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1. Introduction

The Fourier transform in Rn, one of the most important tools for solving differential equations, admits
a natural generalization (but with substantial modifications) to unimodular Lie groups (here we will be
interested in exactly this case though an analogous construction can be carried out even on arbitrary
locally compact groups).

Definition 1. Let G be a unimodular Lie group endowed with the Haar measure μ and let ̂G be
the set of all irreducible unitary representations of G (on, generally speaking, different separable spaces).

In each class λ ∈ ̂G, choose a representation Xλ : G → U(Hλ), where Hλ stands for the Hilbert space
of the chosen representation; U(Hλ) stands for the group of all unitary operators on Hλ. The generalized

(or noncommutative) Fourier transform of f ∈ L1(G,C) is the mapping, denoted by F (f) or ̂f , which

assigns to each λ ∈ ̂G the (bounded) operator on Hλ defined by the formula ̂f(λ) =
∫

G f(g)Xλ(g
−1)μ(dg).

Remark 1. The notation Hλ is correct in the following sense: If we take two equivalent representa-
tions R and S from the same class λ then their Hilbert spaces are isometric.

The object ̂G is called the Pontryagin dual to G; excluding the case when G is an abelian group, ̂G

has no natural group structure. However, some properties of ̂G can be generalized; for example, G can
be endowed with a measure P by analogy with the case of abelian groups which is called the Plancherel
measure and satisfies the inversion formula for almost g ∈ G (provided that f ∈ L1(G,C) ∩ L2(G,C)):

f(g) =

∫

̂G

Tr(̂f(λ) ◦ Xλ(g))P (dλ).

The trace of a linear operator on Hλ is denoted by Tr in order to avoid confusion with the finite-
dimensional (matrix) trace tr. The proof of the existence of the Plancherel measure can be found, for
example, in [1, 2].
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The convolution of real- or complex-valued functions with respect to the group operation, defined
by the formula

(f1 ∗ f2)(g) =
∫

G

f1(h)f2(h
−1g)μ(dh),

goes to the product (i.e., composition) operators in reverse order. Indeed, if given λ ∈ ̂G we choose
Xλ ∈ λ, then

f̂1 ∗ f2(λ) =
∫

G×G
f1(h)f2(h

−1g)Xλ(g−1)μ(dg)μ(dh)

=

∫

G×G
f1(h

′)f2(g′)Xλ((h′g′)
−1
)μ(dg′)μ(dh′)

(here the change g′ = h−1g, h′ = h is made in the double integral; the Jacobian of this change is equal
to 1 because μ is the Haar measure). On the other hand,

̂f2(λ) ̂f1(λ) =

∫

G

f2(g)Xλ(g
−1)μ(dg) ◦

∫

G

f1(h)Xλ(h
−1)μ(dh)

=

∫

G×G
f1(h)f2(g)Xλ(g

−1) ◦ Xλ(h−1)μ(dg)μ(dh),

and since Xλ is a group homomorphism, we have

Xλ((hg)
−1) = Xλ(g−1h−1) = Xλ(g−1)Xλ(h−1),

whence f̂1 ∗ f2(λ) = ̂f2(λ) ̂f1(λ).
The noncommutative Fourier transform can also be extended to generalized functions by analogy

with the usual Fourier transform. Of importance is the fact that the Dirac delta-function transforms
into the direct integral with respect to the measure P of the identity operators on (Hλ)λ∈̂G. Indeed,
choosing for λ ∈ ̂G a representation Xλ ∈ λ on Hλ, we obtain the following equalities in the sense
of generalized functions

̂δ(λ) =

∫

G

δ(g)Xλ(g
−1)μ(dg) = Xλ(e) = IdHλ ,

where e is the neutral element of G. The last equality follows from the fact that Xλ is a group homo-
morphism. The definitions of direct integral of Hilbert spaces and operations on Hilbert spaces can be
found in [3]; the theory of direct integrals is exposed in more detail in [4, 5].
Define the main object of our study—the sub-Laplacian. We will first do it in a sufficiently general

context and then give some specifications for Lie groups.

Definition 2. (i) Suppose that a smooth distribution H is defined on a smooth manifold M .
The sequence of distributions defined recurrently by the equalities H1 = H and Hj+1 = Hj + [Hj , H]
for positive integers j is called the Lie flag of H. It is sometimes assumed that H0 = {0}.
(ii) By the growth vector for a distribution H we mean the sequence of the dimensions of the spaces

in its Lie flag.
(iii) If the growth vector does not depend on the point of the manifold then the distribution (and

the manifold itself) are called equiregular.

In general, by a flag we mean an inclusion increasing sequence of subspaces in a vector space but we
will extend the term “flag” also to increasing sequences of distributions.
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Definition 3. Suppose that M is a smooth manifold, H is a distribution on M , and Hj is the jth
space of the Lie flag of H. The degree deg(X) of a vector field X on M (more exactly, the degree of X
with respect to H) is the least number j for which X ∈ Hj .
In what follows, we will deal exactly with the case when the sub-Riemannian manifold M is equireg-

ular. Since, in our context, we assume that the Lie flag stabilizes to the tangent bundle TM (H is totally
nonholonomic), we will write down the growth vector in abridged form, cutting the record at j at which
dimHj = dimM ; for example, for the four-dimensional Engel group, we will write the growth vector
as (2, 3, 4). Furthermore, we will also have to distinguish between the usual (topological) dimension
of M and its Hausdorff dimension with respect to the Carnot–Carathéodory metric. For this reason, we
will use the notation dimM for the first dimension and the notation hdimM for the second dimension;
excluding the case when M is a Riemannian manifold, hdimM > dimM . This fact together with the
definition of Carnot–Carathédory metric and the formula expressing hdimM in terms of the components
of the growth vector, can be found for example in [6]:

hdimM =
K
∑

j=1

j(dimHj − dimHj−1),

where K is the minimal natural with HK = TM ; it is assumed here that H0 = {0}.
Definition 4. Let M be a smooth equiregular sub-Riemannian manifold, for which the horizontal

distribution will be denoted by H and the metric on each subspace H(q) for q ∈ M will be designated
by 〈·, ·〉q. Suppose that the Popp measure is defined onM (by its volume form μ; see [7] for the definitions

of μ and Popp measure).
(i) The operator gradH , assigning to each function φ a vector field on M so that 〈(gradHφ)(q), v〉q =

dφ(q, v) for all q ∈M and v ∈ H(q) is called the horizontal gradient.
(ii) Refer as the divergence divμ to the operator assigning to each vector field X on M a smooth

function by the formula divμ(X) · μ = d(iX(μ)), where iX is the operator of the interior product of
differential forms acting by inserting X in the first argument of the form; i.e., the value of the form iX(μ)
at an arbitrary collection of vector fields Y1, . . . , YdimM−1 is equal to μ(X,Y1, . . . , YdimM−1).
(iii) The operator ΔH = divμgradH is called the sub-Laplacian on M with respect to H and μ.

The equation ∂tf(t, x) = ΔHf(t, x) is called the heat equation or diffusion equation. Its solution
under the generalized initial condition f(0, x) = δy(x) will be referred to as the heat kernel and de-
noted by HK(t, x, y). Here δy is the Dirac generalized function at a point y (the phrase “a measure is
concentrated on a set” means that the measure of the complement to the set is zero).
We will also use the operator notation

HK(t, x, y) = (exp(tΔH)δy)(x).

The name “heat kernel” is due to the fact that for each t > 0 the function HK(t, ·, ·) is the integral kernel
of exp(tΔH).
If the manifold under study has the structure of a Lie group and the horizontal distribution and the

metric are left-invariant then μ is the left-invariant Haar measure, and the heat equation is thus invariant.
Hence, for Lie groups we will assume the δ-function at the initial condition to be concentrated at the
neutral element e; respectively, HK(t, x, e) will be denoted by p(t, x), or, if t is understood as a parameter,
by pt(x). Since, as this notation, we have HK(t, x, y) = p(t, y−1x) in the presence of a group structure,
we will refer as the heat kernel not only to HK but also to the function p from which HK is uniquely
recovered.
If the Lie group G under consideration is also unimodular and the distribution H is defined by

some orthonormal basis {Xj : 1 ≤ j ≤ m} then ΔH =
∑m
j=1

(

Xj
2
)

; a proof can be found in [7].

For each left-invariant field X on G, its Fourier transform ̂X = FXF−1 decomposes into the direct
integral of some operators ̂Xλ : HS(Hλ)→ HS(Hλ) (for the definition of ̂Xλ and ̂X =

∫

̂G⊕
̂XλP (dλ), the
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reader is referred to [7]), and so the Fourier transform of the sub-Laplacian splits into a direct integral:
̂ΔH = FΔHF−1 =

∫ ⊕
̂G
(̂ΔH)λP (dλ), where (

̂ΔH)λ =
∑m
j=1

(

̂X2λ
)

. Here the symbol HS(Hλ) stands

for the class of Hilbert–Schmidt operators on Hλ. If we apply the noncommutative Fourier transform
and the inversion formula (for applying this procedure correctly, we will need an approximation of the
identity operator; see the proof of Theorem 3) then we will obtain

p(t, g) = exp(tΔH)δ(g) =

∫

̂G

Tr(exp(t(̂ΔH)λ)Xλ(g))P (dλ).

Knowing irreducible unitary representations of the group G, we can reduce the initial heat equation

to an equation with transformed sub-Laplacian ̂ΔH , which is usually easier than the initial diffusion
equation. For SU(2), SO(3), SL(2), and SE(2), this was done in [8], and for nilpotent groups with growth
vectors (2, 3, 4) and (2, 3, 5), in [7]. The equivalence classes of irreducible unitary representations can
be found with the use of the orbit method developed by Kirillov; this method will be briefly exposed
in Section 2. For more details on the ideas constituting the orbit method (not always on the level
of rigorous theorems), the reader is referred to [9, 10].
Of primarily interest are the nilpotent Lie groups (they are of course unimodular, and so what was

exposed above applies to them). The reason behind this is that if an exact solution to the heat equation
(over any equiregular sub-Riemannian manifold, even without any group structure) is not required and
only its asymptotics for t small are needed then we can pass to the nilpotent approximation at the point
and then use Duhamel’s formula

exp(t(X + Y )) = exp(tX) +

t
∫

0

(exp((t− s)(X + Y ))Y exp(sX) ds).

That is now the diagonal asymptotics for the heat kernel was obtained in [11] in the case of a contact
three-dimensional manifold in terms of geometric invariants χ and κ defined in [12].
In subsequent arguments, we will also need the fact that the heat kernel pt(·) in a connected simply-

connected Lie group G for each t > 0 belongs to the Schwartz space S (G). The proof of this fact and
also the definition and some properties of the Schwartz space can be found in [13].

2. The Orbit Method

In formulating the orbit method, we assume that the Lie group is such that the irreducible unitary
representations result from one-dimensional representations by the operators of extension from a sub-
group, restriction to a subgroup, and induction from a subgroup. Though this assumption is not proved
for arbitrary Lie groups, it still holds for nilpotent groups (see [9]). Let us describe the correspondence
of orbits and representations in the case when the representation is obtained from a one-dimensional rep-
resentation in a sole step by induction—this will be enough. Let us give here the definition of induction
operator (see also [14]).

Definition 5. Suppose that H is a connected closed subgroup in a Lie group G, H�G is the set
of right cosets of G modulo H, the measure μH�G is the image of the right Haar measure on G under the
mapping taking each element g ∈ G to its right coset Hg, and T : H → U(V ) is a unitary representation
of H in a Hilbert space V with inner product 〈·, ·〉V and the corresponding norm ‖ · ‖V .
(i) On the space of cosets (modulo almost everywhere coincidence) of Borel measurable functions

f : G→ V such that f(hg) = T (h)f(g) and
∫

H�G

(‖f(g)‖2V
)

μH�G(dg) <∞ for all h ∈ H and g ∈ G, in-
troduce the inner product 〈f1, f2〉 =

∫

H�G 〈f1(g), f2(g)〉V μH�G(dg). Denote the completion of this space
with respect to 〈·, ·〉 by W . The notation ∫H�G 〈f1(g), f2(g)〉V μH�G(dg) is correct since 〈f1(g), f2(g)〉V
is the same for all g in the same right coset.
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(ii) Define the representation IndGH T : G → U(W ) of G which is induced by a representation T as
follows: For each g ∈ G, the operator (IndGH T

)

g
∈ U(W ) acts at f ∈W by the formula (IndGH T )g(f)(g′) =

f(g′g) for all g′ ∈ G.
For describing the structure of ̂G, i.e. for classifying irreducible unitary representations of a Lie

group G, we will need the coadjoint action (or coadjoint representation) of G.

Definition 6. Let g be the Lie algebra of a Lie group of an algebra G realized by the left-invariant
vector fields and let g∗ be the space of left-invariant differential 1-forms dual to g. The group G acts on g
by the adjoint action Ad defined by the formula Adg(X) = gXg−1 for g ∈ G and X ∈ g, and acts on g∗
by the coadjoint action Ad∗ defined by the formula Ad∗g(ξ,X) = ξ(g−1Xg) for g ∈ G, X ∈ g, and ξ ∈ g∗.
Abstracting from the variable X, denote by Ad∗g(ξ) the differential form Ad

∗
g(ξ, ·), to which the form ξ

goes for the sake of convenience.
The notation Adg(X) = gXg−1 means that the elements of G and g are defined by matrices.

In coordinate-free form, the definition looks as follows: Adg(X) = dΨg(e,X), where Ψg : G → G is
calculated by the formula Ψg(h) = ghg

−1; respectively, Ad∗g(ξ) = ξ ◦Adg−1 .
Definition 7. Oξ = {Ad∗g(ξ) : g ∈ G} is called the orbit of the form ξ in Ad∗.
The set of orbits, which we will denote by g∗/Ad∗, is endowed with the quotient topology of the

standard topology in g∗ by the equivalence “membership in the same orbit” and also with the measure
that is the decomposition of the Lebesgue measure in g∗ into the canonical measures on the orbits.
As a “standard” measure on ̂G, we take the Plancherel measure, and the topology is introduced as

follows: Let T be an irreducible unitary representation of G on some separable Hilbert space, that we will

denote by H ; the inner product in H will be denoted by 〈·, ·〉H . For the point λ ∈ ̂G that is the class
of representations equivalent to T , the following neighborhood base of the form U(K, (vj)j=1,...,n), whereK

is a compact subset of G, while (vj)j=1,...,n is a collection of vectors inH : The class of a representation T ′

defined on a separable Hilbert space H ′ with inner product 〈·, ·〉H ′ belongs to U(K, (vj)j=1,...,n) if and

only if there exists a collection of vectors (v′j)j=1,...,n inH ′ such that |〈T (g)vj , vk〉H −〈T ′(g)v′j , v′k〉H ′ | < 1
for all g ∈ K and all indices j, k.
The correspondence between ̂G and g∗/Ad∗ must be constructed as an isomorphism between ̂G

and g∗/Ad∗ as topological and measure spaces. Before constructing it, we give some necessary definitions
and facts.

Definition 8. Let G be a Lie group with Lie algebra g. A Lie subalgebra m ⊆ g is called subordinate
to ξ ∈ g∗ if Bξ(X,Y ) = 0 for all X,Y ∈ m, where by definition Bξ(X,Y ) = ξ([X,Y ]) for all X,Y ∈ g.
Denote by gξ the kernel of the form Bξ, the set of points X ∈ g such that Bξ(X,Y ) = 0 for all Y ∈ g.
For each ξ ∈ g∗, the Lie subgroup {g ∈ G : Ad∗g(ξ) = ξ} has the space gξ as its Lie algebra (see [10]);

denote this subgroup by Gξ.
Each orbit Oξ admits a nondegenerate closed G-invariant 2-form turning Oξ into a symplectic mani-

fold. All necessary isomorphisms originating from the identification of Oξ with the set of right cosets of G
modulo the subgroup Gξ and enabling us to give the term “G-invariance” some exact sense in application
to forms on Oξ are given in [10]; some method for obtaining a symplectic form on Oξ from the form Bξ
is described in [10] too. In particular, Oξ has even dimension. On the other hand, if G is connected then
every homogeneous symplectic manifold (i.e., a manifold on which G acts and all transformations of G
preserve the symplectic form) is locally isomorphic to an orbit in the coadjoint representation either of G
itself or of the central extension of G by R.
With an orbit Oξ, we associate the representation Ind

G
H ρξ,H , where H is a subgroup in G with the

Lie algebra h that is an algebra of maximal dimension subordinate to ξ, equal to
dim g+dim gξ

2 , ρξ,H is the
one-dimensional unitary representation of H defined by the formula ρξ,H(exp(X)) = exp(2πiξ(X)) for
all X ∈ h.
As was shown in [9], in our case, this construction gives a full description of ̂G:

1055



Theorem 1. If G is a connected simply-connected nilpotent Lie group with Lie algebra g and T
is an irreducible unitary representation of G then T = IndGH ρξ,H for some connected subgroup H ⊆ G
and some ξ ∈ g∗.
If H ⊆ G is a connected subgroup with Lie algebra h, ξ ∈ g∗ then the representation Tξ,H = IndGH ρξ,H

is irreducible if and only if h is a subalgebra of maximal dimension subordinate to ξ.
Suppose that Tξ,H and Tξ′,H′ are irreducible, while λ and λ

′ are the classes of representations equiv-
alent to Tξ,H and Tξ′,H′ respectively. Then the conditions λ = λ

′ and Oξ = Oξ′ are equivalent.
The correspondence of the orbits Oξ and the similarity classes of the representations Tξ,H is a home-

omorphism in the above-introduced topologies.

In the case of a nilpotent Lie group G, every maximal subalgebra subordinate to an element ξ ∈ g∗
includes gξ. This fact, proved by Pukánszky in [15], will be used in considering a concrete example below.
The explicit construction of a subalgebra of maximal dimension which is subordinate to ξ was pro-

posed by Vergne (here we expose her result not in maximal generality; a more complete statement and
proof can be found in [16]):

Theorem 2. Let G be a connected simply-connected Lie group with Lie algebra g and (Vk)k=0,...,dim g
be an inclusion increasing collection of ideals in g, where dimVk = k for all k. Then, for every ξ ∈ g∗,
vs(ξ) =

∑dim g
k=0 ker(Bξ|Vk) is a subalgebra of maximal dimension subordinate to ξ.

In what follows, we use the notations exp(vs(ξ)) = V Sξ and Tξ,V Sξ = Rξ, the equivalence class
of a representation Rξ will be denoted by λξ, and the representation space Rξ, by Wξ. Sometimes we
will write vs(ξ) instead of vsξ.
Theorem 2 makes it possible to choose representations in a given class in a canonical way. Moreover,

given a collection of ideals (Vk)k=0,...,dim g, we can naturally construct a Maltsev basis g (in the strong

sense).

Definition 9. An ordered basis (Zk)k=1,...,dim g of the Lie algebra g is called Maltsev in the weak

sense if all its initial segments (Zk)k=1,...,r, 0 ≤ r ≤ dim g, are bases of some subalgebras in g; if in addition
all these subalgebras are ideals in g then (Zk)k=1,...,dim g is called Maltsev in the strong sense.

For applying the noncommutative Fourier transform (more exactly, of the inversion formula), it
remains to calculate its Plancherel measure.

Definition 10. Let A be a real skew-symmetric matrix of order 2n whose entries will be denoted
by (ai,j)i,j=1,...,2n. The Pfaffian pf(A) is defined by the formula

pf(A) =
1

2nn!

∑

σ∈S2n

(

sgn(σ)
n
∏

i=1

(aσ(2i−1),σ(2i))
)

,

where S2n is the group of all permutations of a 2n-element set, while sgn(σ) is the sign of the permuta-
tion σ, equal to 1 if σ is even and equal to −1 if σ is odd.
The square of the Pfaffian is equal to the determinant. Below we will see that the sign of the Pfaffian

is unimportant in our context; therefore, we can calculate the modulus of the Pfaffian by extracting the
square root from the determinant, thus avoiding its direct calculation via permutations.
Let us expose the method of computing the Plancherel measure which is described in [9, 10].

Proposition 1. If G is a connected simply-connected nilpotent Lie group then
(i) for every open dense set F ⊆ g∗/Ad∗ consisting of orbits of maximal dimension, the set of elements

in ̂G corresponding to the orbits in F has some complement of Plancherel measure 0;
(ii) there is a linear subvariety Q in g∗ so that each orbit in some open dense subset of orbits

of maximal dimension intersects with Q at a singleton.
The Plancherel measure is described in terms of Q as follows: Identify g∗∗ with g by assigning to each

z ∈ g some element g∗∗ that at each ξ ∈ g∗ takes the value ξ(z). With this identification in mind, choose
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the basis in g∗∗
{Xj : 1 ≤ j ≤ dimQ} ∪ {Yj : 1 ≤ j ≤ dim g− dimQ}

in which the elements denoted by Y are constant on Q; the coordinates on Q are (Xj)1≤j≤dimQ. For each
ξ ∈ Q, construct the skew-symmetric matrix A(ξ) with entries aj,k = ξ([Yj , Yk]). Then the measure
on the given open dense set of orbits of maximal dimension taken to the Plancherel measure under the

correspondence of ̂G and g∗/Ad∗ is equal to

| pf(A(ξ))|dX1 ∧ · · · ∧ dXdimQ.
To formulate the main result, we will need the definition of canonical projection to the subgroup V Sξ

for arbitrary ξ in the above-constructed subspace Q.

Definition 11. Take ξ ∈ Q. Choose a Maltsev basis of g in the weak sense, denoted by (Zk)1≤k≤dim g,
for which

vs(ξ) = span

{

Zk : 1 ≤ k ≤ dim g+ dim gξ
2

}

.

Given x ∈ R
dim g−dim gξ

2 , put

γx = exp(x1Zdim g+dim gξ
2

+1
) · . . . · exp(xdim g−dim gξ

2

Zdim g).

The canonical projection of h ∈ G to V Sξ is defined as h
′ ∈ V Sξ such that h = h′γx for some

x ∈ R
dim g−dim gξ

2 . We will denote such h′ by prV Sξ(h).

From this decomposition h = h′γx, we can recover x = γ−1((prV Sξ(h))
−1h).

Remark 2. The notation (γx)
−1, which means the element of the group inverse to γx, should not

be confused with γ−1(. . . )—the value of the inverse function of γ at some point.
Thus, the formula for p(t, g) is as follows:

Theorem 3. Let G be a connected simply-connected nilpotent Lie group with Haar measure μ, left-
invariant sub-Riemannian metric, and corresponding sub-LaplacianΔH . Let the space Q and matrix A(ξ)
for ξ ∈ Q be like those given in Proposition 1, and let the mapping γ be as in Definition 11. Then the
heat kernel for ΔH is expressed as

p(t, g) =

∫

Q

∫

R

dim g−dim gξ
2

e
2πiξ(log(prV Sξ

(γxg)))
HK
̂ΔH(λξ)

(t, γ−1((prV Sξ(γxg))
−1γxg), x)|pf(A(ξ))| dxdξ,

where HK
̂ΔH(λξ)

(t, ·, ·) is the integral kernel of the operator exp(t̂ΔH(λξ)) for all t > 0.
Remark 3. The symbol log in application to an element of a Lie group means the inverse of the

exponential mapping. This notation is correct since the exponential mapping of a connected simply-
connected Lie group is bijective.

Proof. The main idea is to apply the generalized Fourier transform to the heat equation and then
reconstruct the heat kernel from its Fourier transform by the inversion formula. We classify irreducible
unitary representations of G by the orbit method; for each such representation, we find an equivalent
representation that looks simpler than then initial one.
Choose ξ ∈ Q. The orbit method associates with ξ the representation Rξ = Ind

G
V Sξ

ρξ,V Sξ . Here

ρξ,V Sξ(exp(X)) = exp(2πiξ(X)) for all X ∈ vsξ which can be rewritten as ρξ,V Sξ(h) = exp(2πiξ(log(h)))
for all h ∈ V Sξ. Denote the Hilbert space of the representation Rξ byWξ. Its elements are represented by
the complex-valued of functions on G defined up to a set of measure zero since ρξ,V Sξ is a one-dimensional
representation.
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Using the mapping γ and the canonical projection of Definition 11, we construct the transformation

Jξ : L
2(R

dim g−dim gξ
2 )→Wξ acting on each function f ∈ L2(R

dim g−dim gξ
2 ) by the formula

Jξ(f)(g) = ρξ,V Sξ(prV Sξ(g))f(γ
−1((prV Sξ(g))

−1g))

for almost all g ∈ G. The definition of Jξ is correct because the function Jξ(f) obtained by this formula
possesses the properties of the definition of the Hilbert space on which the induced representation is
defined (see Definition 5). Since the modulus of the complex number ρξ,V Sξ(prV Sξ(g)) is equal to 1, the

so-constructed transformation Jξ is unitary.
The inverse transformation of Jξ takes each function u ∈Wξ to the function defined by the formula

Jξ
−1(u)(x) = u(γx) for almost all x ∈ R

dim g−dim gξ
2 . Indeed, if f ∈ L2(R

dim g−dim gξ
2 ) then for all almost all

x ∈ R
dim g−dim gξ

2 we have

Jξ
−1(Jξ(f))(x) = Jξ(f)(γx) = ρξ,V Sξ(e)f(γ

−1(γx)) = f(x),

since prV Sξ(γx) is equal to the neutral element e. On the other hand, for all u ∈Wξ and almost all g ∈ G,
we have

Jξ(Jξ
−1(u))(g) = ρξ,V Sξ(prV Sξ(g)) · Jξ−1(u)(γ−1((prV Sξ(g))−1g))
= ρξ,V Sξ(prV Sξ(g)) · u((prV Sξ(g))−1g) = u(g).

The last equality follows from the condition u(hg) = ρξ,V Sξ(h)u(g), with h ∈ H and g ∈ G, which occurs
in Definition 5.

Define the representation R′ξ : G → U(L2(R
dim g−dim gξ

2 )) equivalent to the representation Rξ by the

formula R′ξ(g) = Jξ
−1◦Rξ(g)◦Jξ for each g ∈ G, i.e., for each f ∈ L2(R

dim g−dim gξ
2 ), the function R′ξ(g)(f)

acts by the formula R′ξ(g)(f) = (Rξ(g)(Jξ(f))) ◦ γ. The last formula takes the following form for almost
all x ∈ R

dim g−dim gξ
2 :

R′ξ(g)(f)(x) = Rξ(g)(Jξ(f))(γx) = Jξ(f)(γxg)

= ρξ,V Sξ(prV Sξ(γxg))f(γ
−1((prV Sξ(γxg))

−1γxg))

= e
2πiξ(log(prV Sξ

(γxg)))
f(γ−1((prV Sξ(γxg))

−1γxg)).

It is with the representation R′ξ that we will work below. Choosing it as the canonical representative
of its equivalence class λξ ∈ ̂G, write down the definition of the Fourier transform of f : G→ C:

̂f(λξ) =

∫

G

f(g)R′ξ(g
−1)μ(dg).

Respectively, the inversion formula looks as follows:

f(g) =

∫

Q

Tr(̂f(λξ) ◦R′ξ(g))| pf(A(ξ))| dξ.

Here ̂G is parametrized by orbits in the coadjoint representation (more exactly, by their elements in Q)
and the expression is used for the Plancherel measure in terms of this parametrization.
As was shown in [10], the Fourier transform of each f ∈ S (G) calculated in λξ has the integral kernel

kf ∈ S (R
dim g−dim gξ

2 × R
dim g−dim gξ

2 ) such that

kf (x, y) =

∫

V Sξ

ρξ,V Sξ(h)f((γx)
−1hγy)dh,
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where dh stands for the Haar measure on V Sξ. Since pt ∈ S (G), we can take f = pt; the corresponding

function kpt is equal to HK
̂ΔH(λξ)

(t, ·, ·) (see [14]). The fact that kpt ∈ S (R
dim g−dim gξ

2 × R
dim g−dim gξ

2 )

implies that the operator p̂t(λξ) has a trace.
As was demonstrated in Section 1, the convolution of two functions f1, f2 : G→ C, defined as

(f1 ∗ f2)(g) =
∫

G

f1(h)f2(h
−1g)μ(dh)

for g ∈ G, satisfies f̂1 ∗ f2(λ) = ̂f2(λ) ◦ ̂f1(λ), λ ∈ ̂G. For each f ∈ S (G), the solution to the heat
equation is written down as exp(tΔH)(f) = f ∗pt. Taking the generalized Fourier transform of both sides
of this equality, we see that F (exp(tΔH)(f))(λξ) = p̂t(λξ) ◦ ̂f(λξ) for all ξ ∈ Q.
For obtaining p̂t from this and then reconstructing pt by the inversion formula, we must approximate

the identity operator Id
L2(R

dim g−dim gξ
2 )

by operators of the form ̂f(λξ) for some f ∈ S (G). The approxi-

mation is necessary because there is no f ∈ S (G) such that ̂f(λξ) = Id
L2(R

dim g−dim gξ
2 )

, since the identity

operator is not a Hilbert–Schmidt operator.
Thus, we consecutively take f compactly supported smooth functions φn converging in the usual

sense to the δ-function concentrated at the neutral element such that φn(g
−1) = φn(g) and φn(g) ≥ 0

for all g ∈ G. It is known from [18] that the functions φn ∗ ψ converge in L2(G) as n → ∞ to ψ for all
ψ ∈ L2(G) for such a sequence; moreover, the sequence of operators taking each ψ ∈ L2(G) to φn ∗ ψ is
uniformly bounded in the operator norm. Therefore, limn→∞Tr(p̂t(λξ) ◦̂φn(λξ)) = Tr(p̂t(λξ)).
If, in the inversion formula, f(g) =

∫

QTr(
̂f(λξ) ◦R′ξ(g))| pf(A(ξ))| dξ we put f = φn ∗ pt and pass

to the limit as n→∞ then we infer
exp(tΔH)φn(g) =

∫

Q

Tr(F (exp(tΔH)φn)(λξ) ◦R′ξ(g))|pf(A(ξ))| dξ

=

∫

Q

Tr(p̂t(λξ) ◦̂φn(λξ) ◦R′ξ(g))|pf(A(ξ))| dξ

→
∫

Q

Tr(p̂t(λξ) ◦R′ξ(g))|pf(A(ξ))| dξ =
∫

Q

Tr(R′ξ(g) ◦ p̂t(λξ))|pf(A(ξ))| dξ

(here we have used the circumstance that the composition with the unitary operator R′ξ(g) does not
influence the convergence of the traces) and the formula Tr(X ◦ Y ) = Tr(Y ◦X) either. Thus,

p(t, g) =

∫

Q

Tr(R′ξ(g) ◦ p̂t(λξ))|pf(A(ξ))| dξ.

For calculating Tr(R′ξ(g) ◦ p̂t(λξ)), we can use the fact that if U is a unitary operator and K is
an operator with trace, whereas the integral kernel of the operatorK is a continuous function k; then U◦K
has a trace, its integral kernel k1 is defined by the formula k1(x, y) = (Uk(·, y))(x), and Tr(U ◦ K) =
∫

Uk(·, x)(x) dx. Taking U = R′ξ(g) and K = p̂t(λξ) and inserting the previously found expression

for R′ξ(g), we obtain

Tr(R′ξ(g) ◦ p̂t(λξ)) =
∫

R

dim g−dim gξ
2

(R′ξ(g)(HK
̂ΔH(λξ)

(t, ·, x)))(x) dx

=

∫

R

dim g−dim gξ
2

e
2πiξ(log(prV Sξ

(γxg)))
HK
̂ΔH(λξ)

(t, γ−1((prV Sξ(γxg))
−1γxg), x) dx.
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For finishing the proof, it suffices to insert the obtained expression for the trace in the formula

p(t, g) =

∫

Q

Tr(R′ξ(g) ◦ p̂t(λξ))|pf(A(ξ))| dξ. �

Since HK
̂ΔH(λξ)

usually looks easier than the initial heat kernel, the following terminology is wide-

spread:

Definition 12. The function HK
̂ΔH(λξ)

, introduced in Theorem 3, is called the reduced kernel or

transformed kernel.

3. The Perturbation Method

For applying the perturbation method, we must define the anisotropic dilation.

Definition 13. Suppose that M is an n-dimensional manifold and F = (Hj)j=1,...,K is a smooth

flag in TM , HK = TM , dj = dimHj − dimHj−1 (here we have put H0 = {0}). The coordinates
�x = (xk)k=1,...,n in a neighborhood of q ∈ M are called adapted to F if �x(q) = (0, . . . , 0), and the image

of Hj(q) under d�x(q) is equal to
K
⊕

s=1

{

R
ds , s ≤ j,
{0}, s > j,

for all j.

Definition 14. Let �x = (xk)k=1,...,n be coordinates on M adapted to the flag F = (Hj)j=1,...,K .

Define the anisotropic ε-dilation with respect to q, where ε ≥ 0, by the formula
δε,q(q

′) = �x−1((εmin{j:dimHj≥k}xk(q′))k=1,...,n),

where q′ is an arbitrary point in the domain of �x.
If M is an equiregular sub-Riemannian manifold then as F we naturally take the Lie flag of the

horizontal distribution H1 = H. By K we will denote the least j such that Hj = TM .

Definition 15. For the differential operators on M representable by monomials in the adapted
coordinates, define the homogeneity exponent ν as follows: If α and β are multi-indices then

ν(xα∂β) =
n
∑

r=1

((αr − βr)min{j : dimHj ≥ r}).

A differential operator with polynomial coefficients is called homogeneous with exponent p if all its mono-
mials have the value of ν equal to p.

Definition 16. If X =
∑∞
p=−K(Wp) is the Taylor expansion of a vector field X represented in the

adapted coordinates near the point (0, . . . , 0), where the vector field Wp is homogeneous with exponent p
for all p. We call Wp the homogeneous part of X with exponent p and denote it by hgp(X).

Definition 17. A coordinate system �x adapted to the Lie flag to an equiregular sub-Riemannian
manifoldM is called privileged if the image of the horizontal bundle under the differential of the coordinate
mapping d�x consists only of homogeneous vector fields with homogeneity exponent at most −1.
In a privileged coordinate system, we can define the nilpotent approximation of M with respect to q

whose description is given in the following theorem (see [11, 19–21]):

Theorem 4. Let [Xj , Xk](q
′) =
∑

l:degXl≤degXj+degXk (cj,k,l(q
′)Xl(q′)) be the commutation relation

for a smooth basis of an equiregular sub-Riemannian manifoldM . Then, for every q ∈M , the coefficients

c̃j,k,l =

{

cj,k,l(q), degXl = degXj + degXk,

0, degXl �= degXj + degXk,
are the structure constants of some nilpotent Lie algebra m̃q and the corresponding Lie group ˜Mq with
the natural Carnot–Carathéodory metric limt→+∞ (tM), where the limit is understood in the sense
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of Gromov–Hausdorff. Moreover, the vector fields on ˜Mq defined by the formula ˜Xj = hg−degXjd�x(Xj)
(the basis of the nilpotent approximation) are left-invariant.

Here and below, by deg we mean the degree of a field with respect to the initial horizontal distribution
on M . In the sequel, the dimension of the horizontal distribution will be denoted by m; the numbers
of the vector fields Xj constituting its basis are as follows: 1 ≤ j ≤ m.
Denote by Xj

∗, 1 ≤ j ≤ n, the 1-forms for which Xj
∗(Xj) = 1 and Xj∗(Xk) = 0 for j �= k. The

basis { ˜Xj : 1 ≤ j ≤ n} will be assumed such that the volume form for the Popp measure is the form
X1
∗ ∧ · · · ∧Xn∗; it is known from [7] that this does not diminish generality.
Remark 4. As the nonhorizontal basis vector fields, we usually choose the vector fields [[[Xj0 , Xj1 ],

Xj2 ] . . . Xjs ] with some s ∈ N, where 1 ≤ jl ≤ m for all l ∈ {0, . . . , s}. Calculating the coefficient at the
volume form for the Popp measure constructed from this basis and dividing one of the basis vector fields
with s = K− 1, we obtain a new basis in which the Popp measure is defined by a form with coefficient 1.
The nilpotent approximation is itself a sub-Riemannian manifold with horizontal bundle span{ ˜Xj :

1 ≤ j ≤ m}. If we endow it with a Haar measure and construct the sub-Laplacian, which we will denote
by ˜Δ, then it is expressed as ˜Δ =

∑m
j=1 (

˜X2j ).
Now, given the initial sub-Riemannian structure on a manifold M , we define its ε-perturbation.

For basis vector fields Xj , 1 ≤ j ≤ n, and ε > 0, we put

Xj,ε = ε
degXj · dδε−1Xj .

Similarly, define the 1-forms X∗j,ε, 1 ≤ j ≤ n: namely, X∗j,ε(Xj,ε) = 1 and X∗j,ε(Xk,ε) = 0 for j �= k. We

can show (see [11]) that, as ε → 0, the field Xj,ε converges to ˜Xj with the first order with respect to ε.
As the horizontal distribution of the ε-perturbation, take span{Xj,ε : 1 ≤ j ≤ m}. The corresponding
sub-Laplacian Δε is connected with the initial sub-Laplacian Δ as follows: If HKΔε and HKΔ are the
corresponding heat kernels then

HKΔε(t, q
′, q′′) = εhdimMHKΔ(ε2t, δε,q(q′), δε,q(q′′)).

The essence of the method is that, alongside this relation, also another one is established between Δε
and ˜Δ. Before describing the latter, we will formulate the new notion of convolution taking into account
the variable t, which plays the role of time in the heat equation. This new operation will be denoted
by ∗ since we will not need the previous notion of convolution in the present article. Strictly speaking,
these are two new notions but there is no conflict between them since one is applied to operator families
and the other, to functions of one real variable and two arguments from the manifold. These notions are
interrelated as described below.

Definition 18. Let A = (A(t))t∈R and B = (B(t))t∈R be two operator families acting at functions
on a manifold M with integral kernels a(t, ·, ·) and b(t, ·, ·) respectively. Define the convolution of these
families by the formula

(A ∗B)(t) =
t
∫

0

A(t− s)B(s) ds.

Define the convolution of a(t, ·, ·) and b(t, ·, ·) for all t ∈ R and x, y ∈M by the formula

(a ∗ b)(t, x, y) =
t
∫

0

(∫

M

a(s, x, z)b(t− s, z, y) dz
)

ds.

In these terms, (a ∗ b)(t, ·, ·) is the integral kernel of (A ∗B)(t). Because of the associativity of ∗, we
will omit the parentheses at multiple convolutions.
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The relation between Δε and ˜Δ can be obtained with the use of Duhamel’s formula:

etΔε = et
˜Δ +

t
∫

0

(e(t−s)Δε(Δε − ˜Δ)es˜Δ ds),

which is convenient to write as the convolution of the operator family

etΔε = et
˜Δ + (A ∗B) (t),

where A = (euΔε)u∈R and B = ((Δε − ˜Δ)eu˜Δ)u∈R.
Applying Duhamel’s formula for exp((t− s)Δε), we obtain

etΔε = et
˜Δ +

t
∫

0

((

e(t−s)˜Δ +
t−s
∫

0

(e(t−s−s
′)Δε(Δε − ˜Δ)es′˜Δ ds′)

)

(Δε − ˜Δ)es˜Δ ds
)

;

i.e.,

etΔε = et
˜Δ + ((eu

˜Δ)u∈R ∗B)(t) + ((euΔε)u∈R ∗B ∗B)(t).
This process can be extended by obtaining thus an expansion of exp(tΔε) in the powers of a small
operator (as ε→ 0)

etΔε =
N−1
∑

r=0

((eu
˜Δ)u∈R ∗B · · · ∗B

︸ ︷︷ ︸

r convolutions with B

)(t) + (A ∗B · · · ∗B
︸ ︷︷ ︸

N convolutions with B

)(t),

which, after passage from operators to their integral kernels, gives the necessary asymptotics of HKΔε
(and, hence, HKΔ) up to any desired order.
Suppose that all horizontal basis vector fields Xj , 1 ≤ j ≤ m, satisfy the condition hg0(Xj) = 0;

in [11], this was achieved by the existence of normal forms for contact distributions on three-dimensional

manifolds. Under this assumption, as ε → 0, we have the asymptotics Xj,ε = ˜Xj + ε2hg1(Xj) + o(ε2).
Then we obtain the following asymptotics for the operator Δε − ˜Δ:
Theorem 5. Δε − ˜Δ = ε2Y + o(ε2), where

Y =

m
∑

j=1

( ˜Xjhg1(Xj) + hg1(Xj) ˜Xj +Θj ˜Xj), Θj =

n
∑

k=1

( ˜Xk(ψj,k)− ˜Xj(ψk,k)),

the coefficients ψj,k for 1 ≤ j ≤ n and 1 ≤ k ≤ n are smooth functions defined from the asymptotic

expansions Xj,ε = ˜Xj + ε
2
∑n
k=1 (ψj,k

˜Xk) + o(ε
2), while Y is a second-order differential operator.

Proof. Let us first prove that, for all ordered collections (j0, . . . , js) of naturals from 1 to m, there
exists a vector field Rj0,...,js such that

[[[Xj0,ε, Xj1,ε], Xj2,ε] . . . Xjs,ε] = [[[
˜Xj0 ,

˜Xj1 ],
˜Xj2 ] . . .

˜Xjs ] + ε
2Rj0,...,js + o(ε

2).

Proceed by induction. For s = 0, the field Xj0,ε, where 1 ≤ j0 ≤ m, satisfies this condition with
Rj0 = hg1(Xj0) since we have assumed that hg0(Xj0) = 0.
If the claim holds true for some s then let us prove it for s+ 1:

[[[Xj0,ε, Xj1,ε], Xj2,ε] . . . Xjs+1,ε] = [[[[
˜Xj0 ,

˜Xj1 ],
˜Xj2 ] . . .

˜Xjs ] + ε
2Rj0,...,js + o(ε

2), Xjs+1,ε]

= [[[[ ˜Xj0 ,
˜Xj1 ],

˜Xj2 ] . . .
˜Xjs ] + ε

2Rj0,...,js + o(ε
2), ˜Xjs+1 + ε

2hg1(Xjs+1) + o(ε
2)]

= [[[ ˜Xj0 ,
˜Xj1 ],

˜Xj2 ] . . .
˜Xjs+1 ] + ε

2([Rj0,...,js ,
˜Xjs+1 ] + [[[[

˜Xj0 ,
˜Xj1 ],

˜Xj2 ] . . .
˜Xjs ], hg1(Xjs+1)]) + o(ε

2),
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which justifies the induction step with

Rj0,...,js+1 = [Rj0,...,js ,
˜Xjs+1 ] + [[[[

˜Xj0 ,
˜Xj1 ],

˜Xj2 ] . . .
˜Xjs ], hg1(Xjs+1)].

Since the Lie flag of the distribution span{Xj : 1 ≤ j ≤ m} stabilizes to the tangent bundle, each
basis vector field Xj for 1 ≤ j ≤ n can be written down as a linear system of fields of the form
[[[[Xj0 , Xj1 ], Xj2 ] . . . Xjs ] with s ≥ 0 and 1 ≤ jl ≤ m for all l such that 0 ≤ l ≤ s; the coefficients of this
combination are smooth functions.
Taking εdegXjdδε−1 of both sides of this expansion and reckoning with the fact dδε−1([Z1, Z2]) =

[dδε−1Z1, dδε−1Z2] for all vector fields Z1 and Z2, we conclude that all basis vector fields Xj,ε, 1 ≤ j ≤ n,
admit the asymptotics Xj,ε = ˜Xj+ε

2Ej+o(ε
2) with some vector fields Ej , which is convenient to expand

in the basis { ˜Xj : 1 ≤ j ≤ n} in the form Ej =
∑n
j′=1 (ψj,j′

˜Xj′), which yields the formula

Xj,ε = ˜Xj + ε
2
n
∑

j′=1

(ψj,j′ ˜Xj′) + o(ε
2).

Solve this system of linear equations for ˜Xj to obtain

˜Xj = Xj,ε − ε2
n
∑

j′=1

(ψj,j′Xj′,ε) + o(ε
2).

Expressing the sub-Laplacians Δε and ˜Δ in the coordinates:

Δε =
m
∑

j=1

(

X2j,ε +
n
∑

k=1

X∗k,ε([Xk,ε, Xj,ε])Xj,ε
)

, ˜Δ =
m
∑

j=1

(

˜X2j
)

,

we infer

Δε − ˜Δ =
m
∑

j=1

(

( ˜Xj + ε
2hg1(Xj) + o(ε

2))
2 − ˜X2j +

n
∑

k=1

X∗k,ε([Xk,ε, Xj,ε])Xj,ε
)

=
m
∑

j=1

(

ε2 ˜Xjhg1(Xj) + ε
2hg1(Xj) ˜Xj +

n
∑

k=1

X∗k,ε([Xk,ε, Xj,ε])( ˜Xj + ε
2hg1(Xj))

)

+ o(ε2).

For computing Xk,ε
∗([Xk,ε, Xj,ε]), expand [Xk,ε, Xj,ε] in the basis {Xk,ε∗ : 1 ≤ k ≤ n} in terms of the

structure constants c̃j,k,l, the formula for which is given in Theorem 4, and the coefficient ψj,j′ :

[Xk,ε, Xj,ε] =

[

˜Xk + ε
2
n
∑

k′=1

(ψk,k′ ˜Xk′), ˜Xj + ε
2
n
∑

j′=1

(ψj,j′ ˜Xj′)

]

+ o(ε2)

= [ ˜Xk, ˜Xj ] + ε
2

( n
∑

k′=1

([ψk,k′ ˜Xk′ , ˜Xj ]) +
n
∑

j′=1

([ ˜Xk, ψj,j′ ˜Xj′ ])

)

+ o(ε2)

=

n
∑

l=1

(c̃k,j,l ˜Xl) + ε
2
n
∑

l=1

(ψk,l[ ˜Xl, ˜Xj ]− ψj,l[ ˜Xl, ˜Xk] + ( ˜Xk(ψj,l)− ˜Xj(ψk,l)) · ˜Xl)

+o(ε2) =
n
∑

l=1

(

c̃k,j,l · (Xl,ε − ε2
n
∑

j′=1

(ψl,j′Xj′,ε))

)

+ε2
n
∑

l=1

( n
∑

j′=1

((ψk,lc̃l,j,j′ − ψj,lc̃l,k,j′)Xj′,ε) + ( ˜Xk(ψj,l)− ˜Xj(ψk,l))Xl,ε
)

+ o(ε2).
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Taking the coefficient at Xk,ε, we obtain

X∗k,ε([Xk,ε, Xj,ε]) = c̃k,j,k − ε2
n
∑

l=1

(c̃k,j,lψl,k)

+ε2
(

˜Xk(ψj,k)− ˜Xj(ψk,k)
)

+ ε2
n
∑

l=1

(ψk,lc̃l,j,k − ψj,lc̃l,k,k) + o(ε2).

Sum up these quantities over k. The formula for the structure constants of the nilpotent approxima-
tion given in Theorem 4 yields c̃k,j,k = c̃j,k,k = 0 since no basis vector field Xj satisfies degXj = 0. Thus,
∑n
k=1(c̃k,j,k) = 0. With this in mind, we have

n
∑

k=1

(X∗k,ε([Xk,ε, Xj,ε])) = ε
2Θj + o(ε

2),

where

Θj =
n
∑

k=1

(

˜Xk(ψj,k)− ˜Xj(ψk,k) +
n
∑

l=1

(ψk,lc̃l,j,k − ψj,lc̃l,k,k − c̃k,j,lψl,k)
)

.

For simplifying this expression, utilize alongside the equality c̃l,k,k = 0 the fact that

n
∑

k=1

n
∑

l=1

(ψk,lc̃l,j,k − c̃k,j,lψl,k) = 0

because the summands with pairs of numbers (k, l) and (l, k) for k < l are mutually annihilated, and the
summands with pairs of numbers (k, k) are equal to 0. Thus,

Θj =
n
∑

k=1

( ˜Xk(ψj,k)− ˜Xj(ψk,k)).

Inserting the computed expression
∑n
k=1(X

∗
k,ε([Xk,ε, Xj,ε])) in the formula for Δε− ˜Δ, we finally get

Δε − ˜Δ = ε2
m
∑

j=1

( ˜Xjhg1(Xj) + hg1(Xj) ˜Xj +Θj ˜Xj) + o(ε
2).

This is the desired asymptotics. �
Now we have a formula for Y , and so the perturbation method can be applied in the same way as

in [11]: taking N = 2 in the expansion exp(tΔε) and reckoning with the formula

εhdimMHKΔ(ε
2t, δε,q(x), δε,q(y)) = HKΔε(t, x, y),

we infer

εhdimMHKΔ(ε
2, 0, 0) = HKΔε(1, 0, 0) = HK˜Δ(1, 0, 0) + ε

2(HK
˜Δ
∗ Y (HK

˜Δ
))(1, 0, 0) +O(ε4),

where Y is assumed to act with respect to the first variable from M .

Remark 5. Since HK
˜Δ
∗ Y (HK

˜Δ
)(1, 0, 0) is equal to

1
∫

0

∫

˜M0

(HK
˜Δ
(s, 0, z)Y (HK

˜Δ
)(1− s, z, 0)) dzds =

1
∫

0

∫

˜M0

(p
˜Δ
(s, z)Y (p

˜Δ
)(1− s, z)) dzds;
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to calculate it we must apply Theorem 3 withG = ˜M0. In the case of three-dimensional contact manifolds,
this expression admits further simplification if the integration starts from the coordinates x and y (here
z = (x, y, w) has homogeneity exponents ν(x) = ν(y) = 1, ν(w) = 2). In this case, the calculation
amounts to the search for the moments of a two-dimensional normal distribution. In a more general
situation (even in the case of Goursat groups, which we examine below), it is not possible to make such
a simplification though the qualitative behavior of the kernel p

˜Δ
(s, z) as z →∞—exponential decay—still

holds (see [22]).

Remark 6. Without the assumption that hg0(Xj) = 0, we would obtained the first-order terms

with respect to ε in the asymptotic expansion εhdimMHKΔ(ε
2, 0, 0) since Δε − ˜Δ would be just O(ε)

as ε → 0, and, after the insertion t = ε2, there would be no expansion of the form HKΔ(t, x, x) =

t−
hdimM
2 (a0 + a1t+O(t

2)).

4. An Example: a Manifold with Growth Vector (2, 3, . . . , k, k + 1, . . . , n)

In this section, we apply the above methods to a sub-Riemannian manifold whose nilpotent approx-
imation is the n-dimensional Goursat group.

Definition 19. The Goursat group of dimension n is the nilpotent Lie group in Rn with the two-
dimensional left-invariant distribution H1, called the Goursat distribution, which has growth vector
(2, 3 . . . n− 1, n).
The multiplication operation in the Goursat group can be written as

n
∑

j=1

xjej �
n
∑

k=1

ykek = (x1 + y1)e1 +
n
∑

j=2

(

xj +

j
∑

k=2

(

x1
j−k

(j − k)!yk
))

ej ,

where 0 =
∑n
j=1 0ej is the neutral element.

The distribution H1 has the left-invariant basis

H1 = span({X1, X2}), X1 = ∂1, X2 =
n−2
∑

k=0

x1
k

k!
∂k+2.

Define a sequence of commutators generating the whole tangent bundle with X1 and X2 by the formula
Xj = [X1, Xj−1] for j ≥ 3. For j, j′ ≥ 2, we have [Xj , Xj′ ] = 0. Introducing the n-dimensional Lebesgue
measure on the Goursat group (which is also its Haar measure) and the corresponding volume form,
define the sub-Laplacian Δ = X21 +X

2
2 .

The elements of the Goursat group are also representable as the square matrices of order n of the
form

exp

(

aX1 +
n
∑

j=2

bj−1Xj
)

= exp

(

a · Jn−1 ←−
b



−→
0 n−1 0

)

=

(

exp(a · Jn−1) ϕ(a · Jn−1)←−b



−→
0 n−1 1

)

,

where Jn−1 is the upper triangular matrix of order n− 1 that is the Jordan cell with eigenvalue 0, −→0 n−1
is the zero row vector of length n − 1, and ←−b is the row vector (bn−1, . . . , b1) of length n − 1 (the left
arrow means the reverse order of the components with respect to

−→
b = (b1, . . . , bn−1)), while � stands

for transposition,

ϕ(z) =

{ exp(z)−1
z , z �= 0,

1, z = 0

(the expression ϕ(a · Jn−1) is understood as a matrix function). As the group operation, we take matrix
multiplication, and the matrix exponent serves as the exponential mapping from the Lie algebra into the
Lie group. This version of the definition of �, which we will use below, differs insignificantly from the

1065



initial one but is equivalent to the latter. This can be checked by associating with each vector �x ∈ Rn
the matrix

(

exp(x1 · Jn−1) ←−x≥2
−→
0 n−1 1

)

= exp

(

x1 · Jn−1 (ϕ(x1 · Jn−1))−1 · ←−x≥2
−→
0 n−1 0

)

,

where ←−x≥2 = (xn, . . . , x2) is the reverse notation of the vector obtained from �x by removing the first

component. The notation (ϕ(x1 · Jn−1))−1 is correct since the matrix ϕ(x1 · Jn−1) is upper triangular,
and all elements on its principal diagonal are equal to 1. This association is a desired automorphism
since, for all −→x ,−→y ∈ Rn, we have

(

exp(x1 · Jn−1) ←−x≥2
−→
0 n−1 1

)(

exp(y1 · Jn−1) ←−y≥2
−→
0 n−1 1

)

=

(

exp(z1 · Jn−1) ←−z≥2
−→
0 n−1 1

)

,

where −→z = −→x �−→y by the initial definition of �. In what follows, � stands for this operation.
We will search for the heat kernel in the Goursat group with the use of Theorem 3. Since its key

ingredient is the orbit method, we must perform all calculations that constitute this method. In terms
of the new group operation, the adjoint representation looks as

Ad
exp(xX1+

n
∑

j=2

yj−1Xj)

(

aX1 +

n
∑

j=2

bj−1Xj
)

= exp

(

xJn−1 ←−y 
−→
0 n−1 0

)

·
(

aJn−1
←−
b



−→
0 n−1 0

)

· exp
(−xJn−1 −←−y 
−→
0 n−1 0

)

=

(

aJn−1 exp(xJn−1)
←−
b

 − aJn−1ϕ(xJn−1)←−y 
−→

0 n−1 0

)

.

Defining the functionals X∗j , where 1 ≤ j ≤ n, by the relations X∗j (Xj) = 1 and X∗j (Xk) = 0 for j �= k,
we obtain the following formula for the coadjoint representation:

Ad∗
exp
(

xX1+
n
∑

j=2

yj−1Xj
)

(

αX∗1 +
n
∑

j=2

βj−1X∗j

)(

aX1 +
n
∑

j=2

bj−1Xj
)

=

(

αX∗1 +
n
∑

j=2

βj−1X∗j

)(

Ad
exp
(

−xX1−
n
∑

j=2

yj−1Xj
)

(

aX1 +

n
∑

j=2

bj−1Xj
))

= αa+
←−
β · (exp(−xJn−1)←−b



+ aJn−1ϕ(−xJn−1)←−y 
),

which is written down as follows in terms of X∗j , 1 ≤ j ≤ n:

Ad∗
exp
(

xX1+
n
∑

j=2

yj−1Xj
)

(

αX∗1 +
n
∑

j=2

βj−1X∗j

)

= (α+
←−
β Jn−1ϕ(−xJn−1)←−y 
)X∗1 +

←−
β exp(−xJn−1)

⎛

⎝

X∗n
...
X∗2

⎞

⎠ .

The orbits can be found by varying x and −→y , i.e., for every ξ = αX∗1+
∑n
j=2 βj−1X

∗
j , by Definition 7,

its orbit consists exactly of the elements of the form Ad∗
exp
(

xX1+
∑n

j=2
yj−1Xj

)(ξ) for almost all x ∈ R
and −→y ∈ Rn−1. Using orbits, we will later classify irreducible unitary representations. To this end, we
must find for each ξ ∈ g∗ a subalgebra of maximal dimension subordinate to ξ and the corresponding
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subgroup with which we carry out induction. Use the above-mentioned theorem by Pukánszky [15] stating
that if G is a nilpotent Lie group then every maximal subalgebra subordinate to a covector ξ contains gξ;
this strongly simplifies the arguments.

For each ξ = αX∗1 +
∑n
j=2 βj−1X

∗
j but for those for which

−→
β =

−→
0 , denote by jmax the greatest

number j such that βj �= 0. The orbit of a covector ξ and the set of maximal subalgebras subordinate
to it will depend on what is jmax equal to (and whether it exists at all) for given ξ.

(i) If jmax does not exist (i.e.,
−→
β =

−→
0 ) then the orbit consists of the single point αX∗1 for which

gαX∗1 = g. In this case, the maximal subordinate subalgebra is unique and equal to g.

(ii) If jmax = 1 then the orbit consists of the single point αX
∗
1 + β1X

∗
2 (the equality gαX∗1+β1X∗2 = g

holds). The maximal subordinate subalgebra is also equal to g.
(iii) The orbit of the covector αX∗1 + β1X

∗
2 + β2X

∗
3 , where β2 �= 0 (i.e., jmax = 2), is equal to

span{X∗1 , X∗2} + β2X
∗
3 (the sign + designates parallel translation by a given element of g

∗). In this
case, gαX∗1+β1X∗2+β2X∗3 = span{Xj : 3 ≤ j ≤ n}. Here a maximal subordinate subalgebra is nonunique;
therefore, we apply Vergne’s construction (Theorem 2) which for Vk = span({Xj : n + 1 − k ≤ j ≤ n}),
where 0 ≤ k ≤ n, gives the subalgebra span ({Xj : 2 ≤ j ≤ n}). Note that, instead of Vergne’s subalgebra,
we could take the subalgebra span({X1}∪{Xj : 3 ≤ j ≤ n}), which leads to another representation of the
same equivalence class.
(iv) For jmax ≥ 3, the orbit is two-dimensional and parametrized by the coefficients at X∗1 and

for X∗jmax as follows:

O
αX∗1+

jmax+1
∑

j=2

βj−1X∗j
=

{

yX∗1 +
jmax
∑

j=1

(jmax
∑

k=j

(

(x− βjmax−1)k−jβk
βjmax

k−j(k − j)!
)

·X∗j+1
)

: x, y ∈ R
}

.

This parametrization results as follows: Since the X∗jmaxth component of the covector

Ad∗
exp
(

xX1+
n
∑

j=2

yj−1Xj
)

(

αX∗1 +
n
∑

j=2

βj−1X∗j

)

is equal to x; therefore, it can be defined arbitrarily. Starting from this, the remaining components but the
X∗1 th component can be defined uniquely since they do not depend on

−→y . The component corresponding
to X∗1 has the form βjmaxyjmax−1 + Z, where Z does not depend on yjmax−1. Since βjmax �= 0, the X∗1 th
component can be made any a priori given value by choosing yjmax−1 suitably. This exhausts all covectors
in the orbit of αX∗1 +

∑jmax+1
j=2 βj−1X∗j with βjmax �= 0 for jmax ≥ 3.

Taking as the representative of the orbit the covector for which the parameters x and y vanish, we
obtain g

αX∗1+
∑jmax+1

j=2
βj−1X∗j

= span(Φ ∪Ψ), where

Φ = {Xj : jmax + 1 ≤ j ≤ n},

Ψ =

{(

Xj −
jmax
∑

k=j

(

(−βjmax−1)k−jβk
βjmax

k+1−j(k − j)!
)

Xjmax

)

: 2 ≤ j ≤ jmax − 1
}

.

The maximal subordinate subalgebra is unique and equal to span({Xj : 2 ≤ j ≤ n}).
Using these data about orbits and maximal subordinate subgroups, we can construct the correspond-

ing representations (in the sense of Kirillov).
In cases (i) and (ii), induction is trivial: the one-dimensional representation corresponding to the

covector ξ = αX∗1+β1X∗2 (it is unimportant whether β1 is zero or not), defined by the formula ρξ,G
(

ae1+
∑n
j=2 bj−1ej

)

= exp(2πi(αa+ β1b1)) · Id, goes to itself since the subgroup V Sξ = exp(vsξ) is already the
whole group G.
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Much richer is the structure of representations in cases (iii) and (iv). Since the orbits are two-
dimensional in these cases, the Hilbert space of the corresponding representations can be identified
with L2(R) using the equivalent representation R′ξ instead of Rξ. This stems from the general fact that
the dimension of the space of cosets modulo V Sξ is equal to one half of the dimension of the orbit Oξ.
The Vergne subalgebra vsξ = span ({Xj : 2 ≤ j ≤ n}), common for these cases, will be denoted by v,
since it does not depend on ξ taken from an orbit of type (iii) or (iv); adopt the notation V for the
corresponding subgroup exp(v).
For finding the induced representation, factorize G into R and V . The mapping γ : R → G of Def-

inition 11 is given by the formula γx = xe1. Represent γx � g ∈ G, where x ∈ R and g ∈ G, as h � γw,
where h ∈ V and w ∈ R:

xe1 �

(

ae1 +
n
∑

j=2

bj−1ej
)

=

( n
∑

j=2

(j−1
∑

k=1

(k−1
∑

l=0

(

albk−l
(l + 1)!

)

· xj−1−k

(j − 1− k)!
))

ej

)

� (x+ a)e1.

Consequently, R′ξ takes the following form: for all f ∈ L2(R) and almost all x ∈ R, we have
(

R′ξ(ae1 +
n
∑

j=2

bj−1ej)f
)

(x) = exp(2πiξ(log(h)))f(w)

= exp

(

2πiξ

( n
∑

j=2

((j−1
∑

k=1

(k−1
∑

l=0

(

albk−l
(l + 1)!

)

· xj−1−k

(j − 1− k)!
))

Xj

)))

f(x+ a)

= exp

(

2πiξ

( n
∑

j=2

(Pj(a,
−→
b , x) ·Xj)

))

f(x+ a)

(the last equality is simply a notation for the coefficients at Xj).
It is at these representations (more exactly, classes of representations) that the Plancherel measure

is concentrated. It suffices to consider only jmax = n − 1 since this condition defines an open dense
subset in the set of orbits of maximal dimension. Indeed, the condition jmax = n− 1 is equivalent to the
fact that βn−1 �= 0, i.e., from the whole of g∗, we remove an (n − 1)-dimensional hyperplane. Assigning
to each element g∗ its orbit with account taken of the construction of the topology in g∗/Ad∗ takes the
complement to the hyperplane to some dense set of orbits.
In each orbit lying in this set, choose a representative of the form ξ =

∑n−2
j=2 (βj−1X

∗
j ) + βn−1X∗n,

where βn−1 �= 0. This can be done for the following reason: As the expression for the orbits shows, we
can nullify the coefficients at X∗1 and X∗n−1 (there they were denoted by y and x respectively), put βn−1
to be an arbitrary nonzero number, and make the remaining coefficients to be equal to any a priori given
values by equating the coefficients at X∗j to these values consecutively (as j decreases) and solving a linear
equation with coefficient 1 for each new variable βj . Thus, we obtain a parametrization of the set of orbits

which, under the correspondence between g∗/Ad∗ and ̂G, goes to some subset in ̂G whose complement
has Plancherel measure 0. In terms of the parametrization, the corresponding Plancherel measure has
the form P (d(βj)1≤j≤n−1;j �=n−2) = |βn−1|d(βj)1≤j≤n−1;j �=n−2 because, for ξ =

∑n−2
j=2 (βj−1X

∗
j )+βn−1X∗n,

we have | pf(ξ)| = |βn−1|. Indeed, using the basis {X1, Xn−1} of the space g/gξ, find the determinant
of the matrix

(

ξ([X1, X1]) ξ([X1, Xn−1])
ξ([Xn−1, X1]) ξ([Xn−1, Xn−1])

)

=

(

0 βn−1
−βn−1 0

)

.

It is equal to β2n−1.
The transformed operator ̂Δ = FΔF−1 looks as

̂Δ(λξ) = d
2(R′ξ)(X1) + d

2(R′ξ)(X2),
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where the differential of R at X ∈ g, denoted by dR(X), is the operator on the Hilbert space HR of the
representation R defined at v ∈ HR by the formula

dR(X)(v) =

(

d

dt
(Rexp(tX)(v))

)∣

∣

∣

∣

t=0

and d2R(X) = dR(X) ◦ dR(X). For expressing ̂Δ in this form, we used the general formula from [1]
which is valid for all unimodular Lie groups.
Straightforward calculation gives d(R′ξ)(X1)(f) = f ′, where the derivative of f ∈ L2(R,C) is under-

stood in the weak sense, and d(R′ξ)(X2)(f) =Mξf with Mξ defined as

Mξ(x) = 2πi

(n−3
∑

j=1

(

βj
xj−1

(j − 1)!
)

+ βn−1
xn−2

(n− 2)!
)

.

Indeed, using the above-derived formula for the representation R′ξ for ξ =
∑n−2
j=2 (βj−1X

∗
j ) + βn−1X∗n, we

obtain (R′ξ)exp(tX1)(f)(x) = (R
′
ξ)te1
(f)(x) = f(x+ t); therefore,

d(R′ξ)(X1)(f)(x) =
(

d

dt
((R′ξ)exp(tX1)(f)(x))

)∣

∣

∣

∣

t=0

=

(

d

dt
(f(x+ t))

)∣

∣

∣

∣

t=0

= f ′(x).

Similarly,

(R′ξ)exp(tX2)(f)(x) = (R
′
ξ)te2
(f)(x)

= exp

(

2πiξ

( n
∑

j=2

(t
xj−2

(j − 2)!Xj)
))

f(x) = exp (tMξ(x)) f(x).

The last equality follows from the fact that

ξ =
n−2
∑

j=2

(βj−1X∗j ) + βn−1X
∗
n.

Hence,

d(R′ξ)(X2)(f)(x) =
(

d

dt
((R′ξ)exp(tX2)(f)(x))

)∣

∣

∣

∣

t=0

=

(

d

dt
(etMξ(x)f(x))

)∣

∣

∣

∣

t=0

=Mξ(x)f(x).

Consequently, ̂Δ(λξ)(f) = f
′′ +M2

ξ f . For the convenience of notations, we will write

f ′′ + (Mn−2
∑

j=2

(βj−1X∗j )+βn−1X∗n
)2f = ̂Δ−→

β
f.

With the above calculations in mind, Theorem 3, applied to the Goursat group, takes the following
form:

Corollary 1. The heat kernel in the n-dimensional Goursat group corresponding to the sub-La-
placian Δ = X21 + X22 , where the horizontal bundle is span({X1, X2}) with X1 = ∂1 and X2 =
∑n−2
k=0

x1
k

k! ∂k+2, is written down as follows:

p

(

t, ae1 +
n
∑

j=2

bj−1ej
)

=

∫

Rn−2

∫

R

e
2πi

(

βn−1Pn(a,
−→
b ,x)+

n−3
∑

j=1

(βjPj+1(a,
−→
b ,x))

)

HK
̂Δ−→
β

(t, x+ a, x)|βn−1| dxd(βj)1≤j≤n−3 dβn−1.
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Below this formula will be applied in the perturbation method. For convenience, we will write

p

(

t, ae1 +
n
∑

j=2

bj−1ej
)

=

∫

Rn−1

e
Z−→
β ,x
(a,
−→
b )
K−→
β ,x,t
(a)d(

−→
β , x),

using the following notations

Z−→
β ,x
(a,
−→
b ) = 2πi

(

βn−1Pn(a,
−→
b , x) +

n−3
∑

j=1

(βjPj+1(a,
−→
b , x))

)

,

K−→
β ,x,t
(a) = HK

̂Δ−→
β

(t, x+ a, x)|βn−1|.

Whenever dependence on
−→
β occurs, we imply the omission of the component with index n − 2. Recall

that

Pj(a,
−→
b , x) =

j−1
∑

k=1

( k−1
∑

l=0

(

albk−l
(l + 1)!

)

· xj−1−k

(j − 1− k)!
)

.

Suppose that the sub-Riemannian manifold has the horizontal distribution span{X1, X2} obtained
from the Goursat distribution by the perturbation written down in a neighborhood of (0, . . . , 0) up
to homogeneous vector fields with homogeneity exponent 2 and above as follows. For all p ≤ −2, we have
hgp(X1) = hgp(X2) = 0; and, moreover,

hg−1(X1) = ˜X1, hg0(X1) = 0, hg1(X1) =
n
∑

r=1

(

∑

α∈Φr
(uα,rx

α) · ∂

∂xr

)

,

hg−1(X2) = ˜X2, hg0(X2) = 0, hg1(X2) =
n
∑

r=1

(

∑

α∈Φr
(vα,rx

α) · ∂

∂xr

)

,

where Φr is the set of all multi-indices α = (α1, . . . , αn) for which

α1 +

n
∑

j=2

((j − 1)αj) =
{

2, r = 1,

r, r > 1,
˜X1 =

∂

∂x1
, ˜X2 =

n−2
∑

k=0

x1
k

k!

∂

∂xk+2
,

the homogeneity index 1 is assigned to the variable x1; the homogeneity exponent r − 1 is assigned
to each variable xr for r ≥ 2, and to the operator of derivation with respect to each variable, we assign
its homogeneity exponent with the minus sign. The symbols uα,r and vα,r stand for the constants, called
perturbation parameters, for which for 3 ≤ j ≤ n − 1 we have [X2, Xj ] ∈ span({Xk : 1 ≤ k ≤ j}), where
Xj = [X1, Xj−1] for 3 ≤ j ≤ n. This condition is imposed because the nilpotent approximation of the
manifold is a Goursat group.

The basis vector fields of the nilpotent approximation for 3 ≤ j ≤ n are ˜Xj = [ ˜X1, ˜Xj−1]. The
volume form for the Popp measure has the form X1

∗ ∧ · · · ∧Xn∗; this can be checked, for example, by
a formula from [23].

We will need the fact that the operators ∂
∂xj
, 1 ≤ j ≤ n, are expressible in the basis { ˜Xj : 1 ≤ j ≤ n}

by coefficients that are polynomials of x1 because the system of linear equations solved in this case has
a unitriangular matrix of polynomials of x1 whose all elements of the diagonal are equal to 1.
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For applying the perturbation method, calculate the operator Y given in Theorem 5:

Y = ˜X1hg1(X1) + hg1(X1) ˜X1 +
n
∑

k=1

( ˜Xk(ψ1,k)− ˜X1(ψk,k)) · ˜X1

+ ˜X2hg1(X2) + hg1(X2) ˜X2 +

n
∑

k=1

( ˜Xk(ψ2,k)− ˜X2(ψk,k)) · ˜X2,

where the coefficients ψj,j′ are the same as in the proof of Theorem 5. They can be calculated explicitly.
To this end, in terms of Theorem 5, write down the equality

[[[Xj0,ε, Xj1,ε], Xj2,ε] . . . Xjs,ε] = [[[
˜Xj0 ,

˜Xj1 ],
˜Xj2 ] . . .

˜Xjs ] + ε
2Rj0,...,js + o(ε

2)

with j0 = 2 and jk = 1 for 1 ≤ k ≤ s. For 1 ≤ s ≤ n− 2, we obtain

(−1)sXs+2,ε = (−1)s ˜Xs+2 + ε2R2,1, . . . , 1
︸ ︷︷ ︸

s unities

+ o(ε2).

Thus, for all j ≥ 3, the quantity ψj,j′ is the coefficient at ˜Xj′ in the expansion of the operator Ej =
(−1)jR2, 1, . . . , 1

︸ ︷︷ ︸

(j−2) unities

in the basis { ˜Xj′ : 1 ≤ j′ ≤ n}. The recurrent formula for Rj0,...,js , deduced at the

beginning of the proof of Theorem 5, shows that the coefficients ψj,j′ for j ≥ 3 and 1 ≤ j′ ≤ n are poly-
nomials of the coordinates and perturbation parameters. For ψ1,j′ and ψ2,j′ , the fact of their polynomial
dependence on the coordinates and perturbation parameters is trivial: in the notations given in the proof
of Theorem 5, E1 = hg1(X1) and E2 = hg1(X2).

Summing up what was said above, we conclude that the coefficients of Y depend polynomially on
the coordinates and perturbation parameters.

We observed in Section 3 that, acting by the method given in [11], as ε → 0, we can obtain the
asymptotics

εhdimMHKΔ(ε
2, 0, 0) = HKΔε(1, 0, 0) = HK˜Δ(1, 0, 0) + ε

2(HK
˜Δ
∗ Y (HK

˜Δ
))(1, 0, 0) +O(ε4).

We are interested in the coefficient at ε2 on the right-hand side of the last equality which is equal
to HK

˜Δ
∗Y (HK

˜Δ
)(1, 0, 0). Since, for its computation, we must differentiate p

(

t, ae1+
∑n
j=2 bj−1ej

)

twice

with respect to the variables a and
−→
b ; this coefficient depends not only on the transformed kernel but

also on its derivatives (up to the second order) with respect to a. We will also need to calculate hdimM
in the case if the nilpotent approximation of the manifoldM is the n-dimensional Goursat group. By the

formula given in [6], we obtain hdimM = n(n−1)
2 + 1.

Further calculations are very cumbersome, and so we give them schematically. If we denote the
coefficients of Y by

Y =
∑

j≤k
(Fj,k((a,

−→
b ),−→u ,−→v )∂j∂k) +

∑

j

(Gj((a,
−→
b ),−→u ,−→v )∂j)

(Y contains no summand of zeroth order); then, considering that ∂j∂kZ−→β ,x(a,
−→
b ) = 0 for all j, k ≥ 2,
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we arrive at the expression

Y (p
˜Δ
)(t, a,

−→
b ) =

∑

j≤k

(

Fj,k((a,
−→
b ),−→u ,−→v )

∫

Rn−1

e
Z−→
β ,x
(a,
−→
b )

×K−→
β ,x,t
(a)∂jZ−→β ,x(a,

−→
b )∂kZ−→β ,x(a,

−→
b ) d(

−→
β , x)

)

+
n
∑

k=1

(

F1,k((a,
−→
b ),−→u ,−→v )

∫

Rn−1

e
Z−→
β ,x
(a,
−→
b )
K−→
β ,x,t
(a)∂1∂kZ−→β ,x(a,

−→
b )d(

−→
β , x)

)

+F1,1((a,
−→
b ),−→u ,−→v )

∫

Rn−1

e
Z−→
β ,x
(a,
−→
b )
(∂21K−→β ,x,t(a)

+∂1Z−→β ,x(a,
−→
b )∂1K−→β ,x,t(a)) d(

−→
β , x)

+

n
∑

k=1

(

F1,k((a,
−→
b ),−→u ,−→v )

∫

Rn−1

e
Z−→
β ,x
(a,
−→
b )
∂1K−→β ,x,t(a)∂kZ−→β ,x(a,

−→
b ) d(

−→
β , x)

)

+

n
∑

j=1

(Gj((a,
−→
b ),−→u ,−→v )

∫

Rn−1

e
Z−→
β ,x
(a,
−→
b )
K−→
β ,x,t
(a)∂jZ−→β ,x(a,

−→
b ) d(

−→
β , x))

+G1((a,
−→
b ),−→u ,−→v )

∫

Rn−1

e
Z−→
β ,x
(a,
−→
b )
∂1K−→β ,x,t(a) d(

−→
β , x).

For making the form of HK
˜Δ
∗ Y (HK

˜Δ
)(1, 0, 0) completely explicit, we must have a somewhat con-

structive method for computing HK
̂Δ−→
β

. It is possible to do that by Trotter’s formula

eA+B = lim
N→∞

((e
A
N e

B
N )
N
).

Taking Bf = tf ′′ and Af = t(Mn−2
∑

j=2

(βj−1X∗j )+βn−1X∗n
)2f , we find that

(e
B
N f)(x) =

(

N

4πt

) 1
2
∫

R

e−
(x−y)2N
4t f(y) dy,

(e
A
N f)(x) = exp

(

−4π
2t

N

(n−3
∑

j=1

(

βj
xj−1

(j − 1)!
)

+ βn−1
xn−2

(n− 2)!
)
2
)

· f(x),

HK
̂Δ−→
β

(t, x1, x0) = lim
N→∞

∫

RN−1

N−1
∏

r=0

(Lt,N (x r+1
N
, x r

N
))d(x r

N
)
1≤r≤N−1,

where

Lt,N (x, y) =

(

N

4πt

) 1
2

exp

(

−4π
2t

n

(n−3
∑

j=1

(

βj
xj−1

(j − 1)!
)

+ βn−1
xn−2

(n− 2)!
)2

− (x− y)
2N

4t

)

.

This formula is applicable under some additional conditions which can be found, for example, in [24].

It is also proved in [24] that they are satisfied for the operators of the form (Δf)(x) = f ′′(x)−(V (x))2f(x),
where V is a polynomial with real coefficients; the example under study falls under this case.
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Inserting the found conditions for p
˜Δ
, Y p

˜Δ
, and HK

̂Δ−→
β

into the formula for the desired coefficient

HK
˜Δ
∗ Y (HK

˜Δ
)(1, 0, 0) =

1
∫

0

∫

Rn

(p
˜Δ
(s, (a,

−→
b ))Y (p

˜Δ
)(1− s, (a,−→b )))d(a,−→b ) ds,

we obtain the following result:

Theorem 6. For a sub-Riemannian manifold M with nilpotent approximation that is a Goursat
group under the assumption that hg0(Xj) = 0 for j ∈ {1, 2}, the coefficient a1 in the asymptotics

HKΔ(t, x, x) = t
−n(n−1)+2

4 (a0 + a1t+O(t
2))

as t→ 0 is a polynomial of the perturbation parameters whose coefficients are expressed in terms of the
limits of sequences of some integrals of functions of the form P (z1, . . . , zk) exp (Q(z1, . . . , zk)), where P
and Q are (in general, complex) polynomials of the real variables z1, . . . , zk.

Note that the polynomials under the exponent in these integrals contain information about the
representations of the Goursat group and its coadjoint orbits.

Though we have been able to partially complete the calculations only in the case of Goursat groups,
we conjecture that, for equiregular sub-Riemannian manifolds with other nilpotent approximations, the
coefficient a1 and also the higher-order coefficients are representable in an analogous form. This mainly
depends on how convenient for calculations the formulas for the nilpotent heat kernels will be in the
general case. It is not impossible either that there are some nontrivial dependences between the higher-
order coefficients.

5. Conclusion

Despite the fact that the existence is known from [25, 26] of asymptotic representation of the form we
considered for sub-Riemannian heat kernels, the methods used there (for example, stochastic diffusion)
were very unconstructive and related to the geometry of manifolds only indirectly. The approach of the
present article gives more explicit formulas for the coefficients though the approach is very cumbersome
computationally. It works under not very restrictive assumption that hg0(Xj) = 0 for the basis horizontal
fields Xj which, as we expect, can be removed in many cases.

The novelty of the present article is part concerned with the perturbation method consists in finding
very general formulas for the operator Y and the heat kernel in the nilpotent approximation, which is
necessary to have at hand in each concrete application of this method.

The special functions that can occur in the expression for HK
̂ΔH(Rξ)

are most likely unsimplifiable.

However, HK
̂ΔH(Rξ)

can be expressed with the use of Trotter’s formula

exp(A+B) = lim
N→∞

((

exp

(

A

N

)

exp

(

B

N

))N)

generalized to the case of several summands since the operator ̂ΔH(λ), where λ ∈ ̂G, is expressible
in the form of several summands corresponding to the basis horizontal vector fields Xj , 1 ≤ j ≤ m. Each
of these summands is the value of dR(Xj)◦dR(Xj) for some representation R ∈ λ (all definitions involved
here are correct for Lie groups).

It is also worth noting that the special functions necessary for solving the sub-Riemannian heat
equation are well studied in some cases. For example, for nilpotent Lie groups with growth vectors (2, 3, 4)
and (2, 3, 5), Heun functions of some special form are enough (see [15]).
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