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FOR RATIONAL FUNCTIONS
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Abstract: We prove some two- and three-point distortion theorems for rational functions that gen-
eralize some recent results on Bernstein-type inequalities for polynomials and rational functions. The
rational functions under study have either majorants or restrictions on location of their zeros. The
proofs are based on the new version of the Schwarz Lemma and univalence condition for regular func-
tions which was suggested by Dubinin.
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1. Introduction and Auxiliary Results

The inequalities for rational functions generalizing the classical polynomial inequalities, as well as
the latter themselves, occurred originally in approximation theory for proving the inverse theorems [1, 2].
At present, these inequalities are of interest in their own right which is witnessed by many recent articles
(see, for instance, [3–9]). Below we will exhibit several classical and new results for polynomials and
rational functions. Let us start with introducing the notations of use in this article. We consider the
rational function

R(z) =
P (z)

n∏

k=1

(z − ak)
,

where P (z) = bmz
m + bm−1zm−1 + · · ·+ b0 is a polynomial of degree m. The Blaschke product

B(z) = Ba(z) ≡
n∏

k=1

1− ākz
z − ak

is defined in the general case for every collection of poles a = (a1, . . . , an), |ak| �= 1, k = 1, . . . , n. In the
problems under consideration, R(z) either plays the role of the extremal function or takes part in the
explicit representation of extremal rational functions. Observe that |(zm−nB(z))′| = d|zm−nB(z)|/d|z| =
m− n+ |B′(z)|.
The Bernstein-type inequalities on the circle and interval are interconnected. For instance, suppose

that ak ∈ C \ [−1, 1], k = 1, . . . , n, and unreal numbers ak from this collection constitute complex
conjugate pairs. Define ck, k = 1, . . . , n, as follows:

ak :=
ck + 1/ck
2

, |ck| < 1, k = 1, . . . , n, (1)

implying that

ck = ak −
√
a2k − 1, k = 1, . . . , n, (2)
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with the appropriate branch of the square root. In this case the positive value

Bn(x) := Re
n∑

k=1

√
a2k − 1
ak − x =

n∑

k=1

1− |ck|2
|ζ − ck|2 , x ∈ [−1, 1] (x = 1/2(ζ + 1/ζ))

is called the Bernstein factor.
In line with [6], put

Mn(ζ) =

( n∏

k=1

(ζ − ck)(ζ − c̄k)
)1/2
,

where the branch of the square root is chosen such that ζnMn(ζ
−1) is an analytic function in some

neighborhood of the closed unit disk, and let

fn(ζ) =
Mn(ζ)

ζnM(ζ−1)
=

n∏

k=1

ζ − ck
1− ζck .

The last equality holds, since, by assumption, ck constitute complex conjugate pairs too.
Consider the following rational analogs of the Chebyshev polynomials of the first, second, third, or

fourth kind (see [6, 10]):

T rn(z) =
1

2
(fn(ζ) + fn(ζ)

−1), (3)

U rn(z) =
fn(ζ)− fn(ζ)−1
ζ − ζ−1 , (4)

Ũ rn(z) =
ζ2fn(ζ)− fn(ζ)−1

ζ2 − 1 , (5)

V rn (z) =
ζfn(ζ) + fn(ζ)

−1

ζ + 1
, (6)

W rn(z) =
ζfn(ζ)− fn(ζ)−1

ζ − 1 . (7)

If all ak in (3)–(7) tend to infinity, then we obtain the Chebyshev polynomials of the first (Tn), second
(Un−1 and Un), third (Vn), and fourth (Wn) kind respectively. Moreover, observe that

2(z2 − 1)U rn(z)2 + 1 =
1

2
(fn(ζ)

2 + fn(ζ)
−2), (8)

2(z2 − 1)Ũ rn(z)2 + 1 =
1

2
((ζfn(ζ))

2 + (ζfn(ζ))
−2), (9)

(z + 1)V rn (z)
2 − 1 = 1

2
(ζfn(ζ)

2 + (ζfn(ζ)
2)−1), (10)

(z − 1)W rn(z)2 + 1 =
1

2
(ζfn(ζ)

2 + (ζfn(ζ)
2)−1). (11)

If there are no additional constraints on the poles, except for the fact that they do not lie on the
considered compact sets (the circle or the interval), then the Bernstein-type inequalities [3, Theorem 7.1.7
and Corollary 7.1.9] are valid. Namely, if the prescribed poles a1, . . . , an of R do not lie on the unit circle,
then at points of the circle |z| = 1 the following inequality holds:

|R′(z)| ≤ max
( ∑

|ak|>1

|ak|2 − 1
|ak − z|2 ,

∑

|ak|<1

1− |ak|2
|ak − z|2

)

max
|z|=1

|R(z)|.
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If a1, . . . , an do not belong to [−1, 1], then at points of this interval the estimate is valid:

|R′(x)| ≤ max
( n∑

k=1

1− |ck|2
|ck − z|2 ,

n∑

k=1

|ck|−2 − 1
|c−1k − z|2

)max
[−1,1]

|R(x)|
√
1− x2 ,

where ak and ck, k = 1, . . . , n, satisfy (1) and (2). Equality is attained in the first case for the Blaschke
product with the poles located strictly beyond or inside the circle, while in the second case it is attained
for the function T rn defined above.
In [4, Theorem 2] Dubinin obtained the elaboration of the above. If, given R, we define

L = L(R) := min
|z|=1
ReR(z), H = H(R) := max

|z|=1
ReR(z)

and put
Λ(R, ak) := lim

z→ak
|zn−mR(z)/B(z)|, k = 1, . . . , n;

then
| Im(zR′(z))|

√
(ReR(z)− L)(H − ReR(z)) ≤ |(z

m−nB(z))′|+ min
1≤l≤n

|al|2 − 1
|1− ālz|2

[√
2Λ(R, al)

H − L − 1
]

at every point on the circle |z| = 1 in which ReR(z) differs from L(R) and H(R) for m ≥ n and |ak| ≥ 1,
k = 1, . . . , n. For instance, if n = 1, a1 = a > 1, and |R(x)| ≤ 1, −1 ≤ x ≤ 1, then we have the Vidensky
inequality

|R′(x)|
√
1− x2 ≤ m− 1 +

√
a2 − 1
a− x , −1 < x < 1.

The next two inequalities complement the Turan and Lax inequalities [7, Lemma 4 and Theorem 4]
(also see, for instance, [4]). If the rational function R with prescribed poles a1, . . . , an has exactly m
zeros belonging to the disk |z| ≤ 1, then

Re
zR′(z)
R(z)

≥ 1
2

(

m− n+ zB
′(z)
B(z)

)

at the points on the circle |z| = 1 different from zeros. If all zeros lie in the complement to the unit disk,
then the reverse inequality is valid:

Re
zR′(z)
R(z)

≤ 1
2

(

m− n+ zB
′(z)
B(z)

)

.

Note also the result of [11, Theorem 5] as an example of the Bernstein-type inequality for polynomials
with a curved majorant on the interval. If a real polynomial P of degree m satisfies the condition

|P (x)|
√
1− x2 ≤ 1, x ∈ [−1, 1];

then
|xP (x)− (1− x2)P ′(x)| ≤ (m+

√
2−m|bm|)

√
1− (1− x2)P 2(x)

at the points x ∈ [−1, 1]; equality is attained in the case of the polynomials Um of the second kind.
Other inequalities for polynomials and rational functions with majorants on the interval can be found,
for instance, in [10, 12, 13].
In the recent articles [14, 15], where some approaches to obtaining the polynomial inequalities are

developed on using the methods and results of the geometric theory of functions of complex variables,
the attention was focused on multipoint distortion theorems for algebraic polynomials. This topic was
covered partially in [16]. The goal of the present article is to obtain similar inequalities for rational
functions with constraints on zeros which are normed on the circle or interval. The key role in the proofs
is played by the following
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Lemma 1 [15, Lemma 1]. Let f be a regular function in the unit disk |z| < 1 satisfying the condition
|f | < 1. Suppose that f and its derivative are also defined at the different boundary points zk such that
wk = f(zk), k = 1, 2, 3, are located on the unit circle. Then

∣
∣
∣
∣

3∏

k=1

f ′(zk)
∣
∣
∣
∣ ≥
∣
∣
∣
∣
(w1 − w2)(w2 − w3)(w3 − w1)
(z1 − z2)(z2 − z3)(z3 − z1)

∣
∣
∣
∣.

Equality is attained for linear-fractional automorphisms f of the unit disk and arbitrary different points zk
on the circle |z| = 1, k = 1, 2, 3.
Lemma 2 [14, Theorem A]. Let w = f(z) be a regular function on the open set B ⊂ Cz and all

limit values of |f(z)| be greater than or equal to unity as z tends to the boundary of B. Suppose that
w = f(z) sends a unique point z0 of B into the origin of coordinates; moreover, f ′(z0) �= 0. Then w = f(z)
conformally and univalently sends the connected component of B̃ := {z ∈ B : |f(z)| �= 1} containing z0
onto the disk |w| < 1 and f(D) ⊂ {w : |w| > 1} for each other connected component D of B̃.
Denote by R the class of functions w = f(z) for each of which there exists an open set G = G(f),

0 ∈ G ⊂ C, on which w = f(z) is regular; moreover,

f(z) =
∞∑

k=1

dkz
k, d1 �= 0,

in some sufficiently small neighborhood of z = 0, while

lim
z→ζ
z∈G
|f(z)| ≤ |ζ|2

for every point ζ of the boundary of G. Let R1 be the subclass of functions from R for which G(f)
belongs to the disk |z| < 1. Put

G0(f) =

{

z ∈ G(f) :
∣
∣
∣
∣
z2

f(z)

∣
∣
∣
∣ < 1

}

, f ∈ R1.

Lemma 3 [14, Theorem 7]. Let w = f(z) belong to R1 and let some different points zk, |zk| = 1,
k = 1, 2, be the supports of the boundary elements of G0(f) whose neighborhoods are valid:

f(z) = wk + b1k(z − zk) + o(z − zk) as z → zk, z ∈ G0(f),

where |wk| = 1, k = 1, 2. Then
∣
∣
∣
∣
2w1
z1
− b11

∣
∣
∣
∣

∣
∣
∣
∣
2w2
z2
− b12

∣
∣
∣
∣ ≤
∣
∣
∣
∣
w1z

2
2 − w2z21
z2 − z1

∣
∣
∣
∣

2

, (12)

∣
∣
∣
∣
2w1
z1
− b11

∣
∣
∣
∣

t21
∣
∣
∣
∣
2w2
z2
− b12

∣
∣
∣
∣

t22

≤
√
|d1|
∣
∣
∣
∣
z2 − z1

w1z
2
2 − w2z21

∣
∣
∣
∣

2t1t2

(13)

hold for arbitrary reals t1 and t2 such that t1+t2 = 1. Equality in (12) and (13) is attained for f(z) ≡ d1z,
|d1| = 1.
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2. The Main Results

Theorem 1. Let a rational function R with prescribed poles a1, . . . , an such that |ak| ≥ 1 have
exactly m zeros, all of them lying in the disk |z| ≤ 1. Then, for arbitrary points zk, k = 1, 2, 3, from the
unit circle |z| = 1, different from zeros and poles of R, the following inequality is valid:

3∏

k=1

(

Re
zkR

′(zk)
R(z)

− 1
2

(

m− n+ zkB
′(zk)

B(zk)

))

≥ 1

24
√
3

3∏

k=1

∣
∣
∣
∣
R(zk)

R(zk)

zn−mk

B(zk)
− R(zk+1)
R(zk+1)

zn−mk+1

B(zk+1)

∣
∣
∣
∣, (14)

where z4 = z1. Equality in (14) is attained when the zeros of R belong to the circle |z| = 1.
Proof. Consider the function

f(z) =
R(z)

R(1/z̄)

zn−m

B(z)

regular in the disk |z| ≤ 1 and satisfying the conditions of Lemma 1 for arbitrary different points zk,
k = 1, 2, 3, on the circle |z| = 1. Direct calculations yield

f ′(z) =
R′(z)R(1/z̄) +R(z)R′(1/z̄)/z2

(R(1/z̄))2
zn−m

B(z)
+
R(z)

R(1/z̄)

(
zn−m

B(z)

)′
,

whence

|f ′(zk)| =
∣
∣
∣
∣
R′(zk)R(zk) +R(zk)R′(zk)/z2k

(R(zk))2

zn−mk

B(zk)
+
R(zk)

R(zk)

(
zn−mk

B(zk)

)′∣∣
∣
∣

=

∣
∣
∣
∣
R(zk)z

n−m−1
k

R(zk)B(zk)

∣
∣
∣
∣

∣
∣
∣
∣
zkR

′(zk)
R(zk)

+
zkR′(zk)
R(zk)

−
(

m− n+ zkB
′(zk)

B(zk)

)∣
∣
∣
∣

=

∣
∣
∣
∣2Re

zkR
′(zk)

R(zk)
−
(

m− n+ zkB
′(zk)

B(zk)

)∣
∣
∣
∣ = 2Re

zkR
′(zk)

R(zk)
−
(

m− n+ zkB
′(zk)

B(zk)

)

.

The last equality is valid by, for instance, [4, Lemma 3]. Now,

|f(zk)− f(zk+1)| =
∣
∣
∣
∣
R(zk)

R(zk)

zn−mk

B(zk)
− R(zk+1)
R(zk+1)

zn−mk+1

B(zk+1)

∣
∣
∣
∣, k = 1, 2, 3. (15)

Application of Lemma 1 and the Schur inequality

|(z1 − z2)(z2 − z3)(z3 − z1)| ≤ 3
√
3 (16)

completes the proof of (14). The case of equality can be checked directly. �
Theorem 2. Let a rational function R with prescribed poles a1, . . . , an such that |ak| ≥ 1 have

exactly m zeros, all of them lying in the disk |z| ≤ 1. Then, for arbitrary points zk, k = 1, 2, of the unit
circle |z| = 1, different from zeros and poles of R, either the inequality

Re
zkR

′(zk)
R(zk)

≥ 1
2

(

m− n+ 1 + zkB
′(zk)

B(zk)

)

(17)

holds in at least one of them, or the following inequalities are valid:
(

m− n+ 1 + z1B
′(z1)

B(z1)
− 2Re z1R

′(z1)
R(z1)

)(

m− n+ 1 + z2B
′(z2)

B(z2)
− 2Re z2R

′(z2)
R(z2)

)

≤
∣
∣
∣
∣
zn−m−11 R(z1)R(z2)B(z2)− zn−m−12 R(z2)R(z1)B(z1)

R(z1)R(z2)B(z1)B(z2)(z1 − z2)
∣
∣
∣
∣, (18)

(

m− n+ 1 + z1B
′(z1)

B(z1)
− 2Re z1R

′(z1)
R(z1)

)t21(

m− n+ 1 + z2B
′(z2)

B(z2)
− 2Re z2R

′(z2)
R(z2)

)t22

≤
√∣
∣
∣
∣
b0

bm

∣
∣
∣
∣

∣
∣
∣
∣

R(z1)R(z2)B(z1)B(z2)(z1 − z2)
zn−m−11 R(z1)R(z2)B(z2)− zn−m−12 R(z2)R(z1)B(z1)

∣
∣
∣
∣

2t1t2

, (19)
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where t1 and t2 are arbitrary reals such that t1 + t2 = 1. Equality in (18) and (19) is attained when the
zeros of R belong to |z| = 1.
Proof. Consider the function

f(z) =
R(z)

R(1/z̄)

zn−m+1

B(z)

and put g(z) = z2/f(z). If at some point zk, k = 1, 2, the derivative of g(z) exists and this point does
not belong to the boundary of the set G0(f), then by Lemma 2

0 ≥ d|g|
d|z|(zk) = 2− |f

′(zk)|.

After calculations similar to those in the proof of Theorem 1, we arrive at (17). If at both points the
derivative of g(z) exists and the inequality reverse to (17) holds, then ζk ∈ ∂G0(f), k = 1, 2; and while (12)
and (13) imply (18) and (19) respectively. The points where g(z) is not differentiable constitute a finite
set, and the sought inequalities in these points are obtained by passage to the limit. The case of equality
is checked by direct calculations. �
Theorem 3. Let a rational function R with prescribed poles a1, . . . , an such that |ak| ≥ 1 have

exactly m zeros, all of them lying in |z| ≥ 1. Then, for arbitrary points zk, k = 1, 2, 3, of the unit circle
|z| = 1, different from zeros and poles of R, the following inequality is valid:

3∏

k=1

(
1

2

(

m− n+ zkB
′(zk)

B(zk)

)

− Re zkR
′(zk)
R(z)

)

≥ 1

24
√
3

3∏

k=1

∣
∣
∣
∣
R(zk)

R(zk)

B(zk)

zn−mk

− R(zk+1)
R(zk+1)

B(zk+1)

zn−mk+1

∣
∣
∣
∣, (20)

where z4 = z1. Equality in (20) is attained when the zeros of R belong to |z| = 1.
Proof. Consider the function

f(z) =
R(1/z̄)

R(z)
zm−nB(z)

regular in the disk |z| ≤ 1. It is easy to see that f(z) satisfies the conditions of Lemma 1 for arbitrary
different points zk, k = 1, 2, 3, on the circle |z| = 1. Direct calculations yield

f ′(z) = −R(z)R
′(1/z̄)/z2 +R′(z)R(1/z̄)

R2(z)
zm−nB(z) +

R(1/z̄)

R(z)
(zm−nB(z))′,

whence

|f ′(zk)| =
∣
∣
∣
∣
R(1/zk)

R(zk)

(
zm−nk B(zk)

)′ − R(zk)R
′(1/zk)/z2k +R

′(zk)R(1/zk)
R2(zk)

zm−nk B(zk)

∣
∣
∣
∣

=

∣
∣
∣
∣
R(zk)

R(zk)
B(zk)z

m−n−1
k

∣
∣
∣
∣

∣
∣
∣
∣

(

m− n+ zkB
′(zk)

B(zk)

)

−
(
zkR

′(zk)
R(zk)

+
zkR′(zk)
R(zk)

)∣
∣
∣
∣

=

∣
∣
∣
∣

(

m− n+ zkB
′(zk)

B(zk)

)

− 2Re zkR
′(zk)

R(zk)

∣
∣
∣
∣ =

(

m− n+ zkB
′(zk)

B(zk)

)

− 2Re zkR
′(zk)

R(zk)
.

The latter is valid by [4, Lemma 3] for instance. Application of (15), Lemma 1, and Schur’s inequality (16)
completes the proof of (20). The case of equality can be checked directly. �
Remark. Observe that an analog of Theorem 2 also holds in the case when the zeros of the rational

function lie in the complement to the unit disk. It is sufficient to repeat the arguments of the proof of
Theorem 2 for the function

f(z) =
R(1/z̄)

R(z)
B(z)zm−n+1.
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Henceforth
Ψ(ω) = ω +

√
ω2 − 1, ω ∈ C \ [−1, 1],

is one of the branches of the inverse Joukowsky function, Φ(∞) = ∞. Speaking of the values of Ψ
on [−1, 1], for definiteness we mean the values on the upper face of the cut.
Assuming that the points al are different from zeros of R and predominantly following the article [4],

for the fixed number l, 1 ≤ l ≤ n, on the open set G = {z : |z| < 1, R(z) +R(1/z̄) /∈ [−1, 1], |F (z)| �= 1}
consider the function

w = F (z) ≡ zn−m
n∏

k=1
k �= l

z − ak
1− zāk [Φ(R(z) +R(1/z̄))]

−1,

where ξ = Φ(ζ) is the unique branch of the composite function

ξ = Ψ(ζ1) = ζ1 +
√
ζ21 − 1, ζ1 =

ζ −H − L
H − L ,

conformally and univalently sending the exterior of the interval γ := [2L, 2H] onto the exterior of the
unit disk |ξ| > 1 so that Φ(∞) = ∞ and Φ(2L) = −1. The function F is regular on G; moreover, F
sends the point 1/āl, and only it, to the origin of coordinates. Now, the circle |ω| = 1 is sent to the circle
|w| = 1 in the sense of boundary correspondence and all points of the boundary of G are mapped into
the points within |w| ≥ 1.
Introduce the standard notation [x]+ = max{x, 0} and consider the linear-fractional mapping χ of

the unit disk onto itself sending the points wk, k = 1, 2, 3, into the points zk, k = 1, 2, 3. It is easy to
verify that

1

|(w1 − w2)(w2 − w3)(w3 − w1)| =

∣
∣
3∏

k=1

χ′(wk)
∣
∣

|(z1 − z2)(z2 − z3)(z3 − z1)| .

Theorem 4. For every rational function R with prescribed poles a1, . . . , an, |ak| ≥ 1, k = 1, . . . , n,
m ≥ n, for arbitrary points zk, k = 1, 2, 3, of the unit circle |z| = 1 in which ReR(z) is different from L(R)
and H(R), and 1 ≤ l ≤ n, the following inequality is valid:

3∏

k=1

[ | Im(zkR′(zk))|√
(ReR(zk)− L(R))(H(R)− ReR(zk))

− ∣∣(zm−nk B(zk)
)′∣∣+

|al|2 − 1
|1− ālzk|2

]+

≤
∣
∣
∣
∣
(F (z1)− F (z2))(F (z2)− F (z3))(F (z3)− F (z1))

(z1 − z2)(z2 − z3)(z3 − z1)
∣
∣
∣
∣. (21)

Equality in (21) is attained in the case R(z) = αzm−nB(z), where α is an arbitrary real.
Proof. By Lemma 2 G consists of finitely many domains {G̃} with piecewise smooth boundaries.

If G̃ does not contain 1/āl, then F (G̃) lies outside the unit disk; and if 1/āl ∈ G, then F (z) conformally
and univalently sends the domain G̃ onto the unit disk |w| < 1.
By direct calculations, we obtain

∂|F |
∂|z| =

∂

∂|z|
∣
∣
∣
∣z
n−m

n∏

k=1
k �=l

z − ak
1− zāk [Φ(R(z) +R(1/z̄))]

−1
∣
∣
∣
∣

= − ∂
∂|z|
∣
∣
∣
∣z
m−n

n∏

k=1

1− ākz
z − ak

∣
∣
∣
∣−

∂

∂|z|
∣
∣
∣
∣
z − al
1− ālz

∣
∣
∣
∣+

∣
∣
∣
∣
dΦ(R(z) +R(1/z̄))

dz

∣
∣
∣
∣

= −|(zm−nB(z))′|+ |al|
2 − 1

|1− ālz|2 +
| Im(zR′(z))|

√
(ReR(z)− L)(H − ReR(z)) .
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If one of the points zk is regular for F (z) on the circle |z| = 1 and simultaneously |F (G̃)| lies outside U ,
then

∂|F |
∂|z| (zk) ≤ 0.

In this case the assertion of the theorem is obvious. Let all three points zk, k = 1, 2, 3, lie on the

boundary of G̃ which contains 1/āl. Applying Lemma 1 to the superposition F
−1 ◦ χ−1, we obtain the

sought inequality. The case of equality can be checked directly. �
Introduce the function

w = F1(z) = z
n−m

n∏

k=1

1− zc̄k
z − ck

[

Ψ

(

R

(
1

2

(

z +
1

z

)))]−1

on the open set G =
{
z : |z| < 1, R(12(z + 1/z)

)
/∈ [−1, 1], |F1(z)| �= 1

}
.

Theorem 5. For every real rational function R with prescribed finite poles a1, . . . , an, m ≥ n,
satisfying the condition

|R(x)| ≤ 1, x ∈ [−1, 1],
for arbitrary points xk ∈ (−1, 1), R2(xk) �= 1, k = 1, 2, 3, and 1 ≤ l ≤ n, the following inequality is valid:

3∏

k=1

[ |R′(xk)|
√
1− x2k

√
1−R2(xk)

−m+ n−Bn(xk) + Re
√
a2l − 1
al − xk

]+

≤
∣
∣
∣
∣
(F̃1(Ψ(x1))− F̃1(Ψ(x2)))(F̃1(Ψ(x2))− F̃1(Ψ(x3)))(F̃1(Ψ(x3))− F̃1(Ψ(x1)))

(Ψ(x1)−Ψ(x2))(Ψ(x2)−Ψ(z3))(Ψ(x3)−Ψ(x1))
∣
∣
∣
∣, (22)

where F̃1(z) = F1(z)(z − cl)(1− zc̄l). Equality in (22) is attained in the case R(z) = T rn(z).
Proof. By Lemma 2, G consists of finitely many domains {G̃} with piecewise smooth boundaries.

If G̃ does not contain cl, then F̃1(G̃) lies outside the unit disk; and if cl ∈ G, then F̃1(z) conformally and
univalently sends G̃ onto the unit disk. If one of the points zk = Ψ(xk) is regular for F̃1(z) on the circle

|z| = 1 and simultaneously |F̃1(G̃)| lies outside the unit disk, then
∂|F̃1|
∂|z| (zk) ≤ 0.

In this case the assertion of the theorem is obvious.
Let all three points zk = Ψ(xk), k = 1, 2, 3, lie on the boundary of G̃ which contains the origin of

coordinates. Direct calculations and application of Lemma 1 to F̃−11 ◦ χ−1 yield the sought inequality.
The case of equality follows from the fact that if R(z) = T rn(z), then F̃1(z) ≡ (z − cl)(1− zc̄l).
As regards zF (z) and zF1(z), the analogs of Theorem 2 follow from Lemma 3 for rational functions

satisfying the conditions of Theorems 4 and 5. �
Now, applying Theorem 5 to the functions

R1(z) = 2(1− z2)R2(z)− 1, R2(z) = (z + 1)R2(z)− 1, R3(z) = (1− z)R2(z)− 1
and, instead of F1, taking the functions

F2(z) = z
2n−2m−2

n∏

k=1

(
1− zc̄k
z − ck

)2[

Ψ

(

R1

(
1

2

(

z +
1

z

)))]−1
,

F3(z) = z
2n−2m−1

n∏

k=1

(
1− zc̄k
z − ck

)2[

Ψ

(

R2

(
1

2

(

z +
1

z

)))]−1
,

F4(z) = z
2n−2m−1

n∏

k=1

(
1− zc̄k
z − ck

)2[

Ψ

(

R3

(
1

2

(

z +
1

z

)))]−1

considered on the corresponding open sets G, we obtain the following corollaries. The cases of equality
ensue from (8)–(11).
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Corollary 1. For every real rational function R with prescribed finite poles a1, . . . , an, m ≥ n,
satisfying the condition

|R(z)|
√
1− x2 ≤ 1, x ∈ [−1, 1],

for arbitrary points xk ∈ [−1, 1], R2(xk)
(
1− x2k

) �= 1, k = 1, 2, 3, and 1 ≤ l ≤ n, the following inequality
is valid:

3∏

k=1

[∣∣xkR(xk)−
(
1− x2k

)
R′(xk)

∣
∣

√
1− (1− x2k

)
R2(xk)

−m+ n− 1−Bn(xk) + 1
2
Re

√
a2l − 1
al − xk

]+

≤ 1
8

∣
∣
∣
∣
(F̃2(Ψ(x1))− F̃2(Ψ(x2)))(F̃2(Ψ(x2))− F̃2(Ψ(x3)))(F̃2(Ψ(x3))− F̃2(Ψ(x1)))

(Ψ(x1)−Ψ(x2))(Ψ(x2)−Ψ(z3))(Ψ(x3)−Ψ(x1))
∣
∣
∣
∣, (23)

where F̃2(z) = F2(z)(z − cl)(1− zc̄l). Equality in (23) is attained if R(z) = U rn(z) or R(z) = Ũ rn(z).
Corollary 2. For every real rational function R with prescribed finite poles a1, . . . , an, m ≥ n,

satisfying the condition

|R(x)|
√
1 + x

2
≤ 1, x ∈ [−1, 1],

for arbitrary points xk ∈ [−1, 1], (1 + xk)R2(xk) �= 2, k = 1, 2, 3, and 1 ≤ l ≤ n, the following inequality
is valid:

3∏

k=1

[ |R(xk) + 2(1 + xk)R′(xk)|
√
1− xk√

2− (1 + xk)R2(xk)
− 2m+ 2n− 1− 2Bn(xk) + Re

√
a2l − 1
al − xk

]+

≤
∣
∣
∣
∣
(F̃3(Ψ(x1))− F̃3(Ψ(x2)))(F̃3(Ψ(x2))− F̃3(Ψ(x3)))(F̃3(Ψ(x3))− F̃3(Ψ(x1)))

(Ψ(x1)−Ψ(x2))(Ψ(x2)−Ψ(z3))(Ψ(x3)−Ψ(x1))
∣
∣
∣
∣, (24)

where F̃3(z) = F3(z)(z − cl)(1− zc̄l). Equality in (24) is attained if R(z) = V rn (z).
Corollary 3. For a real rational function R with prescribed finite poles a1, . . . , an, m ≥ n, satisfying

the condition

|R(x)|
√
1− x
2
≤ 1, x ∈ [−1, 1],

for arbitrary points xk ∈ [−1, 1], (1− xk)R2(xk) �= 2, k = 1, 2, 3, and 1 ≤ l ≤ n, the following inequality
is valid:

3∏

k=1

[ |R(xk) + 2(1− xk)R′(xk)|
√
1 + xk√

2− (1− xk)R2(xk)
− 2m+ 2n− 1− 2Bn(xk) + Re

√
a2l − 1
al − xk

]+

≤
∣
∣
∣
∣
(F̃4(Ψ(x1))− F̃4(Ψ(x2)))(F̃4(Ψ(x2))− F̃4(Ψ(x3)))(F̃4(Ψ(x3))− F̃4(Ψ(x1)))

(Ψ(x1)−Ψ(x2))(Ψ(x2)−Ψ(z3))(Ψ(x3)−Ψ(x1))
∣
∣
∣
∣, (25)

where F̃4(z) = F4(z)(z − cl)/(1− zc̄l). Equality in (25) is attained if R(z) =W rn(z).
Remark. The assertions complementing the inequalities in Corollaries 1–3 can also be obtained by

the same arguments as in the proof of Theorem 6, applied to the following functions (cf. [11, 12, 16]):

F5(z) = z
n−m−1

n∏

k=1

1− zc̄k
z − ck

[

Ψ

(
i

2

(

z − 1
z

)

R

(
1

2

(

z +
1

z

)))]−1
,

F6(z) = z
n−m

2n∏

k=1

1− z¯̂ck
z − ĉk

[

Ψ

(
1

2

(

z +
1

z

)

R

(
1

2

(

z2 +
1

z2

)))]−1
,

where ĉk =
√
ck for k = 1, . . . , n and ĉk = −ĉk−n for k = n+ 1, . . . , 2n.
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