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Abstract: Considering Banach Hardy spaces and weighted Bergman spaces, we find the sharp values
of the Bernstein, Kolmogorov, Gelfand, and linear n-widths for the classes of analytic functions on
the unit disk whose moduli of continuity of the rth derivatives averaged with weight are majorized by
a given function satisfying some constraints.
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1. Suppose that X is an arbitrary Banach space, with S the unit ball of X. Let Λn ⊂ X be
an arbitrary subspace of dimension n, while Λn ⊂ X is a linear subspace of codimension n, and L (f,Λn)
is a continuous linear operator from X to Λn. Let E(f,Λn)X stand for the best approximation of f ∈ X
by ϕ ∈ Λn; i.e.,

E(f,Λn)X = inf{‖f − ϕ‖X : ϕ ∈ Λn},
and let

E (f,L (f,Λn))X = ‖f −L (f,Λn)‖X
stand for the deviation of f ∈ X from L (f,Λn) in the metric of X. Given a centrally symmetric set
M ⊂ X, we put

E(M ,Λn)X
def
= sup{E(f,Λn)X : f ∈M },

E (M ,L ,Λn)X
def
= sup{E (f,L (f,Λn))X : f ∈M }.

The values
bn(M ;X) = sup{sup{ε > 0 : (εS ∩ Λn+1) ⊂M } : Λn+1 ⊂ X}, (1)

dn(M ;X) = inf{sup{‖f‖X : f ∈M ∩ Λn} : Λn ⊂ X}, (2)

dn(M ;X) = inf{E(M ,Λn)X : Λn ∈ X}, (3)

and
δn(M ;X) = inf{inf{E (M ,L ,Λn)X : L : X → Λn} : Λn ⊂ X} (4)

are called the Bernstein, Gelfand, Kolmogorov, and linear n-widths respectively. Note the following
relations [1, 2]:

bn(M ;X) ≤ dn(M ;X)dn(M ;X)
≤ δn(M ;X). (5)

2. In the Hardy spaces Hq, q ≥ 1, and Bergman spaces Bq,γ , q ≥ 1, with the weight γ ≥ 0, the
questions of calculation of the exact values of various n-widths for some classes of analytic functions on
the unit disk and construction of the best linear approximation methods were considered, for example,
in the monographs [1, 2] and articles [3–20]. We continue the study in this direction and calculate the

exact values for all above-listed n-widths of the classes W
(r)
a X(Φ, μ), r ∈ N, μ ≥ 1, of analytic functions

on the unit disk (where X is Hq or Bq,γ) whose moduli of continuity of the rth derivatives averaged with
weight are majorized by a given function satisfying some natural constraints.
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Let N, R+, and C be the sets of naturals, positive reals, and complexes respectively, let Uρ := {z ∈ C :
|z| < ρ} be the disk of radius ρ (0 < ρ ≤ 1), U1 = U , and let A(Uρ) be the set of analytic functions on Uρ.
Given f ∈ A(Uρ), put

Mq(f ; ρ)
def
=

(
1

2π

2π∫
0

|f(ρeit)|q dt
)1/q
, 1 ≤ q ≤ ∞,

where the integral is understood in the Lebesgue sense. If q = ∞, then assume that f(z) is continuous
on the closed disk Uρ := {z ∈ C : |z| ≤ ρ}. By Hq, 1 ≤ q ≤ ∞, we denote the Hardy Banach space
consisting of f ∈ A(U) for which the following norm is finite:

‖f‖q := ‖f‖Hq = lim
ρ→1−0Mq(f ; ρ). (6)

It is well known that the norm (6) is attained at the angular boundary values f(t) := f(eit) of f ∈ Hq.
By Hq,ρ, 1 ≤ q ≤ ∞, 0 < ρ ≤ 1, Hq,1 ≡ Hq, we understand the Hardy space of f ∈ A(Uρ) for which
‖f(z)‖q,ρ def= ‖f(ρz)‖q < ∞. If r ∈ N then f (r)a (z) is the derivative of the rth order of f ∈ A(U) with
respect to the argument of the complex variable z = ρ exp(it). Moreover,

f (1)a (z) :=
∂f(z)

∂t
=
df(z)

dz
· ∂z
∂t
= f ′(z)zi and f (r)a (z) =

{
f (r−1)a (z)

}(1)
a
, r ≥ 2.

We denote by H
(r)
q,a the class of f ∈ A(U) for which f (r)a ∈ Hq, q ≥ 1.

The Banach space of complex-valued functions f on the disk U with the finite norm

‖f‖lq =
(
1

2π

∫∫
(U)

|f(z)|q dxdy
)1/q

=

(
1

2π

1∫
0

2π∫
0

ρ|f(ρeit)|q dρdt
)1/q

is denoted by lq
def
= lq(U), 1 ≤ q <∞, where the integral is understood in the Lebesgue sense.

Let γ(|z|) ≥ 0 be some measurable and summable function not equivalent to the zero function on U .
The set of the complex-valued functions f for which γ1/qf ∈ lq(U), ‖f‖lq,γ = ‖γ1/qf‖lq , is denoted by
lq,γ

def
= lq(U, γ), 1 ≤ q < ∞, while Bq,γ

def
= Bq(U, γ), 1 ≤ q < ∞, is the Banach space of f ∈ A(U) such

that f ∈ lq,γ . Moreover,

‖f‖Bq,γ =
( 1∫
0

ργ(ρ)M qq (f, ρ) dρ

)1/q
.

In the particular case when γ ≡ 1, Bq := Bq,1 is a usual Bergman space. By Bq,γ,ρ, 1 ≤ q ≤ ∞,
0 < ρ ≤ 1, Bq,γ,1 ≡ Bq,γ , we understand the space of f ∈ A(Uρ) for which

‖f(z)‖Bq,γ,ρ def= ‖f(ρz)‖Bq,γ <∞,
and B

(r)
q,γ,a is the space of f ∈ A(U) such that f (r)a ∈ Bq,γ , 1 ≤ q ≤ ∞. It is proven in [16] that Bq,γ

enables us to consider f ∈ A(U) with constraints less stringent in comparison with Bq on the behavior
of f near the boundary circle Γ := {ζ ∈ C : |ζ| = 1}. It is obvious that Hq ⊂ Bq ⊂ Bq,γ , 1 ≤ q < ∞.
We denote by X := X(U) any of the above Banach spaces Hq and Bq,γ , while Xρ := Xρ(U) means Hq,ρ

or Bq,γ,ρ. Similarly, X
(r)
a := X

(r)
a (U) is either H

(r)
q,a or B

(r)
q,γ,a, and X

(r)
ρ,a is either H

(r)
q,ρ,a or B

(r)
q,γ,ρ,a.

Given f ∈ X(U), consider the modulus of continuity
ω(f ; 2t)X = sup{‖f(zeih)− f(ze−ih)‖X : |h| ≤ t}.

We denote by Pn the set of the complex algebraic polynomials

pn(z) =
n∑
k=0

akz
k (n ∈ N, ak ∈ C)

of degree n. The quantity

En(f)X = E(f,Pn)X
def
= inf{‖f − pn‖X : pn ∈Pn}

is the best approximation of f ∈ X(U) by Pn.
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Let Φ(u) be a nondecreasing positive function defined for u ≥ 0 such that lim{Φ(u) : u → 0} =
Φ(0) = 0. Using Φ as a majorant and given μ ≥ 1 and r ∈ N, we introduce the class of the functions

W (r)a X(Φ, μ) =

{
f ∈ X(r)a :

1

h

h∫
0

ω
(
f (r)a ; 2t

)
X

[
1 + (μ2 − 1) sin πt

2h

]
dt ≤ Φ(h), h ∈ (0, π]

}
.

In [18, 19] for X = Hq and X = Bq,γ respectively, it is proven that if the majorant Φ satisfies the
condition

Φ(h)

Φ(π/(2μn))
≥ π
2μ

1∫
0

(sinnht)∗
[
1 + (μ2 − 1) sin πt

2

]
dt (7)

for μ ≥ 1 and all h ∈ (0, π], n ∈ N, where

(sinu)∗ =
{
sinu if 0 < u ≤ π/2,
1 if u > π/2;

then

bn
(
W (r)a X(Φ;μ);X(U)

)
= dn

(
W (r)a X(Φ;μ);X(U)

)

= En−1
(
W (r)a X(Φ;μ)

)
X(U)

=
π

4μnr
Φ

(
π

2μn

)
(8)

for all n, r ∈ N. Condition (7) holds, for example, for Φ∗(h) = hα, where

α := α(μ) =

(
π

2μ

)2 1∫
0

t cos

(
πt

2μ

)[
1 + (μ2 − 1) sin

(
πt

2

)]
dt. (9)

It follows from (9) that α(1) = (π/2) − 1, lim{α(μ) : μ → ∞} = 1, and (π/2) − 1 ≤ α(μ) ≤ 1 for all
μ ∈ [1,∞).
Since X ⊂ Xρ (0 < ρ ≤ 1), it is of indubitable interest to extend (8) from the above-listed n-

widths (1)–(4) to a more general space Xρ (0 < ρ ≤ 1):

λn
(
W (r)a X(Φ;μ) : Xρ(U)

)
= En−1

(
W (r)a X(Φ;μ)

)
Xρ(U)

= E
(
W (r)a X(Φ;μ),Lρ,r−1,Pn−1

)
Xρ(U)

=
πρn

4μnr
Φ

(
π

2μn

)
, (10)

where λn(·) is any of the n-widths bn(·), dn(·), dn(·), or δn(·).
Indeed, in the case when X is Bq,γ , (10) follows for all n-widths from the results of Theorems 2.1

and 3.1 in [18] and can be derived almost similarly in the case X = Hq. The best linear method realizing
the sharp value of the linear n-width has the form

Lρ,r−1(f,Pn; z) = c0(f) +
n−1∑
k=1

μk,ρ,r−1ck(f)zk, (11)

where ck(f) is the Taylor coefficients of f , while

μk,ρ,r−1
def
= 1− ρ2(n−k)

(
k

2n− k
)r−1{

1− γk,n
(
1− k2

(2n− k)2
)}
,

γk,n
def
= nμ

π/(2n)∫
0

cos kx cosnx dx, k = 1, . . . , n− 1.
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In line with [13], by P̃n−1 we denote the n-dimensional subspace spanned by the basis

ϕ̃k(z) =

{
1−
(
k

2n− 1
)r−1[

1− γk,n
(
1−
(
k

2n− 1
)2)]

|z|2(n−k)
}
zk,

k = 0, 1, . . . , n− 1, r ∈ N.
Given f ∈ X(U), put

L̃r−1(f, P̃n−1; z) =
n−1∑
k=0

ck(f)ϕ̃k(z).

Theorem 1. If μ ≥ 1 and r, n ∈ N then

λn
(
W (r)a X(Φ;μ); lq,γ

)
= λ̄n

(
W (r)a X(Φ;μ);Bq,γ

)
= E
(
W (r)a X(Φ;μ), L̃r−1, P̃n−1

)
Bq,γ

=
π

4μnr
Φ

(
π

2μn

)( 1∫
0

ρnq+1γ(ρ) dρ

)1/q
, 1 ≤ q ≤ ∞, (12)

where λn(·) is any of the n-widths bn(·), dn(·), dn(·), or δn(·), while λ̄n(·) is one of the n-widths dn(·)
or bn(·).
Proof. Following the arguments of the proof of Theorem 2 in [13], we verify that

Mq(f − L̃r−1(f, P̃n−1); ρ) ≤ πρ
n

4μnr
Φ

(
π

2μn

)
(13)

for all f ∈ W (r)Hq(Φ;μ). Taking the power q (1 ≤ q ≤ ∞) of both sides of (13), multiplying the result
by ργ(ρ) and integrating over ρ in the range from 0 to 1, and using the definition of Bq,γ , we derive that

E
(
W (r)a X(Φ;μ), L̃r−1, P̃n−1

)
Bq,γ
≤ π

4μnr
Φ

(
π

2μn

)( 1∫
0

ρnq+1γ(ρ) dρ

)1/q
. (14)

Hence, by the definition of linear n-width, we obtain

δn
(
W (r)a X(Φ;μ);Bq,γ

) ≤ π

4μnr
Φ

(
π

2μn

)( 1∫
0

ρnq+1γ(ρ) dρ

)1/q
. (15)

Since Bq,γ is isomorphic to and isometrically embedded in lq,γ , from the definitions and properties of the
Bernstein and Gelfand n-widths [2, Chapter II, § 3, Proposition 3.2] we find

dn
(
W (r)a Hq(Φ;μ);Bq,γ

)
= dn

(
W (r)a Hq(Φ;μ); lq,γ

)
,

bn
(
W (r)a Hq(Φ;μ);Bq,γ

)
= bn

(
W (r)a Hq(Φ;μ); lq,γ

)
.

(16)

From (5), (15), and (16) we obtain the upper estimate for all n-widths under consideration. To obtain
the lower estimates for these n-widths, we introduce the (n+ 1)-dimensional ball of the polynomials

S̃n+1 :=

{
pn ∈Pn : ‖pn‖Bq,γ ≤

π

4μnr
Φ

(
π

2μn

)( 1∫
0

ρnq+1γ(ρ) dρ

)1/q}

and prove the embedding S̃n+1 ⊂W (r)a Hq(Φ;μ). Observe that
ω
(
(pn)

(r)
a ; 2t

)
X
≤ 2nr(sinnt)∗‖pn‖X (17)
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for an arbitrary polynomial pn ∈ Pn, which is proved for X = Hq in [4] and for X = Bq,γ in [18]. It is
proven in [16] that

∥∥(pn)(r)a ∥∥Hq ≤ nr
( 1∫
0

ρnq+1γ(ρ) dρ

)−1/q
‖pn‖Bq,γ (18)

for all pn ∈Pn, 1 ≤ q ≤ ∞, and r, n ∈ N. Using (17) and (18), we see that

ω
(
(pn)

(r)
a ; 2t

)
Hq
≤ 2nr(sinnt)∗

( 1∫
0

ρnq+1γ(ρ) dρ

)−1/q
‖pn‖Bq,γ . (19)

By (19) and (7), we have

1

h

h∫
0

ω
(
(pn)

(r)
a ; 2t

)
Hq

[
1 + (μ2 − 1) sin πt

2h

]
dt

≤ 2nr
( 1∫
0

ρnq+1γ(ρ) dρ

)−1/q
‖pn‖Bq,γ ·

1

h

h∫
0

(sinnt)∗
[
1 + (μ2 − 1) sin πt

2h

]
dt

≤ π
2μ
Φ

(
π

2μn

) 1∫
0

(sinnht)∗
[
1 + (μ2 − 1) sin πt

2

]
dt ≤ Φ(h)

for all pn ∈ S̃n+1; whence the embedding S̃n+1 ⊂ W (r)a Hq(Φ;μ) is immediate. In view of the proven
embedding and the definition of Bernstein n-width, we conclude that

bn
(
W (r)a Hq(Φ;μ);Bq,γ

) ≥ bn(S̃n+1;Bq,γ) ≥ π

4μnr
Φ

(
π

2μn

)( 1∫
0

ρnq+1γ(ρ) dρ

)1/q
. (20)

The sought equality (12) follows from (15), (16), and (20). Theorem 1 is proven.

In solving the extremal problems of approximation theory for the analytic functions on the disk is
of interest, the computation of the sharp upper bounds for the moduli of the Taylor coefficients (see, for
example, [13, 16]) on various classes of analytic functions. We present a solution to this problem for the
classes of functions under consideration.

Theorem 2. Put Ln(M ) := sup{|cn(f)| : f ∈M }. Then

Ln
(
W (r)a Hq(Φ;μ)

)
=
π

4μnr
Φ

(
π

2μn

)
, (21)

Ln
(
W (r)a Bq,γ(Φ;μ)

)
=
π

4μnr
Φ

(
π

2μn

)( 1∫
0

ρnq+1γ(ρ) dρ

)−1/q
(22)

for all n ∈ N, r ∈ Z+, and q ∈ [1,∞].
Proof. Indeed, if f ∈ A(U) then the Taylor coefficient cn(f) is represented as

cn(f) =
1

2πi

∫
|ζ|=ρ

f(ζ)ζ−n−1 dζ =
1

2πρn

2π∫
0

[f(ρeit)−Lρ,r−1(f,Pn; ρe
it)]e−int dt, (23)
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where Lρ,n−1(f,Pn; ρe
it) is defined by (11). By Hölder’s inequality and (10), from (21) we obtain

|cn(f)| ≤ ρ−nE (f ;Lρ,r−1(f,Pn))Hq,ρ ≤
π

4μnr
Φ

(
π

2μn

)

for all f ∈W (r)a Hq(Φ;μ), whence the upper estimate

Ln
(
W (r)a Hq(Φ;μ)

) ≤ π

4μnr
Φ

(
π

2μn

)

is immediate. On the other hand, writing the coefficient cn(f) as

cn(f) =
1

2π(ρR)n

2π∫
0

[f(ρReiτ )−Lρ,r−1(f,Pn; ρRe
iτ )]e−inτ dτ

and using Hölder’s inequality, we obtain

Rn|cn(f)| ≤ ρ−nMq(f −Lρ,r−1(f,Pn); ρR)

for all ρ,R ∈ (0, 1), whence, by the definition of the norm on X(U), we derive

|cn(f)| ≤ ρ−nE (f ;Lρ,r−1(f,Pn);Xρ)

( 1∫
0

ρnq+1γ(ρ) dρ

)−1/q

for f ∈W (r)a X(Φ;μ). This inequality together with (10) yields the upper estimate

Ln
(
W (r)a X(Φ;μ)

) ≤ π

4μnr
Φ

(
π

2μn

)⎧⎨
⎩
1 if X(U) = Hq,

( 1∫
0

ρnq+1γ(ρ) dρ
)−1

if X(U) = Bq,γ .
(24)

To obtain the lower estimate, consider

f0(z) =
1

(in)r
· π
4μ
Φ

(
π

2μn

)
zn

‖zn‖X ∈W
(r)
a X(Φ;μ).

Using the definition of Ln(·) for this function, we write down the lower estimate

Ln
(
W (r)a X(Φ;μ)

) ≥ |cn(f0)| = π

4μnr
Φ

(
π

2μn

)⎧⎨
⎩
1 if X(U) = Hq,

( 1∫
0

ρnq+1γ(ρ) dρ
)−1

if X(U) = Bq,γ .
(25)

Equalities (21) and (22) are obtained by comparing of the upper and lower estimates (24) and (25).
Theorem 2 is proven.

3. In Sections 1 and 2 we calculated the exact values of the various widths from the above-indicated
classes of analytic functions on the unit disk. We can relate the problems of optimal recovery and coding
of the functions as interpreted by Korneichuk [21, Chapter 8, § 8.3; 22] to the widths from these function
classes.
Let us give the necessary notions and definitions. Suppose that the collectionMn := {μ1, μ2, . . . , μn}

of some functionals μk, k = 1, . . . , n, is given on the normed function space X. The set Mn can be
considered as the coding method sending f ∈ X to T (f,Mn) = {μ1(f), . . . , μn(f)}. The problem of
recovery of f from T is solved by relating

A(f,Mn;Gn,Γn : z) =
n∑
k=1

γkμk(f)gk(z)
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to T (f,Mn), where Gn = {gk(z)}nk=1 and Γn = {γk}nk=1 ∈ Im are respectively a system of linearly
independent functions from X and a collection of numerical coefficients giving the best representation of
the elements of the class M ⊂ X, while Im = {Γn} is the vector of numerical coefficients. We assume
the error of recovery on M is equal to

Rn(M ;Mn, Gn) = inf{sup{‖f −A(f ;Mn, Gn,Γn)‖Bq,γ : f ∈M } : Γn ⊂ Cn} (26)

and put Rn(M , X) = inf{R(M ;Mn, Gn) :Mn, Gn}.
Let M ′n be a collection of the bounded linear functionals on X. Consider the characteristic

R′n(M , X) = inf{R(M ;M ′n, Gn) :M ′n, Gn}.
The method of recovery (

◦
Mn,

◦
Gn,

◦
Γn) {

◦
M ′n,

◦
Gn,

◦
Γn} satisfying

Rn(M , X) = sup{‖f −A(f,
◦
Mn,

◦
Gn,

◦
Γn)‖X : f ∈M },

{R′n(M , X) = sup{‖f −A(f,
◦
M ′n,

◦
Gn,

◦
Γn)‖X : f ∈M }}

is referred to as the optimal (optimal linear) recovery method for the functions of M . The following are
valid [21]:

R′n(M , X) = λn(M , X), Rn(M , X) ≥ dn(M , X). (27)

If M = M̃ ⊗ L, where M̃ is a compact set and L is a finite-dimensional subspace, then the equalities
hold in (27).
Alongside (26), consider the quantity

K (M ,Mn) = sup{‖f1 − f2‖X : f1, f2 ∈M , T (f1,Mn) = T (f2,Mn)}
which can be interpreted as the error of the coding method on M by means of Mn.
Putting

νn(M , X) = inf{K (M ,Mn) :Mn},
where the infimum is taken over all collections Mn on the dual space X

∗, we obtain νn(M , X) ≤
2R′n(M , X); and if M is a centrally symmetric convex set, then νn(M , X) = 2dn(M , X).

Theorem 3. Under condition (7), the collection
◦
Mn of the linear functionals

◦
μk(f) = ck(f), k = 0, . . . , n− 1, (28)

provides the best coding method for the functions of W
(r)
a X(Φ;μ) in Xρ(U). The optimal linear recovery

method for
◦
M ′n,

◦
Gn,

◦
Γn of f(z) from W

(r)
a X(Φ;μ) in Xρ(U) is the linear method Lρ,r−1(f,Pn−1; z)

defined by (11). Moreover,

νn
(
W (r)a X(Φ;μ), Xρ(U)

)
= Rn

(
W (r)a X(Φ;μ), Xρ(U)

)

= R′n
(
W (r)a X(Φ;μ), Xρ(U)

)
=
πρn

4μnr
Φ

(
π

2μn

)

for all n ∈ N.
Theorem 4. Under condition (7), the optimal linear recovery method for f(z) ∈ W (r)a Hq(Φ;μ)

in Lq,γ is the linear method Ṽr−1(f, P̃n, z) defined in Section 2, while the best coding method is the
collection of functionals (28). Moreover,

1

2
λn
(
W (r)a Hq(Φ;μ),Lq,γ

)
= Rn

(
W (r)a Hq(Φ;μ),Lq,γ

)

= R′n
(
W (r)a Hq(Φ;μ),Lq,γ

)
=
π

4μnr
Φ

(
π

2μn

)( 1∫
0

ρnq+1γ(ρ) dρ

)−1/q

for all n ∈ N.
The authors are grateful to the referee for the valuable remarks.

1107



References

1. Tikhomirov V. M., “Diameters of sets in function spaces and the theory of best approximations,” Russian Math. Surveys,
vol. 15, no. 3, 75–111 (1960).

2. Pinkus A., n-Widths in Approximation Theory, Springer-Verlag, Berlin (1985).
3. Taikov L. V., “On the best approximation in the mean of certain classes of analytic functions,” Math. Notes, vol. 1,
no. 2, 104–109 (1967).

4. Taikov L. V., “Diameters of certain classes of analytic functions,” Math. Notes, vol. 22, no. 2, 650–656 (1977).
5. Ainulloev N. and Taikov L. V., “Best approximation in the sense of Kolmogorov of classes of functions analytic in the
unit disc,” Math. Notes, vol. 40, no. 3, 699–705 (1986).

6. Dveirin M. Z., “On approximation of analytic functions in the unit disk,” in: Metric Problems of the Theory of Functions
and Mappings [Russian], Naukova Dumka, Kiev, 1975, 41–54.

7. Farkov Yu. A., “Widths of Hardy classes and Bergman classes on the ball in Cn,” Russian Math. Surveys, vol. 45, no. 5,
229–231 (1990).

8. Farkov Yu. A., “n-Widths, Faber expansion, and computation of analytic functions,” J. Complexity, vol. 2, no. 1, 58–79
(1996).

9. Fisher S. D. and Stessin M. I., “The n-widths of the unit ball of Hq,” J. Approx. Theory, vol. 67, no. 3, 347–356 (1991).
10. Vakarchuk S. B., “Best linear methods of approximation and widths of classes of analytic functions in a disk,” Math.
Notes, vol. 57, no. 1, 21–27 (1995).

11. Vakarchuk S. B., “On the best linear approximation methods and the widths of certain classes of analytic functions,”
Math. Notes, vol. 65, no. 2, 153–158 (1999).

12. Vakarchuk S. B., “Exact values of widths of classes of analytic functions on the disk and best linear approximation
methods,” Math. Notes, vol. 72, no. 5, 615–619 (2002).

13. Vakarchuk S. B., “On some extremal problems of approximation theory in the complex plane,” Ukrainian Math. J.,
vol. 56, no. 9, 1371–1390 (2004).

14. Vakarchuk S. B. and Zabutnaya V. I., “Best linear approximation methods for functions of Taikov classes in the Hardy
spaces Hq,ρ, q ≥ 1, 0 < ρ ≤ 1,” Math. Notes, vol. 85, no. 3, 322–327 (2009).

15. Shabozov M. Sh. and Langarshoev M. R., “On the best approximation of some classes of functions in the weight Bergman
space,” Izv. Akad. Nauk Resp. Tadzhikistan. Otd. Fiz.-Mat., Khim., Geol. i Tekh. Nauk, vol. 136, no. 3, 7–23 (2009).

16. Vakarchuk S. B. and Shabozov M. Sh., “The widths of classes of analytic functions in a disc,” Sb. Math., vol. 201, no. 8,
1091–1110 (2010).

17. Shabozov M. Sh. and Langarshoev M. R., “The best linear methods and values of widths for some classes of analytic
functions in the Bergman weight space,” Dokl. Math., vol. 87, no. 3, 338–341 (2013).

18. Shabozov M. Sh. and Saidusaynov M. S., “The values of n-widths and best linear approximation methods for some
classes of analytic functions in the Bergman weight space,” Izv. TulGU. Estestv. Nauki, no. 3, 40–57 (2014).

19. Shabozov M. Sh. and Yusupov G. A., “Best linear methods of approximation and widths for some classes of functions
in the Hardy space,” Dokl. Akad. Nauk Resp. Tajikistan, vol. 57, no. 2, 97–102 (2014).

20. Langarshoev M. R., “On the best linear methods of approximation and the exact values of widths for some classes of
analytic functions in the weighted Bergman space,” Ukrainian Math. J., vol. 67, no. 10, 1537–1551 (2016).

21. Korneichuk N. P., Exact Constants in Approximation Theory [Russian], Nauka, Moscow (1987).
22. Korneichuk N. P., “Widths in Lp of classes of continuous and of differentiable functions, and optimal methods of coding
and recovering functions and their derivatives,” Math. USSR-Izv., vol. 18, no. 2, 227–247 (1982).

M. Sh. Shabozov
University of Central Asia, Tajik National University, Dushanbe, Tajikistan
E-mail address: shabozov@mail.ru

M. R. Langarshoev
Tajik National University, Dushanbe, Tajikistan
E-mail address: mukhtor77@mail.ru

1108


