sets A, B, and C is J-associative provided that all
triples of the shape a, b, and c, where a ∈ A, b ∈ B, and c ∈ C, are J-associative.
Lemma 2.1. The triples A, V (2), V (2) and A, V (2), V (2) ◦ V (2) are J-associative in A = F (5).
Proof. The first assertion follows from Lemma 1.2(b). Using the identity (a, b, c)+ = [b, [a, c]],

we get

(A, V (2), V (2) ◦ V (2))+ = [V (2), [A, V (2) ◦ V (2)]] ⊆ [V (2), V (3) ◦ V (2)]
⊆ [V (2), V (3)] ◦ V (2) + V (3) ◦ [V (2), V (2)] = 0;

(V (2), A, V (2) ◦ V (2))+ = [A, [V (2), V (2) ◦ V (2)]] ⊆ [A, V (4) ◦ V (2)]
⊆ V (4) ◦ [A, V (2)] + [A, V (4)] ◦ V (2) = 0.

The next two lemmas hold in every associative algebra.

Lemma 2.2. [[āp][b̄q], c̄] = [[p̄a][q̄b], c̄] + [[p̄a][b̄c], q̄] + [[āb][p̄c], q̄] in F .
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Proof. Develop every summand, marking with the same indices the equal summands:

[[āp][b̄q], c̄] = [[ap][bq], c]1 + [[bp][cq], a]2 + [[cp][aq], b]3

+[[bp][aq], c]4 + [[cp][bq], a]5 + [[ap][cq], b]6,

[[p̄a][q̄b], c̄] = [[pa][qb], c]1 + [[qa][cb], p]7 + [[ca][pb], q]8

+[[qa][pb], c]4 + [[ca][qb], p]9 + [[pa][cb], q]10,

[[p̄a][b̄c], q̄] = [[pa][bc], q]10 + [[ba][qc], p]11 + [[qa][pc], b]3

+[[ba][pc], q]12 + [[qa][bc], p]7 + [[pa][qc], b]6,

[[āb][p̄c], q̄] = [[ab][pc], q]12 + [[pb][qc], a]2 + [[qb][ac], p]9

+[[pb][ac], q]8 + [[qb][pc], a]5 + [[ab][qc], p]11.

Lemma 2.3. Let f(p, q, r|a, b, c) = [p̄a] ◦ [q̄b] ◦ [r̄c]. Then in F
(a) f(p, q, r|a, b, c) is symmetric in each of the sets {p, q, r} and {a, b, c};
(b) f(p, q, r|a, b, c) + f(a, b, c|p, q, r) = 0;
(c) f(p, b, c|a, q, r) + f(p, c, a|b, q, r) + f(p, a, b|c, q, r) + f(a, b, c|p, q, r) = 0.
Proof. Write the left-hand side of (c), and mark the opposite summands by the corresponding

indices from 1 to 12 among the 24 summands:

f(p, b, c|a, q, r) + f(p, c, a|b, q, r) + f(p, a, b|c, q, r) + f(a, b, c|p, q, r)
= [p̄a] ◦ [b̄q] ◦ [c̄r] + [p̄b] ◦ [āq] ◦ [c̄r] + [p̄c] ◦ [āq] ◦ [b̄r] + [āp] ◦ [b̄q] ◦ [c̄r]

= [pa] ◦ [bq] ◦ [cr]1 + [ba] ◦ [cq] ◦ [pr]2 + [ca] ◦ [pq] ◦ [br]3
+[ba] ◦ [pq] ◦ [cr]4 + [ca] ◦ [bq] ◦ [pr]5 + [pa] ◦ [cq] ◦ [br]6
+[pb] ◦ [aq] ◦ [cr]7 + [ab] ◦ [cq] ◦ [pr]2 + [cb] ◦ [pq] ◦ [ar]8
+[ab] ◦ [pq] ◦ [cr]4 + [cb] ◦ [aq] ◦ [pr]9 + [pb] ◦ [cq] ◦ [ar]10
+[pc] ◦ [aq] ◦ [br]11 + [ac] ◦ [bq] ◦ [pr]5 + [bc] ◦ [pq] ◦ [ar]8
+[ac] ◦ [pq] ◦ [br]3 + [bc] ◦ [aq] ◦ [pr]9 + [pc] ◦ [bq] ◦ [ar]12
+[ap] ◦ [bq] ◦ [cr]1 + [bp] ◦ [cq] ◦ [ar]10 + [cp] ◦ [aq] ◦ [br]11
+[bp] ◦ [aq] ◦ [cr]7 + [cp] ◦ [bq] ◦ [ar]12 + [ap] ◦ [cq] ◦ [br]6 = 0.

2.2. An additive basis for the T -ideal H′ generated by a weak Hall element.

Proposition 2.1. The space of the proper polynomials that belong to the ideal H ′ of A = F (5) has
an additive basis from the following right elements f and g:
(a) if X5 = {a, b, c, p, q} then there are 7 elements g(a, b, c, p, q) = [[āp][b̄q], c̄], where {p, q} 
⊂

{x1, x2, x3};
(b) if X6 = {a, b, c, p, q, r} then there are 5 elements

f(a, b, c, p, q, r) = [āp] ◦ [b̄q] ◦ [c̄r],
where r = x6, {p, q} 
⊂ {x1, x2, x3}, {p, q} 
= {x1, x5}, {p, q} 
= {x2, x5}.
Proof. We show firstly that the full linearization of the polynomial [a, b]3 is a derivation in all vari-

ables. Consider f(x, y, z) = [a, x]◦[a, y]◦[a, z]. This element is symmetric in x, y, and z by Lemma 1.2(b);
furthermore, f(V (2), y, z) = 0 by Volichenko’s Lemma, whence f is a Jordan derivation in all variables.
Linearize this element by a:

f(x, y, z, b) = [b, x] ◦ [a, y] ◦ [a, z] + [a, x] ◦ [b, y] ◦ [a, z] + [a, x] ◦ [a, y] ◦ [b, z].
Clearly, f(x, y, z, V (2)) = 0. Now, f(x, y, z, b2) = f(x, y, z, b) ◦ b by Lemma 2.1.
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Thus, we proved that the full linearization of [a, b]3, i.e. the element

f(x1, x2, x3, y1, y2, y3) =
∑
σ∈S3
[x1σ, y1] ◦ [x2σ, y2] ◦ [x3σ, y3],

is a derivation.
Show that the linearization h′Δ (see [12]) of h′ is a derivation in all variables. Put g(y) = [[a, y] ◦

[a, b], a]. We have

g(y2)− g(y) ◦ y = [[a, y2] ◦ [a, b], a]− g(y) ◦ y
= [[a, y] ◦ [a, b] ◦ y, a]− g(y) ◦ y = [a, y] ◦ [a, b] ◦ [y, a] = −2[a, y]2 ◦ [a, b].

Consider the element

[[y2, b] ◦ [z, b], t]− y ◦ [[y, b] ◦ [z, b], t]
= [y ◦ [y, b] ◦ [z, b], t]− y ◦ [[y, b] ◦ [z, b], t] = [y, t] ◦ [y, b] ◦ [z, b].

Hence, we have to verify that [yt] ◦ [yb] ◦ [zb] = 0. Let v = [yt] and g′(b) = v ◦ ([yb] ◦ [zc] + [yc] ◦ [zb]). By
Lemma 2.1 we have

g′(b2)− g′(b) ◦ b = v ◦ ([y, b2] ◦ [z, c] + [y, c] ◦ [z, b2])− g′(b) ◦ b = 0.
Then

g(x1, x2, x3, y1, y2) =
∑

σ∈S3,τ∈S2
[[x1σ, y1τ ] ◦ [x2σ, y2τ ], x3σ]

is a Jordan derivation.
If y1 ∈ V (2) then g(x1, x2, x3, y1, y2) = 0 by Latyshev’s Lemma. Assume that x1 ∈ V (2). By analogy,

[[x1c] ◦ [bc], b] + [[bc]2, x1] = [[x1c] ◦ [bc], b] = [[x1c]b] ◦ [bc] = 0,
whence g(x1, x2, x3, y1, y2) is zero on the commutators. Therefore, the ideal H

′ of A is generated by the
elements of the shape

g(x1, x2, x3, p, q) = [[x1p][x2q], x3].

By Lemma 2.2, H ′ is generated by the elements of the shape

g(a, b, c, p, q) = [[āp][b̄q], c̄],

where the pair {p, q} satisfies the conditions {p, q} 
= {x1, x2}, {x2, x3}, {x3, x1}.
Prove that these elements are linearly independent. Assume that

α1[[q̄p][b̄a], c̄] + α2[[āp][q̄b], c̄] + α3[[āp][b̄c], q̄]

+β1[[p̄q][b̄a], c̄] + β2[[āq][p̄b], c̄] + β3[[āq][b̄c], p̄] + γ[[āp][b̄q], c̄] = 0.

By the Poincaré–Birkhoff–Witt Theorem (shortly, the PBW Theorem) [14] the following equality should
hold between the elements that contain the commutator [ap]:

α2[[āp][q̄b], c̄] + α3[[āp][b̄c], q̄] + β1[[p̄q][b̄a], c̄] + γ[[āp][b̄q], c̄] = 0.

Canceling by this commutator in the free associative algebra, we get

α2[q̄bc̄] + α3[b̄cq̄]− β1[b̄qc̄] + γ[b̄qc̄] = 0.
Combining the similar terms, we have

(−α2 + α3)[bcq] + (α2 + β1 − γ)[qbc] + (−α3 − β1 + γ)[cqb] = 0.
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Applying the Jacobi identity, we obtain

2α2 − α3 + β1 − γ = 0, α2 − 2α3 − β1 + γ = 0.
Arguing analogously, distinguish the terms that contain [aq] as a factor:

−2α1 − β2 − β3 + γ = 0, −α1 − 2β2 + β3 + γ = 0.
Similarly, choose the terms that contain [ab]:

α1 − α2 − 2β1 + 2β2 = 0, −α1 + α2 − β1 + β2 = 0.
Finally, distinguish the terms that contain [ac]:

α1 − α3 − 2β1 + 2β3 = 0, −α1 + α3 − β1 + β3 = 0.
The system of the first seven equations has nonzero determinant; therefore, it possesses only the zero
solution. Hence, dimK(Γ5(A) ∩H ′) = 7.
Which elements of the form f(X ′) over X ′ = {x1, x2, x3, y1, y2, y3} are linearly independent? There

are only
(
6
3

)
= 20 of these elements. Since

f(x1, x2, x3, y1, y2, y3) = −f(y1, y2, y3, x1, x2, x3),
we may assume that y3 is the greatest variable. By Lemma 2.3, f(x1, x2, x3, y1, y2, y3) is linearly express-
ible by the five elements f(p, q, a, b, c, r) such that

{b, c} 
⊂ {x1, x2, x3}, {b, c} 
= {x1, y2}, {b, c} 
= {y1, y2}.
Call such elements f -right.
Thus, assume that there exists some relation

α2f(, , , b, q, r) + α3f(, , , c, q, r) + β1f(, , , a, p, r) + β2f(, , , b, p, r) + β3f(, , , c, p, r) = 0

among the f -right elements. This means that in A = F (5) we have

α1[p̄b] ◦ [āq] ◦ [c̄r] + α2[p̄c] ◦ [āq] ◦ [b̄r]
+β1[q̄a] ◦ [b̄p] ◦ [c̄r] + β2[q̄b] ◦ [āp] ◦ [c̄r] + β3[q̄c] ◦ [āp] ◦ [b̄r] = 0. (1)

Note firstly that the commutator [x1, . . . , xi, a] is a linear combination of the commutators of the
form [y1, a, . . . , yi], where (y1, . . . , yi) is a permutation of (x1, . . . , xi). Further, if w = [ab] then in the
free associative algebra F we get

[a, b2, x, y, z] = [w ◦ b, x, y, z] ∈ [V (2) ◦ F, x, y, z] ⊆ [V (3) ◦ F + V (2) ◦ V (2), y, z]
⊆ [V (4) ◦ F + V (3) ◦ V (2), z] ⊆ V (5) ◦ F + V (4) ◦ V (2) + V (3) ◦ V (3).

It follows from here that each proper polynomial of degree 6, which is contained in T (5), may be repre-
sented as a linear combination of u6, u4u2, and u3v3, where ui and vi are the commutators of degree i.
Using the PBW Theorem, select in (1) the terms that contain [ap], and, replacing x ◦ y by 2xy − [xy],
we obtain

β2[q̄b][c̄r][ap] + β3[q̄c][b̄r][ap] = 0.

Canceling [ap], we get β2[q̄b][c̄r] + β3[q̄c][b̄r] = 0. Combine the similar terms to obtain

(−β2)[bq][cr] + (−β2 + β3)[bc][qr] + (−β3)[cq][br] = 0.
Since the mentioned products of commutators are linearly independent, β2 = β3 = 0. Arguing analogously
with the commutators [bp] and [cp], we obtain α2 = 0 and β1 = 0. Hence, α1 = α2 = 0, and β1 = β2 =
β3 = 0. Thus, dimK(Γ6(A) ∩H ′) = 5.
Remark 9. dimK(Γ5(A) ∩H ′) = 7 and dimK(Γ6(A) ∩H ′) = 5 in A = F (5).
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§ 3. The Sequence of Codimensions of T (5)
Denote by c

(l)
n the codimension of the ideal T (l). Recall that

c(3)n = 2
n−1, c(4)n = 2

n−1 + 2
(
n

4

)
+ 2

(
n

3

)
.

Using the constructed additive basis, we can compute the exact value of c
(5)
n as a function of n. Since

the exact value is not needed, prove the validity of the asymptotic estimation c
(5)
n ≈ n2 · 2n−2.

Lemma 3.1. If A = H[X] then dimK(T
(4) ∩ Pn(A)) = 6

(
n
4

)
+ 18

(
n
5

)
.

Lemma 3.1 is immediate from Remarks 1 and 2.

Lemma 3.2. Let A = E[X] and dn = dimΦH(A) ∩ Pn(A). Then dn ≈ n2 · 2n−2.
Proof. Firstly, we compute the number γm of the basis proper multilinear polynomials of degree m

which lie in the ideal H(A); i.e., γm = dimΦH(A) ∩ Γm(A). Taking into account Remarks 3, 7, and 8,
we have γ5 = 5, γ2k = 4k

2 − 4k, and γ2k+1 = 4k2 − 1 when k ≥ 3.
We get dn =

∑
m≥5 γm

(
n
m

)
. Give the further computation as a sequence of items, using the following

combinatorial formulas (see [13]):

∑
k

k2
(
n

2k

)
= n(n+ 1)2n−5 ≈ n2 · 2n−5,

∑
k

k2
(

n

2k + 1

)
= (n2 − 3n+ 4)2n−5 ≈ n2 · 2n−5.

1.
∑
k≥3 γ2k

(
n
2k

) ≈ n2 · 2n−3. Since ∑k≥3 k2( n2k) ≈∑k k2( n2k); therefore,
∑
k≥3

γ2k

(
n

2k

)
=
∑
k≥3
(4k2 − 4k)

(
n

2k

)
≈ 4
∑
k≥3

k2
(
n

2k

)
≈ n2 · 2n−3.

2.
∑
k≥3 γ2k+1

(
n
2k+1

) ≈ n2 · 2n−3. Since ∑k≥3 k2( n2k+1) ≈∑k k2( n2k+1) ≈ n2 · 2n−5; therefore,
∑
k≥3

γ2k+1

(
n

2k + 1

)
≈ 4
∑
k≥3

k2
(

n

2k + 1

)
≈ n2 · 2n−3.

3. We have

dn = γ5C
5
n+
∑
k≥3

γ2k

(
n

2k

)
+
∑
k≥3

γ2k+1

(
n

2k + 1

)
≈ n2 · 2n−2.

Theorem 3.1. The asymptotic estimation c
(5)
n ≈ n2 · 2n−2 holds.

Proof. By Remark 9, dimK(H
′ ∩ Pn(A)) = 7

(
n
5

)
+ 5
(
n
6

)
with n ≥ 5. Hence, applying Lemmas 3.1

and 3.2, we get dimK(T
(4)∩Pn(A)) ≈ n2 ·2n−2. Thus, c(5)n = c(4)n +dimK(T (4)∩Pn(A)) ≈ n2 ·2n−2 by [5].

§ 4. The Multilinear Components of the Centers of F (3) and F (4)
In this section we give a description for the centers of the relatively free algebras F (n) with the

Lie nilpotency identity LN(n) of degree n = 3, 4. The description of the proper central polynomials of
these algebras is well known (it is immediate from the articles by Latyshev [2] and Volichenko [5]). The

proper central polynomials of F (5) and F (6) were described in [8]. Concerning the descriptions of the

centers Z(F (l)) with l = 3, 4, the equalities hold:

[Z(F (3)) = ([xy])V , Z(F (4)) = ([xy][zt])V + ([xyz])T ,
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where (f)T and (f)V is a T -subspace and T -ideal generated by f . These results belong to Grishin, and
they are presented in [15, 16]. Find an additive basis for the centers and compute the dimensions of

multilinear components Z(F (l)) ∩ Pn when l = 3, 4.
Denote by vr(f) the set of variables of a homogeneous polynomial f ; i.e., vr(f) is the set of variables

of positive degree in f .
Let A = F (3). Construct an additive basis for Z(A) ∩ Pn(A).
A right commutator word is as usual an element of the shape [a1, b1] . . . [ak, bk], where ai, bi ∈ X and

a1 < b1 < · · · < ak < bk. A right monomial is a word y1y2 . . . yk, where yi ∈ X and y1 < · · · < yk. A right
commutator over Xn is an element of the form [x1y1 . . . yl, t] (l ≥ 1), where yi, t ∈ Xn and y1 < · · · < yl.

Lemma 4.1 [15]. Z(A) = [A,A].

Proof. It is known [2] and easily to verify that Pn(A) is spanned by the right elements of the
shape uv, where u = [a1, b1] . . . [ak, bk] is a right commutator word, v = y1y2 . . . yl is a right monomial,
and {a1, b1, . . . , ak, bk, y1, . . . , yl} = Xn.
Since ax1b ≡ x1ba (mod [A,A]) and [x1y1 . . . yl, t] ∈ [A,A]; therefore,

[x1, t]y1 . . . yl +
l∑
i=1

x1y1 . . . [yi, t] . . . yl ∈ [A,A].

Hence, an arbitrary element p in Pn(A) is represented modulo [A,A] as a linear combination of the
elements of the form

[a1, b1] . . . [ak, bk]x1y1y2 . . . yl.

Thus, p ≡ x1p1 modulo [A,A], where p1 =
∑
i αiwivi and wivi are some right multilinear elements in

x2, . . . , xn. Assume that p ∈ Z(A). Then p1 ∈ Z(A) (it suffices to apply ∂
∂x1
); therefore, p1 ∈ Z∗(A).

Since Z∗(A) = 0 (A is T -prime, i.e., the product of nonzero T -ideals of A is nonzero), p1 = 0 and
p ∈ [A,A]. The lemma is proved.
Lemma 4.2. The following elements form a basis for Z(A) ∩ Pn(A):

[a1, b1] . . . [ak, bk][x1y1 . . . yl, t], where a1 < b1 < · · · < ak < bk < t, y1 < · · · < yl.

Proof. The above elements form a Z-basis:
(1) We prove firstly that each element p ∈ Z(A) ∩ Pn(A) is a linear combination of some Z-basis

elements. Note that every commutator [v, v′] ∈ Pn in monomials of degree ≥ 3 may be written as [vi, xi]
(i ≥ 2). Indeed, if a = a1a2 and x1 ∈ vr(b) then

[a, b] = [a1a2, b] = −[a2b, a1]− [ba1, a2] = [a1, a2b] + [a2, ba1],
and we get the required representation by induction on the degree of a. Now,

[ax1b, y] = [x1ba, y],

since [[a, x1b], y] = 0. Therefore, we may assume that vi = x1v
′
i.

By Lemma 4.1 the monomial v′i may be represented as a linear combination of some generators among
x2, . . . , xn. Thus, we have a representation of p as a combination of elements

[a1, b1] . . . [ak, bk][x1y1 . . . yl, t]

and the right commutator word [x1, x2] . . . [xn−1, xn] with n even. Noting that [a1, b1] . . . [ak, bk][v, t] is
skew-symmetric in a1, b1, . . . , ak, bk, and t, we get the required assertion.
(2) Show that the Z-basis elements are linearly independent. Let a linear combination of the Z-basis

elements with nonzero coefficients be equal to zero. Among the Z-basis elements choose an element b =
[a1, b1] . . . [ak, bk][x1y1 . . . yl, t] such that the number l is maximal and b enters into the linear combination
with a coefficient β. The element b is completely determined by {y1, . . . , yl}. Substituting for y1, . . . , yl
the commutators [xN , xN+1], [xN+1, xN+2], . . . , in which N > n, we get ±βw = 0, where w is a right
commutator word; a contradiction. The lemma is proved.

From Lemma 4.2 and Volichenko’s Lemma we easily deduce
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Lemma 4.3. The center Z(F (4)) modulo T (3) possesses an additive basis of the Z-basis elements
with k ≥ 1:

[a1, b1] . . . [ak, bk][x1y1 . . . yl, t],

where k ≥ 1, a1 < b1 < · · · < ak < bk < t, y1 < · · · < yl.

Proof. Let p ∈ Z(F (4)). Then p ∈ Z(F (3)) + T (3). By Lemma 4.2 p can be written as

p ≡
∑

Y={y1,...,yl}
αY wY [x1y1 . . . yl, t] (mod T

(3)),

where wY is a right commutator word, and wY < t.
Let Z0 be the linear span of the elements mentioned in the lemma. If k ≥ 1 then p ∈ Z0. Hence, we

may assume that

p ≡
∑

Y={y1,...,yl}
αY [x1y1 . . . yl, t] (mod Z0).

Inserting the unity for y1, . . . , yl we get αY [x1, t] ∈ Z(F (4)) which is possible only if αY = 0. Hence,
k ≥ 1 and p ∈ Z0. The lemma is proved.
Corollary [16]. Z(F (4)) = ([xy] · [zt])V + ([xyz])T .
Remark. If A = F(2) is the free metabelian algebra then Z(A) = ([xy] · [zt])V .
Indeed, Z(A) ⊆ ([xy] · [zt])V +T (3) by Lemma 4.3. It follows from [13] that Z(A)∩T (3) = ([xy]2)T =

([xy]2)V . Since [xy]2 ∈ {[xy] · [zt]}V , the required equality holds.
Theorem 4.1. Let A = F (3); cn = dimK Pn(A), and ξn = dimK Z(A) ∩ Pn(A). Then

cn = 2ξn, n ≥ 2.

Proof. Compute the number of Z-basis words. Let n = 2m + 1. Then each basis word is defined
by a choice of the set {y1, . . . , yl} ⊆ {x2, . . . , x2m+1}, where l is odd and 1 ≤ l ≤ 2m− 1. Then

ξ2m+1 =
m−1∑
k≥0

(
2m

2k + 1

)
=

(
2m

1

)
+

(
2m

3

)
+ · · ·+

(
2m

2m− 1
)
= 22m−1.

Since c2m+1 = 2
2m; therefore, c2m+1 = 2ξ2m+1.

If n = 2m then every basis word is defined by {y1, . . . , yl} ⊆ {x2, . . . , x2m}, where l is even and
0 ≤ l ≤ 2m− 2. Then

ξ2m =
m−1∑
k≥0

(
2m− 1
2k

)
=

(
2m− 1
0

)
+

(
2m− 1
2

)
+ · · ·+

(
2m− 1
2m− 2

)
= 22m−2.

Since c2m = 2
2m−1, we have c2m = 2ξ2m. The theorem is proved.

By analogy with Theorem 4.1 we can prove for the numbers cn(A) = dimK Pn(A) and ξn(A) =
dimK Z(A) ∩ Pn(A) that the following hold:

ξn(F
(4))

cn(F (4))
→ 1
2
,

ξn(F
(2))

cn(F (2))
→ 1
2
as n→∞.

Note that the relatively free associative algebra with the identity [xy][zt] = 0 has zero center.
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§ 5. Upon the Center of F (5)
The aim of this section is a description of the T -generators of the center of F (5) and presentation of

an asymptotic estimation of the dimension of Zn(F
(5)). It turns out that the “center is about half of the

algebra.”

5.1. The T -generators of Z(F (5)).

Proposition 5.1. Let p = char(K). Then

Z(F (n)) = (xq)V + Z(F (n)) ∩ T (2),
where q is the least number of the form ps such that ps ≥ n− 1.
Proof. This literally repeats the argument of [9, Theorem 4].
In [7] the hypothesis on the center was formulated:

Z(F (5)) = (h, [x1, . . . , x4])
V + (h′)T if char(K) = 0;

Z(F (5)) = (xp, h, [x1, . . . , x4])
V + (h′)T if char(K) = p ≥ 5.

It was proved therein also that [T (3), a, b] ⊆ T (5) [7, Lemma 2]. Hence, [T (3), a] ⊆ Z(F (5)).
Lemma 5.1. [T (3), a] ⊆ (h, [x1, . . . , x4])V for every a ∈ F (5).
Proof. Indeed, modulo (h, [x1, . . . , x4])

V we have

[[abb] ◦ x, y] ≡ −[[abx] ◦ b, y] = −[[a, b2, x] + [ab] ◦ [bx], y] ≡ 0,
which was required.
Throughout this section, A is the free algebra over a set X in the variety generated by the model

algebra E(2). Since (h′)T in F (5) coincides with the ideal of identities of E(2); therefore, it suffices to
understand that every central element in E(2) is contained in [T (3), A].

Proposition 5.2. Let A be a relatively free algebra of an arbitrary unitarily closed variety. If

f ∈ Z∗(A) and f =∑�i f�iX�i, where 0 
= f�i ∈ Γ(A) and X�i are some right monomials, then f�i ∈ Z∗(A).
Proof. We may assume that f is homogeneous. If x /∈ vr(f) then fx ∈ Z(A). Choose a set 	i of

naturals, which has the maximal sum of indices. Applying the partial derivation operators
(
∂
∂xk

)ik , where
	i = (i1, i2, . . . ), we obtain f�ix ∈ Z(A) or f�i ∈ Z∗(A), which was required.
Thus, the kernel of the algebra is generated by the proper kernel elements. It turns out that there

is no such assertion for the center. In [7, 8] the central polynomials were under study. However, it is
impossible to apply these results directly to the central polynomials, since we have the following

Lemma 5.2. Let f be a basis polynomial of type (2) or (3) in Γ(A) ∩H(A), and f /∈ Z(A). Then
there exist some central polynomials gi ∈ Γ(A) ∩H(A) and ti ∈ X such that

f +
∑
i

giti ∈ Z(A).

Proof. Without loss of generality we may assume that f is of the shape f = vu1 . . . uk, where
v ∈ V (3) and u1, . . . , uk ∈ V (2). Consider [f, t], where t /∈ vr(f):

[f, t] = [vu1 . . . uk, t] = [v, t]u1 . . . uk = [v, t]u1 . . . uk−1[ab] = [v, a]u1 . . . uk−1[bt]

= [([v, a]u1 . . . uk−1)b, t] =
[∑
i

gib, t
]
;

here gi are some proper central polynomials of even degree and a, b ∈ X, as required.
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Lemma 5.3. If g ∈ Γ(A)∩T (4)(A)∩Z(A) is a polynomial of degree s and a ∈ A then there exist some
polynomials gi ∈ Γ(A)∩T (4)(A) of degree ≥ s+1 and a suitable ai ∈ A such that ga+

∑
i giai ∈ [T (3), A].

Proof. Let g be of even degree. Then g ∈ V (4), i.e., g = wu1 . . . uk, where w = [v, x], v ∈ V (3),
u1, . . . , uk ∈ U , x ∈ X. Consider the element

ga = [v, x] · u1 . . . uka = [v · u1 . . . uka, x]− v[a, x]u1 . . . uk = z +
∑
i

giai,

where gi are some proper polynomials (of odd degree), z = [v · u1 . . . uka, x] ∈ [T (3), A].
If g is of odd degree then g = [ϕ, x]u1 . . . uk, where ϕ ∈ Φ, u1, . . . , uk ∈ V (2), and x ∈ X. Consider

the element
ga = [ϕ, x]au1 . . . uk = [ϕa, x]u1 . . . uk − ϕ[a, x]u1 . . . uk.

Since [ϕa, x]u1 . . . uk ∈ [T (3), A] and we can find some proper polynomials gi ∈ ΦUk+1 for ϕ[x, a]u1 . . . uk
so that ga+

∑
i giai ∈ [T (3), A]; therefore, the lemma is proved.

A monomial y1y2 . . . yl is right provided that yi ∈ X and y1 ≤ y2 ≤ · · · ≤ yl.
Introduce the notions of regular elements of first and second types.
The regular elements of first type are the following proper polynomials:
(a) the basis elements of types (2) and (3) (see 1.4);
(b) the basis elements of the shape ϕ;
(c) the basis commutators [abc] of degree 3;
(d) the elements of the form aij , bij , cij referred to in Remark 2;
(e) the right commutator words [y1, t1] . . . [yk, tk] (k ≥ 1), i.e., yi, ti ∈ X and y1 < z1 < · · · < yk < zk.
The regular elements of second type are the following proper polynomials:
(a) the basis elements of types (1) and (4) (see 1.4);
(b) the basis commutators [abcd] of degree 4.

Lemma 5.4. An arbitrary polynomial f modulo [T (3), A] is represented as f ≡∑i fiai, where fi are
some regular elements of first type and ai are some right monomials (it is possible that one of the factors fi
or ui is omitted).

Proof. Write the element f as f =
∑
i gibi, where bi are some right monomials, and gi are some

regular elements of first or second type. If gi is a regular element of second type then gi is central, and
by Lemma 5.3 gibi modulo [T

(3), A] is a linear combination of fiai, where fi are regular elements of first

type, and ai are right monomials; i.e., f ≡
∑
i fiai (mod [T

(3), A]), as required.

Theorem 5.1. Z(A) ∩ T (2) = [T (3), A].
Proof. Let f be a central element. By Lemma 5.4 we may assume that f is written as f =

∑
i fiai,

where fi are some regular elements of first type and ai are some right monomials. Applying suitable
partial derivations and taking into account that the spaces [T (3), A] and Z(A) are invariant with respect
to them, we obtain linear dependence modulo Z(A) of regular elements of fist type.
Show that this assertion fails. If the elements are linearly independent modulo Z(A) then we call

them Z-free.
In [10], it was proved that the basis elements of type (3) of odd degree ≥ 5 are Z-free.
The basis commutators of degree 3 are Z-free (see [7, Lemma 10]) as well.
Verify that the following elements are Z-free:

ϕ(a, b, x, y), ϕ(a, b, y, x) and [a, b][x, y].

In E(2) the equalities hold:

ϕ(e1, e2, e3, e4) = 0, [[e1, e2][e3, e4], e5] 
= 0.
Hence, the following elements should be linearly dependent modulo the center:

ϕ(a, b, x, y), ϕ(a, b, y, x),

but this fails by [10].
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The linear independence of the elements of the shape aij , bij , cijϕ modulo the center was noted in

Remark 2. Finally, a right commutator word does not belong to Z(E(2)). The theorem is proved.

Proposition 5.1 and Theorem 5.1 imply

Corollary. Over a field K of characteristic 0 the center of F (5) as a T -space is generated by the
elements [x1, x2, x3, x4], [[x1, x2, x3] · x4, x5], and [[x1, x2]2, x2].
If p = char(K) ≥ 5 then Z(F (5)) is generated by

xp, [x1, x2, x3, x4], [[x1, x2, x3] · x4, x5], [[x1, x2]
2, x2].

5.2. An asymptotic estimation of ξn/cn. Let A = F (5), ξn = dimK Z(A) ∩ Pn(A), and
cn = dimK Pn(A). In this subsection we assume that a field K is of characteristic 
= 2, 3. Show that
limn→∞ ξn/cn = 1

2 .
Note firstly that by Lemma 5.4

[T (3), A] ⊆ [T (3), X] ⊆
∑
i,j

[fiai, x
j ],

where fi are regular elements of first type, ai are right monomials, and x
j ∈ X.

If deg fi = d ≤ 5 then the number of commutators [fiai, xj ] does not exceed nγdCdn−1 (a polynomial
of 6th degree in n), where γd is the number of regular elements of degree d. Since cn ≈ n2 ·2n−2; therefore,
we may assume that

f =
∑
i,j

αi[fiai, x
j ],

where fi are some regular elements of first type of the following shape:
(1) the right ϕ-words contained in ΦUm;

(2) the right η-words contained in V (3)Um;
(3) the right commutator words [y1, t1] . . . [yk, tk] (k ≥ 3).
Find an upper estimation for Nm of linear generators of the form

[
f
(m)
i ai, x

j
]
, where m = 1, 2, 3.

If m = 3, i.e., f
(m)
i are some right commutator words (or the elements of type (3)) then

N3 ≤ n
∑
k

(
n− 1
k

)
≤ n · 2n−2.

If t ∈ T (3) then [t[ab]c, a] = 0. Hence, the elements of the form [t[y1, t1] . . . [yk, tk] c, x], where t ∈ Φ∪V (3),
are skew-symmetric in y1, t1 . . . yk, tk, and x.

Similarly, if f
(m)
i are the right ϕ-words of the shape ϕ(x1, x2, x3, xi)v

′ or ϕ(x1, x2, xi, x3)v′ then
the number of linear generators of the shape

[
f
(m)
i ai, x

j
]
is equivalent to Cn · 2n−2, where C = const.

An analogous fact holds for the right η-words of the form η+(x2, x1, xi, x
j , x3)v

′, η+(x3, x1, x2, xi, z)v′,
η−(x2, x1, x3, xi, z)v′, η+(x2, x1, x3, xi, z)v, where xi < z < v′.
Hence, without loss of generality we may assume that f

(m)
i are of the shape

ϕ−(y1, y2, yk, yl)v′ or η+(y2, y1, yi, y
j , y3)v

′, (2)

where y1 < y2 < y3 < v′ < xj .

Lemma 5.5. t′ = [t[xn, b]z1 . . . zk, z], where t ∈ T (3), b, z1, . . . , zk, z, xn ∈ Xn, may be represented as
a linear combination of the right elements [fiaixn, x

j ], [gibi, xn], while fi and gi are some elements of the
form (2), fi < xj and ai and bi are some right monomials.

Proof. Since

[t[xnz1 . . . zk, b], z] = [t[xn, b]z1 . . . zk, z] + [txn[z1 . . . zk, b], z],
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by [t[ab]c, a] = 0 and Volichenko’s Lemma we infer that t′ is a linear combination of the elements
[fiaixn, x

j ] and [gi, bixn]. Since the second commutator is linearly expressible by [fiaixn, x
j ] and [gibi, xn],

the second assertion holds.
Prove the linear independence of the right elements. Let∑

i

αi[fiaixn, x
j ] +
∑
k

βk[gkbk, xn] = 0.

If αi0 
= 0 or βk0 
= 0 then assume that the word ai0 
= 0 or bk0 
= 0 is of maximal degree. If ai0 is
of maximal degree then putting ai = xn = 1 we get αi0 = 0; a contradiction. If bk0 is of maximal degree
then we put bk = 1. Then βk0 = 0; a contradiction. The lemma is proved.

The lengthes of ϕ and η are of different parity; therefore, if some monomial ai is taken then the

choice of f
(m)
i is defined by the parity of deg ai, and ai is connected only with one of the elements of

type (2).
Firstly, compute the number N1 of choices of the right elements of the form [fiaixn, x

j ]. A right

monomial ai of length i may be chosen by
(
n−1
i

)
ways, since we need to take i variables in Xn−1. For

definiteness, we take [ϕ−(y1, y2, yk, yl)v′, xj ] from the remaining n−i−1 elements. Given that y1 and y2 are
the least symbols, the number of choices of yk and yl is

(
n−3−i
2

)
. Hence,

N1 =
∑
i

(
n− 3− i
2

)(
n− 1
i

)
=
∑
i≤n−1

(
n− 3− i
2

)(
n− 1

n− 1− i
)
.

Now, by
(
n
k

)
= n
(
n−1
k−1
)
we have

N1 =
∑
i

(
n− 3− i
2

)(
n− 1
i

)
=
∑
i≤n−1

(
n− 3− i
2

)(
n− 1

n− 1− i
)

−1
2

∑
i≤n−1

(n− 3− i)(n− 4− i)
(

n− 1
n− 1− i

)

≈ 1
2

∑
i≤n−1

(n− 1− i)(n− 2− i)
(

n− 1
n− 1− i

)

=
1

2
(n− 1)(n− 2)

∑
i≤n−1

(
n− 3

n− 3− i
)
≈ n2 · 2n−4.

Find the number N2 of choices of the right elements of type [gi, bixn]. A right monomial bi of length i

may be chosen by
(
n−1
i

)
ways. For definiteness, we take η+(y2, y1, yi, y

j , y3)v
′ from the remaining n− i−1

elements. Given that y1, y2, and y3 are the least symbols, the number of choices of yk and yl is
(
n−4−i
2

)
.

Therefore,

N2 =
∑
i

(
n− 4− i
2

)(
n− 1
i

)
≈
∑
i≤n−1

(
n− 3− i
2

)(
n− 1

n− 1− i
)
,

whence N1 +N2 ≈ n2 · 2n−3. Then ξn/cn ≈ [(n2 · 2n−3) : (n2 · 2n−2)] = 1
2 .

Question. Is it true that ξ
(l)
n /c

(l)
n ≈ 1

2 for every l?

From the above results, it is immediate that the algebra over the ring Z
[
1
6

]
is additively torsion-free;

in particular, the additive group of a free Lie nilpotent ring of degree 5 lacks the elements of finite simple
degree ≥ 5. The elements of additive degree 3 in F (4) are known (see [17]).
It is unknown if the additive group of F (5)(Z) contains some elements of order 2 and 3.
Note that Shirshov in [18] proved that the free Lie ring is torsion-free, and existence of elements of

order 3 in the free alternative ring was proved in [19, 20].
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