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MAXIMAL SOLVABLE SUBGROUPS OF SIZE 2 INTEGER MATRICES
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Abstract: Studying the solvable subgroups of 2 × 2 matrix groups over Z, we find a maximal finite
order primitive solvable subgroup of GL(2, Z) unique up to conjugacy in GL(2, Z). We describe the
maximal primitive solvable subgroups whose maximal abelian normal divisor coincides with the group
of units of a quadratic ring extension of Z. We prove that every real quadratic ring R determines h
classes of conjugacy in GL(2, Z) of maximal primitive solvable subgroups of GL(2, Z), where h is the
number of ideal classes in R.
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Introduction. Denote by Z the ring of integers; by M , a free two-dimensional Z-module; and
by GL(2, Z), the automorphism group of M . As in [1], call a subgroup Γ of GL(2, Z) reducible when-
ever M includes one-dimensional submodules invariant under Γ. Then M has a one-dimensional direct
summand invariant under Γ; see [2].
This article studies the structure of maximal solvable subgroups of GL(2, Z).

1. If Γ is a reducible subgroup of GL(2, Z) then Γ is obvious that the matrices g in Γ are all
simultaneously of the form

g =

[±1 z
0 ±1

]
, z ∈ Z. (1)

This implies that GL(2, Z) includes a maximal solvable reducible subgroup unique up to conjugacy
in GL(2, Z).
Thus, we have to study only the irreducible maximal solvable subgroups of GL(2, Z). Take an ir-

reducible subgroup Γ of GL(2, Z). The group Γ is called imprimitive whenever we can express M as
the direct sum of submodules permuted by the automorphisms in Γ. If Γ is an imprimitive subgroup
of GL(2, Z) then M obviously has some basis

u1, u2 (2)

in which all g ∈ Γ are monomial. Consequently, the matrices g in Γ are of the two forms:[±1 0
0 ±1

]
or

[
0 ±1
±1 0

]
. (3)

Thus, GL(2, Z) includes a maximal imprimitive solvable subgroup Γ unique up to conjugacy in GL(2, Z)
and consisting of eight matrices of the form (3). It remains to consider only the primitive solvable
subgroups of GL(2, Z).

2. Take a maximal primitive solvable subgroup Γ of GL(2, Z) and the maximal abelian normal
divisor H of G.
Consider the two cases:
(1) H is a reducible subgroup of GL(2, Z);
(2) H is an irreducible subgroup of GL(2, Z).
Assume that H is a reducible maximal abelian normal divisor of Γ. It is obvious that H is conjugate

in GL(2, Z) to some subgroup of the form (1) of the full matrix group. Since Γ is also irreducible as
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a subgroup of GL(2, Q), where Q stands for the field of rationals, it follows that H is a totally reducible
subgroup of GL(2, Q). The order of H divides 8, and so it must be equal to 2 or 4. Consider these
two cases.
(1) The order of H equals 4. Then H is generated by two matrices of the form

h1 =

[−1 z1
0 −1

]
and h2 =

[
1 −z1
0 −1

]
, with z1 ∈ Z.

(2) The order of H equals 2. Then H consists of two matrices with ±1 on the main diagonal.
In turn, case 1 splits into the two subcases:
(a) z1 ≡ 0 (mod 2);
(b) z1 ≡ 1 (mod 2).
We may assume that in subcase (a)

h1 =

[−1 0
0 1

]
, h2 =

[
1 0
0 −1

]
;

whereas in subcase (b)

h1 =

[−1 1
0 1

]
, h2 =

[
1 −1
0 −1

]
.

Consider subcase (a). Take g ∈ Γ\H, so that

g =

[
a b
c d

]
, a, b, c, d ∈ Z with ad− bc = ±1 and gh1g−1 = h2.

Then from

[
a b
c d

]
·
[−1 0
0 1

]
=

[
1 0
0 −1

]
·
[
a b
c d

]
we find that g =

[
0 b
c 0

]
and bc = ±1. Conse-

quently, Γ is imprimitive, and so subcase (a) is impossible.

Consider subcase (b). There exists g ∈ Γ\H, g =
[
a b
c d

]
, such that gh1g

−1 = h2. This yields

[
a b
c d

]
·
[−1 1
0 1

]
=

[
1 −1
0 −1

]
·
[
a b
c d

]
,

[−a a+ b
−c c+ d

]
=

[
a− c b− d
−c −d

]
.

Hence, the two possibilities are open for g; i.e.,

g1 =

[
1 0
2 −1

]
, g2 =

[
1 −1
2 −1

]
.

The following two groups correspond to the open possibilities:

Γ1 = (g1)H; Γ2 = (g2)H;

Γ1 =

{[
1 0
2 −1

]
;H

}
; Γ2 =

{[
1 −1
2 −1

]
;H

}
.

Since g1
−1g2 = g1g2 = h2, it follows that Γ1 = Γ2. Thus, Γ1 is conjugate to G =

{[
1 0
0 −1

]
;

[
0 −1
1 0

]}

by way of the matrix f =

[
1 0
−1 1

]
, and so Γ1 is primitive. Consequently, subcase (b) is impossible.

Consider now case (2); i.e., H = {±E2}. Take a maximal abelian normal divisor A/H of Γ/H.
Since the orders of elements of the quotient group divide its order, A/H is a 2-group. Hence, we can
express A as A = (a1, b1), where (a1, b1) = −1, a21 = ±1, and b21 = ±1. We may assume that a21 = b21 = 1.
Given g ∈ Γ, we have

ga1g
−1 = λaα1 b

β
1 = c1, gb1g

−1 = μaγ1b
δ
1 = d1, (4)
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where α, μ = ±1 and α, β, γ, δ ∈ Z2 = Z/(2). Clearly, c21 = a21 and d21 = b21. This and (4) yield
α+ β + αβ = γ + δ + γδ. Since α, β, γ, δ ∈ Z2, it follows that α = β = γ = δ. The latter is impossible.
Thus, GL(2, Z) lacks maximal primitive solvable subgroups with reducible maximal abelian normal

divisors.

3. Assume that H is irreducible. The maximal abelian normal divisor of a primitive group is the
group of all invertible elements of an integral domain whose dimension is a divisor of 2. Since Γ is
maximal, this implies that H is the multiplicative group of the ring R = Z(Θ), where Θ is a root of
the polynomial x2 + αx + β irreducible over Z. The regular expression of the roots Θ1 and Θ2 of the
polynomial in the basis [1,Θ] is as follows:

Θ1 =

[
0 −β
1 −α

]
, Θ2 =

[−α β
−1 0

]
. (5)

By the corollary to Theorem 3 of [3] and the maximality of Γ, the group Γ/H is isomorphic to the relative
automorphism group of Z(Θ). Thus, Γ : H = 2. Consequently, we can always choose some element g
in the nonabelian group Γ so that gΘ1g

−1 = Θ2. Given t ∈ Γ, we have tΘ1t−1 = Θi for i = 1, 2; thus,
Γ = (g)H.

Let us find the matrix of g. Denote by g =

[
a b
c d

]
, where a, b, c, d ∈ Z with ad − bc = ±1, the

matrix corresponding to g in the basis [1,Θ]. It is clear that g2 ∈ H. From gΘ1 = Θ2g we find that

g =

[
a αa+ βc
c −a

]
. (6)

Write g2 = ω+vΘ1, where ω, v ∈ Z. Then g2 = g(ω+vΘ1)g−1 = ω+vΘ2 = ω+vΘ1. Consequently,
(Θ2 − Θ1)v = 0. Since the roots Θ1 and Θ2 are distinct, we infer that v = 0. But then g2 = ±E2.
Consider both cases.
Assume that g2 = E2. Then a

2 − αac+ βc2 = 1. If Z(Θ) is an imaginary quadratic extension of Z,
while the quadratic form a2−αac+ βc2 (i.e., {1,−α, β}) has discriminant Δ, then for Δ = −3 this form
is brought into reduced form by the unimodular substitution S =

[
1 1+α

2
0 1

]
. Consequently, (1, 0) will

be a solution to the equation a2 − αac+ βc2 = 1. We can find the remaining solutions by multiplying S
on the left by the automorphisms of the quadratic form {1, 1, 1}. These solutions are the pairs (−1, 0),(
1+α
2 , 1
)
,
(−1+α
2 , 1

)
,
(−1−α
2 ,−1

)
, and

(
1−α
2 ,−1

)
. Hence, for Δ = −3 the condition gΘ1g−1 = Θ2 is met

by the following three pairs of matrices:

g1,2 = ±
[
1 −α
0 −1

]
, g3,4 = ±

[ 1+α
2

3−α
2 − β

1 −1−α2

]
, g5,6 = ±

[ 1−α
2

−3−α
2 + β

−1 −1+α
2

]
. (7)

For Δ = −4 the solutions to the equation a2 − αac + βc2 = 1 are the pairs (±1, 0), (−α2 ,−1),
and
(
α
2 , 1
)
. Consequently, in this case

g1,2 = ±
[
1 −α
0 −1

]
, g3,4 = ±

[
α
2 2− β
1 −α2

]
.

If Δ < 0 but Δ �= −3 and Δ �= −4 then the equation a2−αac+βc2 = 1 has two solutions. However,
in this case H consists only of the matrices ±E2, and by the above GL(2, Z) lacks the primitive subgroups
having this H as their maximal abelian normal divisor. Consequently, in the case of the positive definite
quadratic form {1,−α, β} and g2 = E2 we have to consider only the discriminants Δ = −3 and Δ = −4.
Since no positive definite quadratic form can represent the number −1, it follows that g2 �= −E2

for Δ < 0.
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By Dirichlet’s Unit Theorem (see [4]) the multiplicative group of each imaginary quadratic extension
of Z is a finite cyclic group. Consider a finite maximal primitive solvable subgroup of GL(2, Z). As we
mentioned above, it suffices to consider the cases Δ = −3 and Δ = −4. Since Γ = (g)H, it follows that
Γ =

{
g,

[
0 −1
1 0

]}
for Δ = −4. It is easy to see that the order of Γ in this case equals 8. There are

only five isomorphism types of order 8 groups (see [5, Introduction]) and Γ belongs to one of them (the
dihedral group) only for α = 0. However, in this case Γ is not primitive.
For Δ = −3 the three pairs of matrices g were constructed, see (7), but only for α = −1 they

constitute, together with H =

{[
0 −1
1 1

]}
, groups (of type 3 in [5, § 72]). Furthermore, all these groups

coincide. Hence, for the resulting order 12 group we have the following

Theorem 1. Up to conjugacy in GL(2, Z), the order 12 group

Γ =

{[
1 1
0 −1

]
,

[
0 −1
1 1

]}
(8)

is the unique maximal primitive solvable subgroup of finite order of GL(2, Z).

4. Consider the case that Z(Θ) is a real quadratic extension of Z; i.e., the discriminant Δ is positive.
If Δ = 4k, where k is a positive integer and g2 = E2; then the quadratic form {1,−α, β} representing

the unit is equivalent to the form {1, 0,−k} and is taken into the form by the permutation S =
[
1 −α

2
0 1

]
.

The undetermined Fermat equation x2 − ky2 = 1 has infinitely many integer solutions; therefore, there
exist infinitely many matrices g of the form (6). Finding these matrices reduces to finding the numerators

and denominators of the continued fractions of
√
k.

The case Δ = 4k and g2 = −E2 reduces to solving the undetermined Fermat equation too.
For Δ = 4k+1 the quadratic form {1,−α, β} is equivalent to the form {1, 1,−k} for g2 = E2 and the

form {−1, 1, k} for g2 = −E2. The Diophantine equations x2+ xy− ky2 = 1 and x2− xy− ky2 = 1 have
infinitely many solutions. Denote the roots of x2+ x− k = 0 by ξ1 and ξ2; so that, for instance, the first
of these two equations rearranges as (x− ξ1y) · (x− ξ2y) = 1. However, if the norm N(X − ξ1Y ) equals 1
then X − ξ1Y is a unit of the real quadratic ring Z(Θ), and so it can be expressed as some power v of
the principal unit ε0 of Z(Θ): X − ξ1Y = εv0.
This completely settles the question of constructing the matrices g of the form (6) in all cases.
If the order ofH is not finite thenH is the multiplicative group of a real quadratic ring. By Dirichlet’s

Unit Theorem, this multiplicative group is an extension of the cyclic group of order 2 consisting of ±E2
by the infinite cyclic group. This implies that we can express all elements of H as ε = a + Θc, where
a, c ∈ Z with a2 − αac + βc2 = ±1 and Θ is a root of the irreducible equation x2 + αx + β = 0. The
regular expression for ε in the fundamental basis is

ε =

[
a −βc
c a− αc

]
. (9)

Multiply now the matrices g of (6) and ε of (9):

gε =

[
a2 − αac+ βc2 −αβc2 − αa2 + α2ac

0 −a2 + αac− βc2
]
.

Hence, g = ±
[
1 −α
0 −1

]
· ε−1. Consequently, we arrive at

Theorem 2. The maximal primitive solvable subgroups of GL(2, Z) whose maximal abelian normal
divisor H coincides with the group of units of a real quadratic extension of Z by a root of some polynomial
x2 + αx+ β irreducible over the field of rationals are of the form

Γ =

{[
1 −α
0 −1

]
;H

}
.
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Suppose that the real quadratic ring R whose group of units is H has h ideal classes. Since the
characteristic polynomial of the matrix of the regular expression for the principal unit of R is rationally
irreducible; by [6, pp. 393–395], we have r−1i Hri = Hi ⊂ GL(2, Z), where ri is the transition matrix from
the basis for R to the basis for the ideal Ii of R, for i = 1, 2, . . . , h.
The groups H and Hi are not conjugate in GL(2, Z). Indeed, denote by N the group of units of R;

by [ω1, ω2] = [ω], a basis for R; and by
[
vi1, v

i
2

]
= [vi], a basis for Ii. Then the expressions for N in the

bases [ω] and [vi] are of the form

[ωN] = H[ω], [viN] = Hi[vi].

If H = s−1His, where s ∈ GL(2, Z); then s[ωN] = His[ω]. However, Hi expresses N in the basis [vi];
therefore, [vi] = s[ω]. The resulting contradiction justifies the claim.
The transition from a special basis of the ring to a special basis of the ideal (see [4]) is realized by

transformation with some matrix r =

[
m1 m2
0 m3

]
; hence, the matrix g =

[
1 −α
0 −1

]
of this transformation

goes to the matrix

r−1gr =
[
1 2m2m1 − αm3m1
0 −1

]
. (10)

It is clear from (10) that r−1gr belongs to GL(2, Z) only if the following divisibility condition holds:

m1/(2m2 − αm3). (11)

This implies that if (11) holds then r−1Γr is a maximal primitive solvable subgroup of GL(2, Z)
and r−1Γr is not conjugate with Γ in GL(2, Z). If (11) is violated then Hi is a maximal irreducible
primitive solvable subgroup of GL(2, Z).
Since we avoid restrictions on the group of units of the real quadratic extension of Z, this implies

the next

Theorem 3. The group GL(2, Z) includes infinitely many maximal primitive solvable subgroups
not conjugate in GL(2, Z). Every real quadratic ring R determines h classes of conjugacy in GL(2, Z) of
maximal primitive solvable subgroups of GL(2, Z), where h is the number of ideal classes in R.

5. Consider two examples of infinite maximal solvable subgroups of GL(2, Z).

Example 1. Determine the maximal primitive irreducible solvable groups in GL(2, Z) related to
the extension of Z by a root of the polynomial x2 − x− 1.
The principal unit ε0 =

1
2(1 +

√
5) of the ring Z(

√
5) has the following regular expression in the

fundamental basis of this ring:

ε0 =

[
0 1
1 1

]
.

The ring Z(
√
5) has only one ideal class; therefore, we can uniquely express its group of units H as

a subgroup of GL(2, Z):

H =

{
−E2;

[
0 1
1 1

]}
= (E2)

k ·
[
0 1
1 1

]n
.

Consequently,

Γ =

{
−E2;

[
1 1
0 −1

]
;

[
0 1
1 1

]}
= (E2)

k ·
[
1 1
0 −1

]s
·
[
0 1
1 1

]n

is a unique maximal irreducible solvable subgroup of GL(2, Z) whose maximal abelian normal divisor
coincides with the group of units of Z(

√
5).

Example 2. If H1 is the multiplicative group of the extension R of Z by a root of the polynomial
x2 − 6x − 1 then the presence in Z(√10) of two ideal classes implies the existence of a subgroup H2 of
GL(2, Z) rationally conjugate to H1 but not conjugate to H1 in GL(2, Z).
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The principal unit ε0 of Z(
√
10) is determined by the least integer solution to Pell’s equation:

u2−10v2
4 = ±1. Since the expansion of √10 as a continued fraction is

√
10 = 3 + (

√
10− 3) = 3 + 1√

10 + 3
,

√
10 + 3 = 6 + (

√
10− 3) = 6 + 1√

10 + 3
,
√
10 = {3, 6̄},

and the convergent numerators and denominators constitute the scheme

6

6 1 0

1 0 1

,

the principal unit of this extension is ε0 = 3 +
√
10. The fundamental basis of the ring Z(

√
10) is of

the form [w1, w2] = [1,
√
10], while [v1, v2] = [3, 2 +

√
10] is a basis for an ideal of this ring. Indeed,

3
√
10 = −2 · 3 + 3 · (2 +√10) and (2 +√10) · √10 = 2 · 3 + 2 · (2 +√10). The transition matrix from

the first basis to the second one is r =

[
3 2
0 1

]
. To the unit ε0 in the basis [w1, w2] of the ring R there

corresponds the matrix Θ1 =

[
3 10
1 3

]
; whereas in the basis [v1, v2] of the ideal, the matrix Θ2 =

[
1 2
3 5

]
.

Condition (10) is violated since 3 does not divide 10. Thus, the extension Z(
√
10) determines, up to

conjugacy in GL(2, Z), the two maximal irreducible solvable subgroups of GL(2, Z):

Γ1 =

{
−E2;

[
1 6
0 −1

]
;

[
3 10
1 3

]}
= (−E2)k ·

[
1 6
0 −1

]s
·
[
3 10
1 3

]n
;

Γ2 =

{
−E2;

[
1 2
3 5

]
;

}
= (−E2)k ·

[
1 2
3 5

]n
.

It is clear from these examples that the problem of constructing a maximal primitive solvable sub-
group Γ of GL(2, Z) whose maximal abelian normal divisor coincides with the multiplicative group

of Z(
√
d) with d > 0 reduces to finding the principal unit of this extension.
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