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COMPRESSED ZERO-DIVISOR GRAPHS
OF FINITE ASSOCIATIVE RINGS
E. V. Zhuravlev and A. S. Monastyreva UDC 512.55

Abstract: We study the compressed zero-divisor graph of a finite associative ring R. In particular, we
describe commutative finite rings with compressed zero-divisor graphs of order 2. Moreover, we find all
graphs of order 3 that are the compressed zero-divisor graphs of some finite rings.
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1. Introduction

All rings under consideration in the article are associative. Throughout F' = GF(q) is a finite ring,
q =p", with p a prime, Z, is the residue ring modulo n, and |M| is the size of a finite set M.

Let R be an associative finite ring. Given = € R, put I(z) = {a € R; az = 0} and r(z) = {a € R;
za = 0}. Let D(R) be the set of (one- and two-sided) zero divisors of R and let D(R)* = D(R) \ {0}.
Put Ann(R) = {a € R; aR = Ra = (0)} and r(R) = {a € R; Ra = (0)}, I(R) = {a € R; aR = (0)}.
By a local ring we mean a finite unital ring R such that the quotient ring R/J(R) is a field. The ring
of all n x n-matrices with entries in R will be denoted by M,,(R).

An element e € R is called an idempotent of R if e = 2. A system of nonzero idempotents e, ..., e
(k > 2) of a ring R is called orthogonal if e;e; = eje; = 0 for every pair of distinct numbers 7,5 €
{1,2,...,k}. Furthermore, let R be an arbitrary ring (possibly, without unity) and let e be a nontrivial
idempotent of R, i.e. an idempotent different from the unity (if it exists) and zero. Put

eRe = {ere; r € R}, eR(1—e)={er —ere; r € R},

(1—e)Re={re—ere; re R}, (1—e)R(1—e)={r—re—er+ere; r € R}.

Then the additive ring of R admits the following expansion, called the two-sided Pierce decomposition
(see [1]):
R=eRe+eR(1—e)+ (1 —e)Re+ (1 —e€)R(1—e).

Assume that the additive group of a ring R decomposes into the direct sum of its additive sub-
groups A;, wherei =1,...,nand n > 2,i.e., R= A; +---+ A,. If all subgroups A; are two-sided ideals
of R then the ring R is called decomposable and we write R= A1 @ --- ® A,,.

A graph G is called connected if each pair of its distinct points is joined by a simple chain. A graph
is called finite if its vertices and the edge sets are finite. The order of a finite graph is the number of its
vertices. A complete n-vertex graph K, is a graph (without edges and multiple edges) with n vertices
in which each vertex is adjacent to any other vertex in this graph. A null-graph E,, is a graph consisting
of m isolated vertices. A bipartite graph G is a graph whose vertex set V can be partitioned into two
disjoint subsets V; and V5 so that each edge in G joins vertices from different subsets. If a bipartite
graph G contains all edges joining each vertex of a set V; to every vertex in V5 then this graph is called
complete bipartite. Complete bipartite graphs are denoted by K, ,, where n = |Vj| and m = |V3|.
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The zero-divisor graph I'(R) of a ring R is the graph whose vertices are nonzero zero divisors of the
ring (one- and two-sided), and two different vertices x and y are joined by an edge if and only if zy =0
or yr = 0.

These graphs were defined by Anderson and Livingston in [2]. To describe the rings whose zero-
divisor graph satisfies a certain condition it has become one of the directions of investigations in this
area. For example, full description was obtained of rings with planar zero-divisor graphs [3-6], rings
having zero-divisor Euler graphs [7], and finite rings with complete bipartite graphs [8]. In [9,10],
description was obtained of the varieties of rings in which finite rings with isomorphic zero-divisor graphs
are isomorphic to each other.

The geometric depiction of the zero-divisor graph is rather complicated even for rings of small order.
Therefore, it is necessary to partition the vertex set of the graph into cosets so that the impression
of the structure of the graph as a whole be preserved. In [11,12], Bloomfield and Wickham proposed
some method for solving this problem for commutative rings. In this article, we extend their approach
by generalizing it to the noncommutative case.

Introduce the equivalence on D(R)* as follows:

Vz,y € D(R)* z~y<l(x)Ur(x)=I1y)Ur(y).

Let [z] be a coset of x € D(R)*. If a € [z], b € [y], and x,y € D(R)*; then, obviously, ab = 0 or ba = 0 if
and only if zy = 0 or yx = 0.

Proposition 1. Let R be an arbitrary ring and let x € D(R)*. Then
(1) if 22 = 0 then yz = 0 or zy = 0 for any y, z € [x];
(2) if 2 # 0 then yz # 0 and zy # 0 for y, z € [x].

PROOF. Let 22 = 0. Then z € l(z)Ur(z). If y € [z] then x € [(z)Ur(z) = I(y)Ur(y), and so zy = 0
or yx = 0. Therefore,

yel(z)ur(z)=1(y) Ur(y),
and so y? = 0. Further, let y, z € [z]. Then

y) Ur(y) = 1(z) Ur(2),

and since y? = 0, we have y € [(2) Ur(z). Consequently, yz = 0 or zy = 0.
Assume that 2 # 0 and y, z € [x]. Suppose the contrary: yz = 0 or zy = 0. Then

yel(z)Ur(z) =1l(y)Ur(y)

and y? = 0. Since y? = 0; therefore, y € I(y) Ur(y) = I(z) Ur(z), and so xy = 0 or yz = 0. Hence,
z €1l(y)Ur(y) = I(x) Ur(x), and so z? = 0; a contradiction. [J

Given a ring R, denote by I'.(R) the graph with vertex set {[z]; z € D(R)*} whose every two (not
necessarily distinct) vertices [x] and [y] are joined by an edge if and only if zy = 0 or yz = 0. We will
refer to I'_(R) as the compressed zero-divisor graph of R.

Proposition 1 implies that all vertices in I'«.(R) fall into two types. If 2 = 0 then [z] is a vertex with
a loop; if #2 # 0 then [z] is a vertex without any loop. Knowing the size of each coset [z], it is always
possible to pass from the compressed zero-divisor graph to the conventional zero-divisor graph. Therefore,
in studying the properties of the compressed zero-divisor graph I'.(R), we can use the properties of I'g.
Moreover, the nilpotent elements of nilpotency index 2 are distinguished by a loop in the compressed
graph. In contrast to I'(R), the compressed graph I'.(R) is depicted more compactly and transparently.
For example, we can estimate the maximal size number of elements in any system of pairwise orthogonal
idempotents of a ring R from its compressed zero-divisor graph since, obviously, idempotents generate
cosets without any loop. Moreover, the pairwise distinct idempotents belong to different cosets pairwise
adjacent to each other. The form of the compressed zero-divisor graph makes it easy to determine
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whether the annihilator of the ring is zero because each nonzero element of the annihilator generates
a coset adjacent to all remaining vertices in the compressed zero-divisor graph of this ring.

The present article deals with associative finite rings whose compressed zero-divisor graphs have
at most three vertices. Namely, we find the graphs containing at most three vertices that can be realized as
the compressed zero-divisor graphs of some finite associative ring. We also describe the finite commutative
rings whose compressed zero-divisor graph consists of two vertices one of which is with a loop and the
other is without any loop.

2. Rings with Compressed Zero-Divisor Graphs of Order 1 or 2

It was proved in [2,13] that the zero-divisor graph of a finite associative ring is connected. Conse-
quently, the compressed zero-divisor graph of a finite associative ring is connected as well.

Theorem 1. Let R be a finite ring. The graph I'..(R) has order 1 if and only if one of the following
conditions holds:

(1) R is a nilpotent ring with zero multiplication;

(2) R is a local ring and J(R)? = (0).

PRrROOF. Let the graph I'.(R) of a finite ring R consist of a single vertex [a]. If [a] is without any
loop; then, since the graph I'(R) is connected, a is a unique nonzero zero divisor. In this case a® = 0,
and so [a] is with a loop; a contradiction.

Thus, let [a] be a vertex with a loop. Then the two conditions are fulfilled in R:

(1) zy = 0 or yx = 0 for all z,y € D(R);

(2) 22 = 0 for every z € D(R).

Since all elements in a finite ring without unity are zero divisors (see [1]), R either has a unity or
is a nilpotent ring. If R has a unity then R contains no orthogonal idempotents since the squares of all
zero divisors in R are zero. Consequently, in this case, R is a local ring and D(R) = J(R) [1]. If R is
nilpotent then R = D(R) = J(R). Prove that both in the first and second cases, zy = yz = 0 for all
z,y € D(R)*. Suppose that zy = 0 and yx # 0 for some z,y € D(R). Then x +y € D(R) since
D(R) = J(R), and so (z+y)? = 0. This gives 0 = (z+y)? = 22 + 2y +yz +y? = yz # 0; a contradiction.
Hence, D(R)? = (0). O

Proposition 2. Suppose that R is a finite ring and the graph I'.(R) consists of two adjacent vertices
one of which is with a loop and the other is without any loop. Then all nilpotent elements of R have
nilpotency index at most 3.

PROOF. Assume that [a] is a vertex of the graph I'..(R) without any loop, and [b] is a vertex with
aloop, z € Ris a nilpotent element. If 2" = 0 and 22"~ # 0 for some n > 1 then 2" € [b]. Consequently,
z-2" =z" =0,andson+1>2n,n=1,22=0. If 2>+ =0, 22" £ 0 for some n > 1 then z"*! € [b].
Consequently, z - z"t! = 2”2 = 0; hence, n+2>2n+1,n=1,23=0. O

The following theorem gives full description of the finite commutative rings whose compressed zero-
divisor graphs have order 2.

Theorem 2. Let R be a finite commutative ring. The graph I'..(R) has order 2 if and only if one
of the conditions holds:

(1) R= GF(q1) ® GF(q2), where ¢; = p;*, with p; a prime, and s; > 1,1 =1,2;

(2) R= GF(q) ® B, where B?> = (0), ¢ = p*, with p a prime, and s > 1;

(3) R is a nilpotent ring, and R = A @ B, where A is an indecomposable ring, |A| = p®, a > 1,
A3 = (0), B2 = (0), |B| = m, with p a prime, and m > 0, while (Vz,y € A\ Ann(A))(zy # 0), where
either pR? = (0) or (Vx € R)(pz =0 — 22 = 0);

(4) R is a local ring such that J(R) satisfies (3).

PROOF. Let R be an arbitrary finite commutative ring whose graph I'.(R) has order 2. Consider
the variants of the geometric pictures of I'\(R) presented in Figs. 1-3.
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Note that the variant in Fig. 1 is impossible since, in this case, a ~ b and so [a] = [b].

Consider the variant in Fig. 2. Then I'(R) = K, , is a complete bipartite graph. Since both vertices
of the compressed zero-divisor graph I'(R) are without any loop, R has no nilpotent elements. Hence, R
is isomorphic to a direct sum of finite fields [1]. But I'(R) is a bipartite graph. This means that R is
isomorphic to a direct sum of two finite fields; i.e., we obtain a ring of the first type from the statement

of the theorem.
DGR

Fig. 1 Fig. 2 Fig. 3

Consider the variant in Fig. 3. Note that, in this case, R contains no nonzero orthogonal idempotents.
Indeed, if e; and e are nonzero orthogonal idempotents of R then ej, ey € [a]. But then ejes # 0, which
contradicts the orthogonality of e; and es.

If R is a unital ring then R is a local ring (see [1]); i.e., R/J(R) = GF(q) for some g = p°, with p
a prime, and s > 1. Then I'.(R) = ' (J(R)).

If R is a ring without unity and R # J(R) then R contains a principal nonzero idempotent e and
R=eR® (1 —e)R. Since €2 =e # 0 and e - er = er # 0 for every nonzero element er € eR; therefore,
e € [a] and all nonzero elements of eR belong to [a]. Therefore, the subring eR has no nonzero zero divisors
and eR = GF(q) for some ¢ = p°, with p a prime, and s > 1. Furthermore, since e - (1 — e)R = (0), i.e.,
the vertex e is adjacent to the nonzero elements of the ideal (1 — e)R, the nonzero elements of (1 — e)R
belong to [b] and ((1 —e)R)? = (0). Thus, R = GF(q) ® B, where B < R and B? = (0).

So, consider the case when R is a nilpotent ring (R = J(R)). By Proposition 2, 23 = 0 for all z € R.
Note that [b] U {0} = Ann(R). Take u,v € [a]. Then uv # 0, u? # 0,v2 # 0. Since u® = v3 = 0, we have
u?,v? € [b]. Consequently, u?v = uv? = 0. Thus, (uv)? = 0, i.e., uv € [b]. Hence, R? C [b] U {0}, and so
R3 = (0) and [a] C R\R%.

Let |R| = p[flpé32 . .pfs, where p1, ..., ps are different primes and 81 > 1,...,8s > 1. Then

R:R1®R2@"‘@Rsa

where |R;| = p;’, 1 < i <s. If x € R; and y € Rj, where i # j, then 2y = 0. Hence, [a] C Ry
for some k € {1,2,...,s}. Without loss of generality, put [a] C R;. In this case, the rings Ra,..., R
have compressed zero-divisor graphs consisting of a single vertex with a loop. By Theorem 1, R; is
a ring with zero multiplication for ¢ > 2. Note that if R; in turn splits into a direct sum of rings,
for example, Ry = S1 @ --- ® 5S¢, where S; are indecomposable rings, 1 < ¢ < ¢, and ¢ > 2; then, arguing
similarly, we conclude that [a] is contained in one of these indecomposable rings, for example, in S;. Then
So@---@®S; C [b]U{0} = Ann(R). These arguments show that R = A® B, where A is an indecomposable
ring, |A| = p%, a > 1, B2 = (0), |B| = m, p = p1 is a prime, m > 1.

Suppose that there is u € [a] such that pu = 0. Then w - pR = (0), i.e., pR C Ann(R). Hence
pR- R = (0). Thus, either all elements of additive order p belong to Ann(R) or pR? = (0).

The converse is obvious. [J

Proposition 3. Let A be a finite-dimensional commutative indecomposable nilpotent Z,-algebra
(with p a prime). The graph I'..(A) consists of two adjacent vertices one of which is with a loop and the
other is without any loop if and only if Ann(A) = A? and A has a basis {a1,...,as,b1,...,b;} such that
b; € Ann(A) for all i and a;a; # 0 for all i and j.

PROOF. Suppose that A is a finite-dimensional commutative indecomposable Z,-algebra, while
I'(A) consists of two adjacent vertices one of which is with a loop and the other, without any loop
(Fig. 3). By Theorem 2, A3 = (0). Complement some basis {b1,...,b;} for the subspace A? to a basis
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{b1,...,bs,dy,...,dy} for the subspace Ann(A) and then complement the obtained basis to some basis
{a1,...,as,b1,...,b,dy, ... dg} for the whole algebra A. Then a;a; # 0 and a;a; € A? for all i and j, and
a;bj = a;d; = b;d; = b;b; = d;d; = 0 for all i and j. The subalgebra B generated by all elements a; and b;
and also the subalgebra D generated by all d;’s are ideals of A. Moreover, A = B @& D. This contradicts
the indecomposability of A. Hence, D = (0) and {a1,...,as,b1,...,b:} is a desired basis for A.

The converse is obvious. [

Theorem 2 is formulated for commutative rings. In the general case, we have

Proposition 4. Let R be a finite ring. If the graph I'.(R) has order 2 then one of the following
conditions holds:

(1) R= GF(q1) ® GF(q2), where g; = p;*, with p; a prime, s; > 1, and i = 1,2;

(2) R is a nilpotent ring;

(3) R is a local ring and I'.(R) = T'.(J(R));

(4) R is a nonnilpotent ring without unity and R/J(R) is a field; then J?(R) C Ann(R) and,
in particular, J(R)3 = (0).

PROOF. Suppose that R is a finite ring and I'.(R) has order 2. The proof of Theorem 2 implies
that I'_(R) cannot have two loops. If I'\(R) has no loops then R is isomorphic to a direct sum of two
fields (the commutativity of R was not used in proving this fact). Thus, we may assume that I'. (R)
contains exactly one loop; i.e., its geometric picture is presented in Fig. 3. Let [a] be a vertex without any
loop and let [b] be a vertex with a loop in I'.(R). Note that R cannot contain orthogonal idempotents
(see the proof of Theorem 2). Therefore, if R contains a unity then R is local.

Let R be a ring without unity and let R # J(R). Then R contains a principal idempotent e whose
image is the unity in the quotient ring R/J(R); moreover, e does not split into a sum of orthogonal
idempotents; i.e., R/J(R) is a finite field [1]. Consider the Pierce decomposition of R:

R=ceRe+eR(1—e)+ (1 —e)Re+ (1 —e)R(1—e).

Prove that J(eRe) = (0). Suppose the contrary. Then there exists a nonzero j € J(eRe) such
that j2 = 0. Clearly, [e] = [a] and [j] = [b]. But the vertex [e] is not adjacent with [j]; a contradiction.
Therefore, J(eRe) = (0). Moreover, eRe = GF(q) for some ¢ > 2 since R has no orthogonal idempotents.

Prove that [b] U {0} = I(R) Ur(R). Since d*> = 0 for every d € I[(R) Ur(R), we have [(R) Ur(R)
C [b] U {0}. Suppose that the reverse inclusion fails. Then there exists z € [b] such that zx = 0, yz = 0,
xz # 0, and zy # 0 for some z,y € R, i.e., z ¢ I(R) Ur(R). Note also that x + y # 0. Since R has
no unity, x + y is a zero divisor. Hence, zy = z(z +y) = 0 or 2z = (z + y)z = 0; a contradiction. Thus,
[b] U {0} = I(R) Ur(R). Consequently, for each element d of the coset [b], either dR = (0) or Rd = (0).
Since the elements of ((1—e)Re)* + (1 —e)R(1 —e), where ((1 —e)Re)* = (1—e)Re\ {0}, belong to r(e),
they all lie in [b]. Moreover,

(1—e)Re)*+ (1 —€e)R(1 —€) Cr(R)

since [b] = [(R) Ur(R). It is proved similarly that

(1—e)Re)" Cr(R), (eR(1—e))" CI(R),
(eR(1—e€))*+ (1 —e)R(1 —e) CI(R).

Consequently, (1 —e)R(1 —e) CI(R) Nr(R) = Ann(R).

Prove that Ann(R) = (1 —e)R(1 —e¢), r(R) = (1 —e)Re+ (1 —e)R(1 —e) and I(R) = eR(1 —¢) +
(1—e)R(1—e). Let r € Ann(R), r =71 + ro + r3 + 14, where r; € eRe, 72 € eR(1 —e), 73 € (1 — e)Re,
ry € (1—e)R(1—e). Since re = 0, we have (r1 +73)e = 0. Multiplying the last equality by e, we conclude
that ery =71 =0, i.e., r = ro + r3 + r4. Since er = 0, we have ero = ro = 0 and r = rg 4+ r4. Finally,
re=rse =r3 =0,1e,r=r4 € (1—e)R(1 —e). Thus, Ann(R) = (1 — e)R(1 — e). Take an arbitrary
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r=r;+ry+r3+7r4 € I(R), where 71 € eRe, ro € eR(1 —€), 73 € (1 —€e)Re, and 74 € (1 —e)R(1 —e).
Then re =0, ie., r1 +r3=(r1+r3)e=0and r =ry+ 74 € eR(1 —e) + (1 — e)R(1 — €). Thus,

I(R)=eR(1—¢)+ (1 —€e)R(1—e).

It is proved similarly that r(R) = (1 — e)Re 4 (1 — e)R(1 — e).
Furthermore, J(R) = eR(1 —¢) + (1 —e)Re + (1 — e)R(1 — e) (see [1]). Therefore,

J(R)* = (eR(1—e)+ (1 —e)Re+ (1 —e)R(1 —e))?
= (eR(1—e)+ (1 —e)Re)> = (1 —e)Re-eR(1 —e) C (1 —e)R(1 —e) = Ann(R).
Consequently, J(R)?- R = R-J(R)? = (0). In particular, J(R)3 = (0). O

3. Rings with Compressed Zero-Divisor Graphs of Order 3

Proposition 5. Suppose that the graph I'\.(R) of a finite ring R is complete and also loops are
possible and the number of vertices in I'..(R) is more than 2. Then R is a noncommutative ring, I'(R)
contains exactly one vertex with a loop, and the ring R satisfies one of the conditions:

(1) R is a nilpotent ring;

(2) R is a ring without unity and without orthogonal idempotents;

(3) R is a ring with unity in which any system of orthogonal idempotents contains at most two
idempotents.

PROOF. Suppose that the graph I'..(R) of a finite ring R is complete with possible loops. Note that
if two vertices [a] and [b] have loops then a ~ b; a contradiction. Thus, there can be at most one loop. If
there are no loops at all then R has no nilpotent elements; i.e., R is a direct sum of finite fields. Clearly,
in this case the graph of R can be complete if and only if R is a direct sum of two fields and I'.(R) contains
exactly two vertices; the so-obtained contradiction proves that I'.(R) contains exactly one vertex with
a loop. Let [b], [a1],[az], ..., [an] be all vertices in I'.(R), where only [b] has a loop and n > 2.

Prove that R is not commutative. Suppose the contrary: let R be a commutative ring. Note that
a1+ az is a zero divisor since (a3 +a2)b = 0. But [a; + as] is adjacent neither to [a1] nor [as] since a? # 0
for all ¢. This is possible only in the two cases: Firstly, a; + as belongs to one of the cosets [a;], i = 1,2,
and this coset is a singleton. But this is impossible since in this case a; = 0 or az = 0. Secondly, if
a1 + az = 0 then a; = —ay. Since the vertices [a;] and [ag] are adjacent, a? = a3 = 0; a contradiction.
Thus, R is a noncommutative ring.

Let R # J(R). Observe that all vertices [a}] (i > 1, a} # 0) are adjacent to the vertices
0], [ag], - - ., [an]. If a; is a nilpotent element; then, starting from some number i, the powers of a’
lie in [b]. It is possible that not all powers of a; are nonzero, i.e., some power of the element a; is
an idempotent by the finiteness of R (cp. [1]), and this idempotent is different from the unity; otherwise,

aj is invertible and is not a zero divisor of R. Thus, we may assume that each of aj,as,...,a, is either
a nilpotent element or an idempotent different from the unity.
Let e1,es,...,e; be a system of pairwise orthogonal idempotents of R; assume also that t > 3.

The vertices [e1 +e3], [e1], and [es] are distinct and adjacent to [es] but [e; + e2] is adjacent neither to [eq]
nor [ez]; a contradiction. Hence, R contains at most two orthogonal idempotents.

Consider the case when R has no unity. Let e be a principal idempotent whose image is the unity
of the quotient ring R/J(R), where e = e; + e2 is a decomposition of e into a sum of orthogonal
idempotents (cp. [1]). Since R has no unity, all its elements are zero divisors (cp. [1]). But the vertex [e]
is adjacent neither to [e1] nor [es], which is impossible. Thus, e does not split into a sum of orthogonal
idempotents. [

Theorem 3. Let R be a finite ring such that the compressed zero-divisor graph I'..(R) has exactly
three vertices. Then the compressed zero-divisor graph is isomorphic to one of the graphs with loops
depicted in Figs. 4(3) and 4(9).

PRrROOF. The possible variants of the geometric depictions of I'.(R) are given in Fig. 4.
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Prove that the version in Fig. 4(1) is impossible. Indeed, in this case (a + b)b =0 or b(a + b) = 0,
i, a+b € D(R). Hence, (a+0b)?>=ab+ba=0. Since ab = 0 or ba = 0, we have ab = ba = 0.
Consequently, b(a +c) =0or (a+¢)b=0,ie.,a+ce D(R). But (a+c)c=ac#0, c(a+c)=ca#0,
and (a+ c)a =ca # 0, a(a + ¢) = ac # 0, and hence the vertex a + ¢ is not adjacent to a and c. But all
vertices of the graph are adjacent either to a or ¢; a contradiction.

Prove that the variant in Fig. 4(2) is impossible. Let j € J(R), 7 # 0, 72 = 0. Then j € [a] or j € [¢].
Assume without loss of generality that j € [a]. Therefore, je # 0 and ¢j # 0. Since [jc] is adjacent
to [j] = [a] and [c], we have jc € [jc] = [b].

Since jc € J(R), there exists n € N such that (jc)” = 0 and (j¢)"~! # 0. Since ((je)" 1)? = 0 and [b]
is a vertex without any loop, (jc¢)"~! ¢ [b]. But (j¢)"1-c=0and j- (jc)" ! =0, and so (je)" ! € [b];
a contradiction.

Thus, J(R) = (0). By the Wedderburn Theorem,
R My, (GF(q1)) @ - - @ My (GF(g5))

for some ny,...,ns, q1,...,q9s € Z. Note that R contains no orthogonal idempotents, and so R = GF(q).
But then I'.(R) is empty; a contradiction.

The variant in Fig. 4(3) is possible. Consider the ring Z,s for some prime p. Then D(R) = pZ,s and
la] = [p], [b] = [°], [c] = [p°]-

Prove that the variant in Fig. 4(4) is impossible. Indeed, observe that Ann(R) = (0) and R is
a nonnilpotent ring. Consequently, R contains nonzero idempotents, and there are at most 2 of them.

[e1] [e2] i J+e] el

Fig. 5 Fig. 6

Let e be a principal idempotent of R (possibly, e = 1) and e = e; + e3, where e; and es are orthogonal
idempotents. If R has no unity then e € D(R) [1]. Then [e], [e1], and [e2] are three different vertices
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without any loop in I'.(R); a contradiction. Therefore, e = e;. Let e = 1. We may assume without loss
of generality that [a] = [e1] and [b] = [e2]. If j € e1Res, j # 0, then j2 = 0 and the vertex [j] = [¢] is
adjacent to [e1]; a contradiction. Consequently, e; Res = (0). Similarly, eaRe; = (0). Hence,

R = e1Re; ® esRes.

Assume that j € eyRes, j # 0, and j2 = 0. Then the vertex [j] = [¢] is adjacent to [e1] = [a];
a contradiction. Consequently, es Res contains no nilpotent elements, and so it is a direct sum of fields.
Since R contains at most two orthogonal idempotents, esRes is a field. Put eaRes = F. Suppose that
there exists a nonzero j € e; Re; such that j2 = 0. Then I'_(R) contains at least four vertices (Fig. 5),
which is impossible. Hence, e; Re; is a field and the graph I'.(R) contains two vertices; a contradiction.

Thus, R contains a unique idempotent e. If R has a unity then R is a local ring and T' (R) =
I'(J(R)/~). However, Ann(J(R)) # (0); a contradiction. Therefore, R is a ring without unity.

Let e be a principal idempotent of R. Consider the Pierce decomposition

R=eRe+ (1—e)Re+eR(1—e)+ (1 —e)R(1—e).

If (1—e)Re#0and j € (1—e)Re, j#0, then j2 =0 and [j] = [¢]. Since ej = 0, we have [¢] = [b].
Thus, the following inclusions hold:

(1) (1 —e)R(1 —e€) \ {0} C [c] because the vertices of (1 — e)R(1 — e) are adjacent to e and j
simultaneously;

(2) ere+s € [e], where r € R, ere # 0, s € (1—e)Re+eR(1—e)+ (1 — e)R(1 — e) since the elements
of this form are not adjacent to e;

(3)er(l—e)+ (1 —e)te+s € le], where r,s € R, er(l —e) #0, (1 —e)te #0, s € (1 —e)R(1 —e),
since the elements of this form are not adjacent to e either;

(4) r+s C[c], wherer € (1 —e)ReUeR(1 —e), r #0, s € (1 —e)R(1 — e), since the elements of this
form are adjacent to e.

Consequently, all nonzero zero divisors of R are contained in [b] or [¢]; a contradiction. Therefore,
(1 — e)Re = (0). We similarly infer that eR(1 — e) = (0).

Thus,

R=eRe® (1 —e)R(1—e).

Suppose that there exists a nonzero j € (1—e)R(1—e) such that j2 # 0 and j” = 0, 77~ # 0 for some
integer n > 3. Then (j771)2 = 0 and ej = 0, and so e € [a], j € [b], and ;"L € [¢]. But e- ;"1 = 0;
a contradiction. Hence, for all j in (1—e)R(1—e), we have j2 = 0. So, let j € (1—e)R(1—e) be a nonzero
element. Then the graph I'.(R) contains the subgraph that is depicted in Fig. 6; a contradiction.

The variant in Fig. 4(5) is impossible since a ~ ¢, and so [a] = [c].

The variant in Fig. 4(6) is impossible. Indeed, R has no nilpotent elements. Therefore, R = GF(q1)®
-+ @ GF(gs) is a direct sum of fields. But if R is a sum of three or more fields then I'.(R) contains
the cycle presented in Fig. 7. Consequently, R = GF(q1) ® GF(q2) is a direct sum of two fields, but
then I'_(R) has order 2; a contradiction.

/

[(17 07 0)] - [(07 1? 0)]
[(0,0,1)]

Fig. 7

The variants depicted in Figs. 4(7), 4(8), and 4(10) are impossible (see Proposition 4).
Consider the variant in Fig. 4(9). Such a graph is possessed by the nilpotent ring R = (a) + (b) + (¢},
where ab=0,ba=a’ =0 =c, > =ac=ca=bc=cb=0,and 2a =2b=2c=0. O
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