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Abstract: We show that the Jordan bracket on an associative commutative superalgebra is extendable
to the superalgebra of fractions. In particular, we prove that a unital simple abelian Jordan superal-
gebra is embedded into a simple superalgebra of a Jordan bracket. We also study the unital simple
Jordan superalgebras whose even part is a field. We demonstrate that each of these superalgebras
is either a superalgebra of a nondegenerate bilinear form, or a four-dimensional simple Jordan super-
algebra, or a superalgebra of a Jordan bracket, or a superalgebra whose odd part is an irreducible
module over a field.
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In the theory of Jordan superalgebras, the superalgebras of Jordan brackets play an important role.
The main properties of these superalgebras were studied in [1–3]. The question of speciality of the
superalgebras of Jordan brackets was under consideration in [4–10]. It was shown in [11, 12] that the
commutator with respect to the Novikov product on the associative commutative part of a Novikov–
Poisson algebra defines a Jordan bracket. If the associative commutative part of the Novikov–Poisson
algebra is unital then the obtained bracket is a bracket of vector type. Therefore, the superalgebra,
constructed by this bracket, is special; and the speciality of the superalgebra was proved in the general
case in [13].
In [5], some examples of prime degenerate Jordan algebras were constructed using the superalgebras

of Jordan brackets of vector type. In [6], some simpler construction of prime degenerate Jordan algebras
was given employing the superalgebras of vector type. The superalgebras of Jordan brackets of vector
type (see [14]) turned out to be an effect tool for the investigation of prime degenerate Jordan algebras.
Some examples of Jordan superalgebras may be obtained by the Kantor doubling process from an

associative commutative superalgebra equipped with a Jordan bracket (see [1, 2]). If a Jordan bracket is
given on an associative commutative algebra then the even part of the so-obtained Jordan superalgebra
is associative, and the odd part is an associative module over the even part. Following [15], we call these
superalgebras abelian.
Simple Jordan superalgebras with an associative even part were studied in [16–21]. In particular, it

was shown in [17] that a unital simple special Jordan superalgebra that is not isomorphic to a super-
algebra of a bilinear form and has an associative even part is embedded into a simple superalgebra of
a Jordan bracket of vector type. In [20], under some restrictions, it was formulated that a unital simple
(nonspecial) Jordan superalgebra with an associative even part is embedded into a simple superalgebra
of a Jordan bracket.
In this article, we study the question of extension of a Jordan bracket from an associative commutative

superalgebra to its algebra of fractions with respect to some multiplicatively closed set. As it turned out,
such extension exists for multiplicatively closed sets of zero nondivisors. Using this fact we give another
proof of the fact that a simple Jordan superalgebra that is an associative module over the even part
is embedded into a simple superalgebra of a Jordan bracket. We also study the unital simple Jordan
superalgebras whose even part is a field. We show that each of these superalgebras is either a superalgebra

Original article submitted May 1, 2019; revised May 1, 2019; accepted July 24, 2019.

62



of a nondegenerate bilinear form, or a superalgebra of Jordan bracket, or a four-dimensional simple Jordan
superalgebra J(C , v), or a superalgebra whose odd part is an irreducible module over a field.
The investigation of the nonassociative superalgebras with an associative even part is of great interest.

For example, the infinite-dimensional right-alternative abelian superalgebras whose even part is a field
were described in [22].

§ 1. The Main Notions and Examples
Let F be a field of characteristic not 2, and let A = A0 + A1 be an arbitrary Z2-graded algebra;

i.e., A0 ∩ A1 = 0, A20 ⊆ A0, A
2
1 ⊆ A0, A0A1 ⊆ A1, and A1A0 ⊆ A1. We call A a superalgebra. The

vector space A0 (A1) is the even (odd) part of the Z2-graded algebra A. The elements in A0 ∪ A1
are homogeneous. The expression |x|, where x ∈ A0 ∪ A1, denotes the parity index of a homogeneous
element x; i.e.,

|x| =
{
0 if x ∈ A0 and x is even,
1 if x ∈ A1 and x is odd.

Let G be the Grassmann algebra over F , i.e., G is an associative algebra given by the generators 1,
e1, e2, . . . and the defining relations

e2i = 0, eiej = −ejei.
The products 1, ei1 . . . eik with i1 < i2 < · · · < ik form a basis for G. Let G0 and G1 be the vector
subspaces spanned respectively by the products of even and odd lengthes. Then G = G0 + G1 is a Z2-
graded algebra.
Let A = A0+A1 be an arbitrary Z2-graded algebra. Then G(A) = G0⊗A0+G1⊗A1 is a subalgebra

of G⊗A (the tensor product over F ) which is called the Grassmann envelope of A.
An associative superalgebra A = A0 + A1 is an associative commutative superalgebra provided that

its Grassmann envelope G(A) is an associative commutative algebra.
A superalgebra J = J0 + J1 is a Jordan superalgebra if its Grassmann envelope G(J) is a Jordan

algebra; i.e., the identities
xy = yx, (x2y)x = x2(yx)

hold in G(J). We denote the even part of a superalgebra J by A and the odd part, by M . The following
identities hold for the homogeneous elements in a Jordan superalgebra J :

ab = (−1)|a||b|ba, (1)

[(ab)c]d+ (−1)|b||c|+|b||d|+|c||d|[(ad)c]b+ (−1)|a|(|b|+|c|)+(|a|+|b|+|c|)|d|[(db)c]a
= (ab)(cd) + (−1)|b||c|(ac)(bd) + (−1)|b||d|+|c||d|(ad)(bc), (2)

[(ab)c]d+ (−1)|b||c|+|b||d|+|c||d|[(ad)c]b+ (−1)|a|(|b|+|c|)+(|a|+|b|+|c|)|d|[(db)c]a
= [a(bc)]d+ (−1)|c||d|[a(bd)]c+ (−1)|b||d|+|c||d|[a(dc)]b, (3)

(ab, c, d) + (−1)|b||c|+|c||d|+|d||b|(ad, c, b) + (−1)|a|(|b|+|c|+|d|)+|d||c|(bd, c, a) = 0, (4)

where (x, y, z) = (xy)z − x(yz) is the associator of x, y, and z. From here, we have
(a, bc, d) = (−1)|a||b|b(a, c, d) + (−1)|c||d|(a, b, d)c. (5)

Also,

(a, b, c) + (−1)|a||b|+|a||c|(b, c, a) + (−1)|a||c|+|b||c|(c, a, b) = 0, (6)

(a, b, c) = −(−1)|a||b|+|a||c|+|b||c|(c, b, a). (7)

The identity
a(b, c, d)− (ab, c, d)− (a, b, cd) + (a, bc, d) + (a, b, c)d = 0 (8)

holds in every algebra.
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Given an arbitrary algebra A and some subsets X, Y , and Z of A, we denote by (X,Y, Z) the vector
space spanned by the associators (x, y, z), where x ∈ X, y ∈ Y , and z ∈ Z.
The superalgebra of a bilinear form. Let V = V0 ⊕ V1 be a Z2-graded vector space over F

with a supersymmetric bilinear form f(x, y) (i.e., f is symmetric on V0, skew-symmetric on V1, and
f(V0, V1) = 0). Consider the direct sum of the vector spaces J = F · 1 + V . Define the product on J
by putting 1 · v = v · 1 = v, and v1 · v2 = f(v1, v2) · 1. Then J is a Jordan superalgebra with even part
A = F · 1 + V0 and odd part M = V1. If f is nondegenerate then J is a simple superalgebra, except for
the case that V1 = 0, V0 = F · e, and f(e, e) = α2.
The superalgebras of type J(CCC , v). Let A = Fe1 + Fe2 be the direct sum of two fields, and let

M = Fx + Fy be a two-dimensional space over F . Equip the vector space A +M with the product by
putting

e1e2 = 0, e2i = ei, eix = xei =
1

2
x, eiy = yei =

1

2
y, i = 1, 2,

x2 = y2 = 0, xy = −yx = e1 + te2,
where t ∈ F . Denote the so-obtained algebra by Dt. Then Dt is a Jordan superalgebra. The superalge-
bra Dt is simple if and only if t 	= 0.
Let A = C = F + Fv be a two-dimensional composition algebra over F , v2 ∈ F , and v2 	= 0. Equip

A+M with the product by putting a · b = ab for a, b ∈ A, where ab is the product of a and b in A,
v · x = x · v = y · v = v · y = 0, x · y = −y · x = α+ vβ,

where α and β belong to F and are nonzero simultaneously. Denote the so-obtained algebra by J(C , v)
(see [23]). A basis for J(C , v) may be chosen so that either α = 1, β = 0, or α = 0, β = 1, or α = 1, β = 1.
Let F be an algebraic closure of F . Consider the tensor product J(C , v)⊗ F . Identify v ⊗ 1, x⊗ 1,

and y ⊗ 1 with v, x, and y. Then
C ⊗ F = F + vF = Fe1 + Fe2,

v = γs, where γ ∈ F , s = e2 − e1, and e2i = ei, i = 1, 2.
If α = 1 and β = 0 then the superalgebra J(C , v)⊗ F is isomorphic to D1. If α = 0 and β = 1 then

J(C , v) ⊗ F is isomorphic to D−1. It follows that J(C , v) is a simple Jordan superalgebra in these two
cases.
If α = 1 and β = 1 then

xy = 1 + γs = (1− γ)e1 + (1 + γ)e2
in J(C , v)⊗ F . Hence, J(C , v)⊗ F is a simple Jordan superalgebra when γ 	= ±1. Therefore, J(C , v) is
a simple Jordan superalgebra if v2 	= 1.
Let us exhibit one of the principal examples of a superalgebra of a Jordan bracket.

The Kantor double J(Γ, { , }). Let Γ = Γ0+Γ1 be a unital associative commutative superalgebra
over a field F , and let { , } : Γ × Γ 
→ Γ be a skew-symmetric bilinear mapping on Γ which is called
a bracket. Given Γ and { , }, we can construct the superalgebra J(Γ, { , }). Consider the direct sum of the
vector spaces J(Γ, { , }) = Γ ⊕ Γx, where Γx is an isomorphic copy of Γ. Let a and b be some elements
of Γ. Then the product · on J(Γ, { , }) is defined by the formulas

a · b = ab, a · bx = (ab)x, ax · b = (−1)|b|(ab)x, ax · bx = (−1)|b|{a, b},
where a, b ∈ Γ0 ∪ Γ1 and ab is the product of a and b in Γ. Put A = Γ0 + Γ1x and M = Γ0x+ Γ1. Then
J(Γ, { , }) = A+M is a Z2-graded algebra.
A bracket { , } is a Jordan bracket provided that J(Γ, { , }) is a Jordan superalgebra.
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A bracket { , } is Jordan (see [1, 2]) if and only if the following hold:
{a, bc} = {a, b}c+ (−1)|a||b|b{a, c} − {a, 1}bc; (9)

{a, b}{c, 1}+ (−1)|a||b|+|a||c|{b, c}{a, 1}+ (−1)|a||c|+|b||c|{c, a}{b, 1}
= {a, {b, c}}+ (−1)|a||b|+|a||c|{b, {c, a}}+ (−1)|a||c|+|b||c|{c, {a, b}}, (10)

{{d, d}, d} = −{d, d}{d, 1}, (11)

where a, b, c ∈ Γ0 ∪ Γ1 and d ∈ Γ1. Clearly, D : a 
→ {a, 1} is a derivation of A. Then (9) is equivalent to
{a, bc} = {a, b}c+ (−1)|a||b|b{a, c} −D(a)bc. (12)

A Jordan bracket is a bracket of vector type provided that {a, b} = D(a)b − aD(b) for all a, b ∈ Γ.
A Jordan bracket is a Poisson bracket if D(a) = 0 for every a ∈ Γ.

§ 2. Extension of a Jordan Bracket to the Algebra of Fractions
Let A be a unital associative commutative algebra, and let S be a multiplicatively closed subset of

zero nondivisors of A. In what follows, we assume that 1 ∈ S. Consider the algebra of fractions S−1A
of A with respect to S. Since the elements in S are zero nondivisors; therefore, A is embedded into S−1A.
Let { , } be a Jordan bracket on A. Since D : a 
→ {a, 1} is a derivation of A; therefore, D may be

extended to a derivation of S−1A. Extend { , } to S−1A by putting
{as−1, bt−1} = −a{s, b}s−2t−1 + {a, b}s−1t−1 − {a, t}bs−1t−2 + {s, t}abs−2t−2

+abD(t)s−1t−2 − abD(s)s−2t−1 − aD(b)s−1t−1 +D(a)bt−1s−1. (13)

Then
{a, bc} = {a, b}c+ b{a, c} −D(a)bc

for all a, b, c ∈ S−1A, which follows from (13) by direct computation.
Lemma 1. The bracket is correctly defined on S−1A.
Proof. Let α ∈ S−1A and as−1 = bt−1, where s, t ∈ S. Then at = bs, whence

{α, at} = a{α, t}+ {α, a}t−D(α)at,
{α, bs} = b{α, s}+ {α, b}s−D(α)bs.

Therefore,
{α, a}t− b{α, s} = {α, b}s− a{α, t}.

Multiplying the both sides of this equality by st, we get

{α, a}st2 − bst{α, s} = {α, b}s2t− ast{α, t}.
Since at = bs,

{α, a}st2 − at2{α, s} = {α, b}s2t− bs2{α, t}.
Hence,

{α, a}s−1 − a{α, s}s−2 = {α, b}t−1 − b{α, t}t−2
in S−1A. Then

{α, as−1} = {α, a}s−1 + a{α, s−1} −D(α)as−1
= {α, a}s−1 + 2aD(α)s−1 − a{α, s}s−2 −D(α)as−1

= {α, a}s−1 − a{α, s}s−2 +D(α)as−1 = {α, b}t−1 − b{α, t}t−2 +D(α)bt−1
= {α, bt−1}.

Thus, the value {α, as−1} of the bracket does not depend on the choice of representation of as−1 in S−1A.
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Lemma 2. The bracket { , } is Jordan on S−1A.
Proof. Let

J(a, b, c) = {a, {b, c}}+ {b, {c, a}}+ {c, {a, b}},
S(a, b, c) = {a, b}{c, 1}+ {b, c}{a, 1}+ {c, a}{b, 1}.

By the definition of the bracket on S−1A, (9) holds for all a, b, c ∈ S−1A. Take a ∈ A, s ∈ S, and
b, c ∈ S−1A. Direct computation yields

J(as−1, b, c) = −J(s, b, c)as−2 + J(1, b, c)as−1 + J(a, b, c)s−1,
S(as−1, b, c) = −S(s, b, c)as−2 + S(a, b, c)s−1.

Note that S(1, b, c) = 0. Therefore, it suffices to prove (10) when one of the elements a, b, and c belongs
to A. If b, c ∈ A then (10) holds.
For example, let b ∈ A. Then for a ∈ A and s ∈ S we have

J(s, b, c) = S(s, b, c), J(a, b, c) = S(a, b, c), J(1, b, c) = S(1, b, c),

since a, b, s ∈ A. Hence, J(as−1, b, c) = S(as−1, b, c).
Thus, (10) holds, i.e., { , } is a Jordan bracket on S−1A.
Let Γ = Γ0 + Γ1 be a unital associative commutative superalgebra, and let S be a multiplicatively

closed subset of Γ0 of zero nondivisors of Γ with 1 ∈ S. Consider the algebra of fractions S−1Γ for Γ
with respect to S. Since the elements in S are zero nondivisors, Γ is embedded into S−1Γ.

Lemma 3. Let { , } be a Jordan bracket on Γ = Γ0 + Γ1. Then { , } may be extended to a Jordan
bracket on the superalgebra S−1Γ.
Proof. Define the bracket on the Grassmann envelope G(Γ) of Γ by putting

〈a⊗ g1, b⊗ g2〉 = {a, b} ⊗ g1g2.
Then 〈 , 〉 is a Jordan bracket on the associative commutative algebra G(Γ). Since S⊗1 = {s⊗1 | s ∈ S} is
a multiplicatively closed subset of zero nondivisors of G(Γ); therefore, 〈 , 〉 may be extended to a Jordan
bracket on (S ⊗ 1)−1G(Γ). Since (S ⊗ 1)−1G(Γ) ∼= G(S−1Γ), the bracket { , } may be extended to S−1Γ.
Moreover, (9), (10), and (13) hold for this bracket as well.
Show that the bracket { , } on S−1Γ satisfies (11). Take s ∈ S and a ∈ Γ1. Direct computation yields

{{as−1, as−1}, as−1} = −a(2{{s, a}, a}+ {{a, a}, s})s−4 + {{a, a}, a}s−3
+(D({a, a})− 2{a,D(a)})as−3.

By (10)
−a(2{{s, a}, a}+ {{a, a}, s})s−4 = a(2{s, a}D(a) + {a, a}D(s))s−4.

Since D(a) ∈ Γ1; therefore, D(a)D(a) = 0 and D({a, a})− 2{a,D(a)} = 0 by (10). On the other hand,
{as−1, as−1}D(as−1) = −a(2{s, a}+ {a, a}D(s))s−4 + {a, a}D(a)s−3.

Then {{as−1, as−1}, as−1} = −{as−1, as−1}{as−1, 1} by (11).
Theorem 1. Let Γ = Γ0 + Γ1 and V = V0 + V1 be Z2-graded vector spaces, and let J = Γ + V be

a unital Jordan superalgebra with the even part Γ0 + V0 and the odd part Γ1 + V1. Assume that the
following hold:
(1) Γ is an associative subsuperalgebra of J , and V is an associative Z2-graded Γ-submodule of the

Γ-module J ;
(2) ViVj ⊆ Γi+j mod 2;
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(3) S is a multiplicatively closed subset of Γ0, which contains the unity, J is S-torsion free, S
−1V1 =

S−1Γ0x and S−1V0 = S−1Γ0(nx) as S−1Γ0-modules for some x ∈ V1 and n ∈ Γ1;
(4) S−1J = S−1(Γ + Γx) as S−1Γ0-modules and x is Γ-torsion free.
Then J is embedded into a superalgebra of the Jordan bracket J(S−1Γ, { , }). If J is a simple

superalgebra then J(S−1Γ, { , }) is simple as well.
Proof. By hypotheses, Γ0+Γ1x+Γ1+Γ0x is a subsuperalgebra of J . Hence, Γ+Γx is a superalgebra

of the Jordan bracket {a, b} = (−1)|b|(ax)(bx), where a, b ∈ Γ0∪Γ1. By Lemma 3, the Jordan bracket { , }
may be extended to the superalgebra S−1Γ, whence S−1J = J(S−1Γ, { , }) is a superalgebra of a Jordan
bracket. Since J is S-torsion free, the Γ-module J is embedded into the S−1Γ-module S−1J . Hence, we
may assume that J ⊆ S−1J .
Show that J is embedded into the superalgebra S−1J . The product of elements from V in J will be

denoted by u · v.
Take u, v ∈ V0∪V1. Then u = as−1x, v = bt−1x, where a, b ∈ Γ0∪Γ1, s, t ∈ S. Thus, su = ax, tv = bx,

and
su · tv = s(u · tv) + (s, u, tv) = s(u · v)t− s(u, v, t) + (s, u, tv)

in J . By (5), (u, v, t) = (−1)|b|(u, x, t)bt−1, and (s, u, tv) = a(s, x, bx)s−1 in S−1Γ. Then
s(u, x, t) = (su, x, t) + (s, u, xt)− (s, u, x)t = (ax, x, t) + a(s, x, xt)s−1 − a(s, x, x)s−1t

by (8). Hence,

s(u, v, t) = (−1)|b|(ax, x, t)bt−1 + (−1)|b|a(s, x, xt)bs−1t−1 − (−1)|b|a(s, x, x)bs−1,
whence

ax · bx = su · tv = (u · v)st− (−1)|b|(ax, x, t)bt−1 − (−1)|b|a(s, x, xt)bs−1t−1
+(−1)|b|a(s, x, x)bs−1 + a(s, x, bx)s−1.

Then
u · v = (ax · bx)(st)−1 + (−1)|b|(ax, x, t)bs−1t−2 + (−1)|b|a(s, x, xt)bs−2t−2
−(−1)|b|a(s, x, x)bs−2t−1 − a(s, x, bx)s−2t−1 = (−1)|b|{a, b}(st)−1
+(−1)|b|{a, 1}bs−1t−1 − (−1)|b|{a, t}bs−1t−2 + (−1)|b|{s, t}abs−2t−2
+(−1)|b|{t, 1}abs−1t−2 − (−1)|b|{s, 1}abs−2t−1 − (−1)|b|a{s, b}s−2t−1

−(−1)|b|a{b, 1}s−1t−1 = (−1)|b|{as−1, bt−1}.
Thus, J is a subsuperalgebra of S−1J = J(S−1Γ, { , }).
Let J be a simple superalgebra. Show that S−1J is simple.
Let I be a nonzero ideal of S−1J , and let u be a nonzero element in I. Then u = ys−1, where s ∈ S

and y ∈ J , whence y = us ∈ I. Therefore, J ∩ I 	= 0, and 1 ∈ J ∩ I, whence I = S−1J . Thus, S−1J is
a simple superalgebra.

Corollary 1. Let J = A+M be a simple abelian Jordan superalgebra, which is not isomorphic to
a superalgebra of a bilinear form. Then J is embedded into a simple superalgebra of a Jordan bracket.

Proof. By [20], J is unital, and A is a simple differential algebra. Moreover,M is a finitely generated
projective A-module of rank 1. By Lemma 4 of [20], we may assume that the characteristic of the main
field is 0. Then A does not have zero divisors, and M is A-torsion free.
Let P be a prime ideal of A, and put S = A \ P . Then J is S-torsion free, and S−1M is a finitely

generated projective S−1A-module. Since S−1A is a local algebra and M is an A-module of rank 1;
therefore, S−1M = S−1Ax. We may assume that x ∈ M . Since S−1J = S−1(A + Ax); therefore,
S−1J = J(S−1A, { , }) is a simple superalgebra of a Jordan bracket by Theorem 1, and J is embedded
into S−1J .
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Lemma 4. Let J = A+M be a simple abelian Jordan superalgebra over a field of characteristic 0,
and let S be a multiplicatively closed subset of A. Assume that S−1M = S−1Ax, where x ∈ M and
(a, x, bx) = (a, x, x)b for all a, b ∈ A. Then (a, u, vb) = (a, u, v)b for all a, b ∈ A and u, v ∈M .
Proof. By [20], A is unital and does not contain zero divisors, and M is A-torsion free. Take

u ∈M . Then su = cx, where s ∈ S and c ∈ A. By (5)
s(a, u, xb) = (a, su, bx) = (a, cx, bx) = c(a, x, bx)

= c(a, x, x)b = (a, xc, x)b = s(a, u, x)b

for all a, b ∈ A, whence (a, u, bx) = (a, u, x)b for all a, b ∈ A, u ∈M . By (8)
a(u, x, b) = (au, x, b)− (a, ux, b) + (a, u, bx)− (a, u, x)b = (au, x, b)

for all a, b ∈ A and u ∈M . Take v ∈M . Then sv = cx, where s ∈ S, c ∈ A, and
s(au, v, b) = (au, cx, b) = c(au, x, b) = ca(u, x, b) = a(u, cx, b) = sa(u, v, b).

Hence, (au, v, b) = a(u, v, b) for all a, b ∈ A and u, v ∈ M . By (7), (a, u, vb) = (a, u, v)b for all a, b ∈ A
and u, v ∈M .
In [20], it was proved

Theorem 2. Let J = A + M be a unital simple Jordan superalgebra with an associative nil-
semisimple even part. Assume that N = (A,M,A) 	= 0. Then the following hold:
(1) The even part A = A0+A1 is a Z2-graded algebra, and A1 is a faithful finitely generated projective

A0-module of rank 1.
(2) The odd part M =M0 ⊕N is the direct sum of associative A0-modules, and N ⊗A0 M0 ∼= A1 is

an A0-module isomorphism. Moreover, M0 and N are faithful finitely generated projective A0-modules
of rank 1.
(3) A0+M0 is a unital simple abelian subsuperalgebra of J which is not isomorphic to a superalgebra

of a bilinear form. Moreover, A0 is a simple differential algebra.
(4) If the characteristic of the main field is 0 then A0 has no zero divisors; moreover, the A0-mod-

ules A1, M0, and N are A0-torsion free.
(5) (A,N,A) = 0, NN = 0, A1 = NM0, A1M0 ⊆ N , A1N = 0, Γ = A0 + N is an associative

commutative Z2-graded algebra, and V = A1 +M0 is an associative commutative Γ-module.

Lemma 5. Let J = A+M be a unital simple Jordan superalgebra over a field of characteristic 0 with
an associative nil-semisimple even part, and N = (A,M,A) 	= 0. Let A0 andM0 be such as in Theorem 2,
and let S be a multiplicatively closed subset of A0. Assume that S

−1M0 = S−1A0x, where x ∈M0. Then
(Nx, x,A0) 	= 0.
Proof. Assume that (Nx, x,A0) = 0. Then by (8)

a(ux, x, b) = (a(ux), x, b)− (a, (ux)x, b) + (a, ux, xb)− (a, ux, x)b
for all a, b ∈ A0 and u ∈ N . By Theorem 2(5) and (5)

0 = a(ux, x, b) = (a, ux, xb)− (a, ux, x)b = u((a, x, xb)− (a, x, x)b)
for all a, b ∈ A0 and u ∈ N . By Theorem 2(4) we infer that (a, x, xb) = (a, x, x)b. Then (a, u, vb) =
(a, u, v)b for all a, b ∈ A0 and u, v ∈M0 by Lemma 4.
Take b ∈ A0, u ∈M0, and v ∈ N . Then su = ax for some s ∈ S and a ∈ A0. By (8)

s(vu, x, b) = (s(vu), x, b)− (s, (vu)x, b) + (s, vu, xb)− (s, vu, x)b.
By Theorem 2(5)

(s(vu), x, b) = (v(su), x, b) = (v(ax), x, b) = ((av)x, x, b) = 0

68



and (s, (vu)x, b) = 0, whence by (5)

s(vu, x, b) = v(a, u, xb)− v(a, u, x)b = v((a, u, xb)− (a, u, x)b) = 0.

Since A0 +M0 is a subsuperalgebra of J and M is A0-torsion free, (vu, x, b) = 0. Since M0 is a finitely
generated A0-module, sM0 ⊆ A0x for some s ∈ S. Then by (5)

s(vu,M0, b) ⊆ (vu, sM0, b) ⊆ (vu,A0x, b) ⊆ A0(vu, x, b) = 0.

Since M is A0-torsion free, (vu,M0, b) = 0. Hence, (NM0,M0, A0) = 0. From here and by Theorem 2(5)
we infer that (A,M,A) = 0; a contradiction.

Thus, (Nx, x,A0) 	= 0.
Corollary 2. Let J = A + M be a unital simple Jordan superalgebra with an associative nil-

semisimple even part. Assume that (A,M,A) 	= 0. Then J is embedded into a simple superalgebra
J(A0 + N, { , }) of a Jordan bracket, where A0 + N is a split null extension of the unital associative
commutative algebra A0. Furthermore, {n, a} 	= a{n, 1} for some a ∈ A0, n ∈ N .
Proof. Let A1, N , and M0 be as in Theorem 2. Put Γ0 = A0, Γ1 = N , V0 = A1, and V1 = M0.

Then Γ = A0 + N = Γ0 + Γ1 is an associative commutative Z2-graded algebra, and V = V0 + V1 is an
associative commutative Z2-graded Γ-module. Moreover, J = Γ + V .

Assume that A1, N , and M0 are cyclic A0-modules. Then A1 = A0v, N = A0n, and M0 = A0x. By
Theorem 2(2) we may assume that v = nx. Consequently,

J = A0 +A1 +M0 +N = A0 +A0n+ (A0n)x+A0x = Γ + Γx,

whence the product of elements in Γx defines a Jordan bracket { , } on Γ. Namely, {a, b} = (−1)|b|(ax)(bx),
where a, b ∈ A0 ∪N .
Let the characteristic p of the main field be greater than 2. Then apA = A for every a 	= 0 by

Theorem 2(3). Hence, A is a field, while A1, N , andM0 are cyclic A0-modules by Theorem 2(2). Thus, J
is a superalgebra of a Jordan bracket.

Since M0 = A0x, (NM0,M0, A0) ⊆ (Nx,M0, A0) by Theorem 2(5). By (5) (NM0,M0, A0) ⊆
A0(Nx, x,A0). Since (A,M,A) ⊆ (NM0,M0, A0) 	= 0; therefore, (Nx, x,A0) 	= 0. Hence, {n, a} 	=
a{n, 1} for some a ∈ A0 and n ∈ N .
Let the characteristic of the main field be 0, let P be a prime ideal of Γ0, and let S = Γ0 \P . Then S

is a multiplicatively closed subset of Γ, J is S-torsion free by Items (2), (4), and (5) of Theorem 2, and
S−1V1 = S−1Γ0x, where x ∈ V1 =M0.
Analogously, S−1V0 = S−1A1 = S−1Γ0v, where v ∈ A1 = NM0. Hence, v =

∑k
i=1 nimi, where

ni ∈ N and mi ∈ M0. Since S
−1V1 = S−1Γ0x; therefore, simi = aix for some si ∈ S, ai ∈ Γ0,

i = 1, . . . , k. Let s =
∏k
i=1 si. Then smi = bix for some bi ∈ Γ0, i = 1, . . . , k. Put n =

∑k
i=1 bini.

So n ∈ N , and by Theorem 2(5)

sv = s

k∑
i=1

nimi =

k∑
i=1

ni(smi) =

k∑
i=1

ni(bix) =

k∑
i=1

(bini)x = nx.

Thus, S−1V0 = S−1Γ0(nx), where n ∈ N = Γ1. By Theorem 2(5), Nx is a Γ0-submodule of the Γ0-
module NM0. Then S

−1V0 = S−1(Nx). Hence, S−1J = S−1(Γ+Γx). Then J is embedded into a simple
superalgebra J(S−1Γ, { , }) of a Jordan bracket by Theorem 1.
Since (A,M,A) 	= 0, (NM0,M0, A0) 	= 0 by Theorem 2(5). Then (Nx, x,A0) 	= 0 by Lemma 5.

Therefore, {n, a} 	= a{n, 1} for some a ∈ A0.
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§ 3. Simple Jordan Superalgebras Whose Even Part Is a Field
In this section we study the unital simple Jordan superalgebras whose even part is a field.
Let J = A+M be a unital simple Jordan superalgebra such that (A, J,A) = 0 and (M,A,M) 	= 0.

Recall that the unital simple Jordan superalgebras with the associative nil-semisimple even part satisfying
(A,M,A) 	= 0 were studied in [20]. The unital simple Jordan superalgebras with the associative even
part satisfying (A,M,A) = 0 and (M,A,M) = 0 were described in [21].
Given a ∈ J , we denote by Ra : x 
→ xa the operator of right multiplication by a. Let RM (A) be

the subalgebra of EndF (M) which is generated by the operators Ra : m ∈ M 
→ ma ∈ M , a ∈ A.
Then RM (A) is an associative commutative algebra, and M is a faithful associative RM (A)-module.
In what follows, the operator φ ∈ RM (A) will be written to the right of its argument. Take x, y ∈ M .
Then Rx ◦Ry = RxRy +RyRx is a derivation of J by (5).
Note that by (4) and (A, J,A) = 0,

(xa, y, z) = −(−1)|x||y|+|x||z|+|y||z|(za, y, x) (14)

holds in J = A+M for all a ∈ A, x, z ∈M , and y ∈ A ∪M .
Lemma 6. Let N be an A-submodule of M . Then (A(N,A,N))M ⊆ N .
Proof. By (6) and (7), (N,A,N) ⊆ (A,N,N). By (8)

A(N,A,N) ⊆ (AN,A,N) + (A,NA,N) + (A,N,AN) + (A,N,A)N ⊆ (A,N,N).
By (5)

(A,N,N)M ⊆ (A,NM,N) +N(A,M,N) ⊆ N.
Consequently, (A(N,A,N))M ⊆ N .
Now, assume that the even part A of J is a field.

Lemma 7. The module M is one-generated over RM (A). Let I be a proper ideal of RM (A). Then
(1) (MI,A,MI) = 0;
(2) I2 = 0, (MI,M,MI) = 0, and RM (A) is a local ring.

Proof. (1): Since (M,A,M) 	= 0, (x,A, x) 	= 0 for some x ∈ M . Let N = xRM (A). By Lemma 6
(A(x,A, x))M ⊆ N . Since A(x,A, x) is a nonzero ideal of A; therefore, A(x,A, x) = A, whence M =
N = xRM (A).
Let I be a proper ideal of RM (A), and N = MI. Then (A(N,A,N))M ⊆ N by Lemma 6.

If (N,A,N) 	= 0 then M = MI, whence there is nonzero φ in RM (A) such that Mφ = 0. Since M
is a faithful RM (A)-module, we arrive to a contradiction. Hence, (N,A,N) = 0. Item (1) is proved.
(2): Take φ, ψ, τ ∈ I. Since (N,A,N) = 0,

xφψ · xτ = xφ · xτψ = xφ · xψτ = xφτ · xψ = xτ · xψφ = xτ · xφψ.
On the other hand, xφψ · xτ = −xτ · xφψ. Therefore, xφψ · xτ = 0 and MI2 ·MI = 0. By (14) we
get (MI2, A,M) ⊆ (MI,A,MI) = 0 and (MI2)A ·M ⊆MI2 ·MA, whence MI3 ·M ⊆MI2 ·MI = 0,
i.e., MI3 is an ideal of J . Hence, I3 = 0, and by (14) we obtain (MI2, J,MI) ⊆ (MI3, J,M) = 0.
Let MI2 · M 	= 0. Then (A,MI2,M) + MI2 · M is a nonzero ideal of A by (5), whence A =

(A,MI2,M) +MI2 ·M . By (5)
(A,MI2,M) ·MI ⊆ (A,MI,M) ·MI2 ⊆MI2.

Since (MI2, J,MI) = 0; therefore,

(MI2 ·M) ·MI ⊆MI2 · (M ·MI) ⊆MI2,

whence
MI = A(MI) ⊆ (A,MI2,M) ·MI + (MI2 ·M) ·MI ⊆MI2.

Consequently, MI2 = 0, and I2 = 0. Then (MI, J,MI) = 0 by (14).
Let K1 and K2 be nonzero maximal ideals of R

M (A). Then RM (A) = K1 + K2. By the above
K21 = K22 = 0, whence R

M (A) is a nilpotent algebra. Therefore, we infer that RM (A) is a local ring.
Item (2) is proved.
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Lemma 8. Let I be an ideal of RM (A). Then
(1) (A,MI,MI)M ⊆MI, (A,MI,MI) ·MI = 0.
If MI ·MI 	= 0 then
(2) (MI ·MI, J,MI) = 0, A = MI ·MI + (A,MI,MI) is a Z2-graded algebra whose even part is

MI ·MI and odd part is (A,MI,MI);
(3) MI ·MI is a field and (A,MI,MI) = v(MI ·MI), where v ∈ (A,MI,MI).

Proof. (1): Let I be an ideal of RM (A). Then by (5)

(A,MI,MI)M ⊆ (A,MI ·M,MI) + (A,M,MI)MI ⊆MI.

Therefore, (A,MI,MI) ·MI ⊆MI2 = 0. Then (A,MI ·MI,MI) = 0 by (5). Item (1) is proved.
(2): Let MI · MI 	= 0. Then (A,MI,MI) + MI · MI is an ideal of A by (5). Hence, A =

(A,MI,MI)+MI ·MI. By Lemma 1 from [21]M = (A,A,M), whenceMI = (A,A,M)I = (A,A,MI),
since (A,M,A) = 0. Then

MI ·MI = (A,A,MI) ·MI = (A, (A,MI,MI) +MI ·MI,MI) ·MI

= (A, (A,MI,MI),MI) ·MI
by (5)
= (A, (A,MI,MI) ·MI,MI)

+(A,MI,MI)(A,MI,MI) = (A,MI,MI)(A,MI,MI).

It follows from here that (A,MI,MI) 	= 0. By (4)
(MI ·MI, J,MI) = ((A,MI,MI)2, J,MI) ⊆ ((A,MI,MI) ·MI, J, (A,MI,MI)) = 0.

By (5)
(MI ·MI)(A,MI,MI) ⊆ (A, (MI ·MI) ·MI,MI) + (A,MI ·MI,MI) ·MI

⊆ (A,MI,MI).

Let K = (A,MI,MI) ∩MI ·MI. Then K is an ideal of A. Since MI · K = 0, we get K = 0.
Hence, A = MI ·MI + (A,MI,MI) is a Z2-graded algebra with the even part MI ·MI and the odd
part (A,MI,MI). Item (2) is proved.
Show that MI ·MI is a field. Let α ∈MI ·MI and α 	= 0. By (8)

α(α−1,MI,MI) ⊆ (α,MI,MI) + (α, α−1,MI ·MI) + (α, α−1,MI) ·MI = 0,

whence (α−1,MI,MI) = 0. Let α−1 = β + v, where β ∈MI ·MI and v ∈ (A,MI,MI). Then

v(MI ·MI) = (v,MI,MI) = (α−1 − β,MI,MI) = 0,

and α−1 ∈MI ·MI.
Let v ∈ (A,MI,MI) and v 	= 0. Then v2 ∈ MI ·MI. Since MI ·MI is a field, v−1 = v−2v ∈

(A,MI,MI). If u ∈ (A,MI,MI) then u = (v−1u)v, whence (A,MI,MI) = v(MI · MI), where
v ∈ (A,MI,MI).

Lemma 9. If I is the largest ideal of RM (A) then MI ·MI = 0.

Proof. Assume that MI ·MI 	= 0. Let A0 = MI ·MI and A1 = (A,MI,MI). By Lemma 8,
A = A0 + A1 is a Z2-graded algebra, the even part A0 is a field, A1 = vA0, and v

2 ∈ A0. By Lemma 8,
MA1 ⊂MI and MI ·A1 = 0. By Lemma 7 and (2), the odd part M is equal to xA+ (xA)A. By (4)

(A0, J,MI) =
(
A21, J,MI

) ⊆ (A1 ·MI, J,A1) = 0.

Analogously,
(A0, A0,M) ⊆ (A1M,A0, A1) ⊆ (A1M,A1, A0).

Since MA1 ⊆MI; therefore, (A0, A0,M) ⊆ (MI,A1, A0) = 0. Thus, M is a vector space over A0. Then
M = xA0 + (x(vA0))A0.
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Since A1M ⊆ MI; therefore, RA1 ⊆ I and R2A1 = 0 by Lemma 7, whence R
M (A) = RA0 + RA1RA0

and I = RA1RA0 by Lemma 8.
Prove that (M,A1,M) ⊆ A1 and (M,A0,M) ⊆ A0.
Let x, y ∈ M and a ∈ A. Then R(x,a,y) = [Ra, Rx ◦ Ry] by (3), where [u,w] = uw − wu is the

commutator of u and w. Since I2 = 0, we have

2[u,Rx ◦Ry]2 = [[u2, Rx ◦Ry], Rx ◦Ry]− 2[[u,Rx ◦Ry], Rx ◦Ry]u ∈ I
for u ∈ I. Consequently, [I,Rx ◦ Ry] ⊆ I, since I is the largest ideal. Hence, R(M,A1,M) ⊆ I. Then
(M,A1,M) ⊆ A1. By (5)

(M,A0,M) ⊆
(
M,A21,M

) ⊆ (M,A1,M)A1 ⊆ A21 = A0.
Thus, (M,A1,M) ⊆ A1 and (M,A0,M) ⊆ A0.
Prove that (MI,A0,M) = 0. By (4)

(M,MI,A0) ⊆
(
M,MI,A21

) ⊆ (A1,MI,MA1)

⊆ (A1,MI,MI) ⊆ A1(MI ·MI) ⊆ A1.
By (7) and (A0,M,MI) = 0 we get

(M,MI,A0) ⊆ (MI,A0,M) + (A0,M,MI) = (MI,A0,M) ⊆ A0.
Hence,

(MI,A0,M) = (M,MI,A0) ⊆ A0 ∩A1 = 0.
Prove that MI ·MI = 0. Let α, β, γ, δ ∈ A0. By (MI,A0,MI) = 0 and (MI, J,A0) = 0

(x(vα))β · (x(vγ))δ = ((x(vα)), β, (x(vγ))δ) + x(vα)(β · (x(vγ))δ)
= x(vα)((x(vγ))(βδ)) = −(x(vα), x(vγ), βδ) + (x(vα) · x(vγ))(βδ)

= (x(vα) · x(vγ))(βδ).
Show that x(vα) · x(vγ) = 0. Indeed, since A1 ·MI = 0 and (MI,A0,M) = 0; therefore,

x(vα) · x(vγ) = (x, vα, x(vγ)) by (5)= v(x, α, x(vγ)) + (x, v, x(vγ))α = (x, v, x(vγ))α

= (xv · x(vγ))α = −(xv, vγ, x)α by (5)= −(xv, v, x)(γα) = (xv · xv)(γα) = 0,
whence MI ·MI = 0.

Lemma 10. Let I be the largest ideal of RM (A), and let N = MI. Then R(NM) ⊆ I; i.e.,
(NM)M ⊆ N and (NM)N = 0.
Proof. Take x, y, z ∈ M and w ∈ I. Then (MI,M,MI) = 0 by Lemma 7, and (x, yw, zw) =

−(x, zw, yw) by (6) and (7), whence

(x, yw, zw)
by (14)
= (z, yw, xw) = −(z, xw, yw) by (14)= −(y, xw, zw)

= (y, zw, xw)
by (14)
= (x, zw, yw) = −(x, yw, zw),

and (x, yw, zw) = 0. Then (x · yw)(zw) = 0 by Lemma 9. Hence, Rx·yw is not invertible in RM (A). By
Lemma 7, RM (A) is a local algebra. Then Rx·yw ∈ I, whence (M ·MI)M ⊆MI and (NM)N ⊆MI2 = 0
by Lemma 7.
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Lemma 11. Let I be the largest ideal of RM (A) and N =MI. The following hold:
(1) ((NM)2,M,M) ⊆ (NM)2 and

((NM)2, (NM)2,M) = ((NM)2, N,M) = ((NM)2,M,N) = 0.

Assume that NM 	= 0. Then
(2) A = NM + (NM)2, NM ∩ (NM)2 = 0, and A is a Z2-graded algebra with the even part

A0 = (NM)
2 and the odd part A1 = NM . Furthermore, A0 is a field, and A1 = vA0 for every

nonzero v ∈ A1.
(3)M = A0x+A0n is a two-dimensional vector space over the field A0, N = A0n, and A1 = (nx)A0.
(4) A0 +A0x is an abelian subsuperalgebra of J .

Proof. (1): By identity (4) and Lemmas 10 and 9

((NM)2,M,M) ⊆ ((NM)M,M,NM) ⊆ (N,M,NM) ⊆ (NM)2.
Show that ((NM)2, (NM)2,M) = 0. By (4) and Lemma 10

((NM)2, (NM)2,M) ⊆ ((NM)M, (NM)2, NM) ⊆ (N, (NM)2, NM).
Since

(N, (NM)2, NM) ⊆ (N,NM,NM)(NM) ⊆ N(NM)
by (5); therefore, ((NM)2, (NM)2,M) = 0 by Lemma 10. Analogously, by Lemma 9 ((NM)2, N,M) =
((NM)2,M,N) = 0. Thus, Item (1) is proved.
(2): Note that (NM)3 ⊆ NM . Indeed, by identity (4) and Lemma 10

(NM)(NM)(NM) ⊆ (N,M, (NM)2) +N(M(NM)2)

⊆ (NM,M,N(NM)) +NM = NM.

Since A is a field, A = (NM)A and A = NM + (N,M,A). By (4)

(N,M,A) ⊆ (N,M,NM) + (N,M, (NM)A)

⊆ (N,M,NM) + (A,M,N(NM)) + (NM,M,AN).

Then (N,M,A) ⊆ (NM)2 by Lemma 10. Hence, A = NM + (NM)2.
Consider K = NM ∩ (NM)2. Then K is an ideal of A. Indeed, take r ∈ K. Then r ∈ NM ,

whence r(NM) ⊆ (NM)2. On the other hand, r ⊆ (NM)2. Thus, r(NM) ⊆ (NM)3 ⊆ NM . Hence,
r(NM) ⊆ K. Analogously, r(NM)2 ⊆ K. Thus, K is an ideal of A. By Lemma 10, KN ⊆ (NM)N = 0,
whence K = 0. Therefore, A = NM + (NM)2 is a Z2-graded algebra.
Let A0 = (NM)

2 and A1 = NM . Show that A0 is a field. Let a ∈ A0 and a 	= 0. Then aA0+ aA1 is
a nonzero ideal of A. Therefore, aA0 = A0. Hence, A0 is a field. Let v ∈ A1 and v 	= 0. Then
u = v(v−2uv) ∈ vA0 for every u ∈ A1. Thus, Item (2) is proved.
(3): By Lemma 7, M = xRM (A). Since RM (A) is a commutative algebra, M = xA + (xA)A.

Then by Lemma 11(1),(2) M = xA0 + (x(vA0))A0 and x(vA0) ⊆ N , whence M = xA0 + N . Since
M 	=MI = N , x 	∈ N .
Let u ∈ N and ux = 0. Then by Item (1) and Nu = 0 we get Mu = 0, whence M(A0u) = 0. By

Lemma 10 and Item (1), A(A0u) ⊆ A0u. Therefore, A0u is an ideal of J , and u = 0.
Consider some nonzero u and w in N . Then ux,wx are nonzero in A1. Since dimA0 A1 = 1; therefore,

α(xu) = β(xw) for some nonzero α, β ∈ A0, whence x(αu− βw) = 0 by Item (1). Hence, αu− βw = 0.
Thus, N = A0n, M = A0x+A0n, and nx 	= 0, whence A1 = (nx)A0. Item (3) is proved.
(4): It suffices to prove that m1m2 ∈ A0 for m1,m2 ∈ A0x. Assume that m1m2 = a + b, where

a ∈ A1 and b ∈ A0. Take y, z ∈ N and m ∈M . Then by Lemma 10
(ym2)(zm) ·m1 = (ym2, zm,m1) by (4)= (ym1, zm,m2) + (m1m2, zm, y)

= (ym1)(zm) ·m2 + (m1m2, zm, y).
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Since (ym2)(zm) · m1, (ym1)(zm) · m2 ∈ A0x and (m1m2, zm, y) ∈ N ; therefore, (m1m2, zm, y) = 0.
Then (a, zm, y) = 0 by identity (5) and Item (1). Hence, a(zm) · y = 0, since (zm)y ∈ (NM)N = 0.
Therefore, (aA1)N = 0. It follows from here that aA1 = 0, and a = 0.
Thus, (A0x)

2 ⊆ A0, i.e., A0 + A0x is a subsuperalgebra of A +M . By Item (1), A0 + A0x is an
abelian superalgebra.

Theorem 3. Let J = A +M be a unital simple superalgebra, and let A be a field. Assume that
(A, J,A) = 0 and (M,A,M) 	= 0. Then either M is an irreducible A-module or J = J(A0 +A0n, { , }) is
a superalgebra of a Jordan bracket on the one-dimensional split null extension A0 + A0n of a field A0,
{an, b} = b{an, 1} for all a, b ∈ A0, and {ac, b} 	= {a, cb} for some a, b, c ∈ A0. Furthermore, J(A0, { , }) is
a simple abelian subsuperalgebra of J .

Proof. Let M be a reducible A-module. Then RM (A) contains the largest nonzero ideal I by
Lemma 7. Hence, N = MI 	= 0. Since J is a simple superalgebra, NM 	= 0 and by Lemma 11 the even
part A is equal to A0 + vA0, where A0 is a field. The odd part M = A0x + A0n is a two-dimensional
vector space over A0. Moreover, v = nx.
Let Γ = A0 +A0n, V = A0x+A0v. Then

J = Γ + V = A0 +A0n+A0x+A0n · x = Γ + Γx.
By identity (5) and Lemma 10 (A0n,A0, x) ⊆ (A0n,A1, x)A1 = 0. Hence, (Γ,Γ, x) = 0 by Lemmas 10
and 11. We get from here that J is a superalgebra of the Jordan bracket {a, b} = (−1)|b|(ax · bx),
a, b ∈ A0 ∪A0n. Since (A0(nx), x, A0) = 0, {an, b} = b{an, 1} for all a, b ∈ A0.
Let {ac, b} = {a, cb} for all a, b, c ∈ A0. Then (A0x,A0, A0x) = 0. Since v

2 ∈ A0; therefore,
v(A0x, v,A0x) = 0 by (5), whence (A0x, v,A0x) = 0, and (A0x, vA0, A0x) = 0 by (5). By Lem-
mas 10 and 11

(A0n,A,A0n) = (A0x,A,A0n) = 0,

whence (M,A,M) = 0; a contradiction.
We also get from here that (A0x)

2 	= 0. By Lemma 11(4), A0 + A0x is an abelian subsuperalgebra
of J , whence J(A0, { , }) is a simple abelian subsuperalgebra of J .
Thus, the following theorem holds.

Theorem 4. Let J = A+M be a unital simple Jordan superalgebra whose even part A is a field.
Then J is one of the following superalgebras:
(1) a superalgebra of a nondegenerate skew-symmetric bilinear form on M ;
(2) a superalgebra J(A, { , }) of a Jordan bracket;
(3) a superalgebra J(A0 +A0n, { , }) of a Jordan bracket on the one-dimensional split null extension

A0 +A0n of a field A0 and {n, a} 	= a{n, 1} for some a ∈ A0;
(4) a superalgebra J(C , v);
(5) a superalgebra J(A0 +A0n, { , }) of a Jordan bracket on the one-dimensional split null extension

A0 +A0n of a field A0 if the A-module M is reducible; furthermore, {an, b} = b{an, 1} for all a, b ∈ A0,
{ac, b} 	= {a, cb} for some a, b, c ∈ A0, and J(A0, { , }) is a simple abelian subsuperalgebra of J ;
6) the odd part M is an irreducible module over the even part A.

Proof. If A lies in the center of J or (A,M,A) = 0, (M,A,M) = 0 and M is not a two-generated
module over RM (A) then J is a superalgebra of a nondegenerate skew-symmetric bilinear form f(x, y) =
xy for x, y ∈M by Theorem 1 from [21].
If (A,M,M) 	= 0 and J is an abelian superalgebra then J is a superalgebra of a Jordan bracket on A

by [20, Lemma 4].
If (A,M,A) 	= 0 then Item (3) holds by Corollary 2.
If (A,M,A) = 0, (M,A,M) = 0, and M is a two-generated module over RM (A) then Item (4) holds

by Theorem 2 from [21].
If (A,M,A) = 0 and (M,A,M) 	= 0 then Item (5) holds by Theorem 3.
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