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NECESSARY CONDITIONS FOR THE RESIDUAL NILPOTENCY
OF CERTAIN GROUP THEORY CONSTRUCTIONS

A. E. Kuvaev UDC 512.543

Abstract: Consider a graph G of groups such that each vertex group locally satisfies a nontrivial
identity and each edge subgroup is properly included into the corresponding vertex groups and its
index in at least one of them exceeds 2. We prove that if the fundamental group F of G is locally
residually nilpotent then there exists a prime number p such that each edge subgroup is p′-isolated
in the corresponding vertex group. We show also that if F is the free product of an arbitrary family
of groups with one amalgamated subgroup or a multiple HNN-extension then the same result holds
without restrictions on the indices of edge subgroups.
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1. Introduction

Call a group X locally satisfying a nontrivial identity whenever each finitely generated subgroup of X
satisfies some nontrivial identity that is not necessarily the same for all subgroups. Call a group X locally
residually nilpotent whenever every finitely generated subgroup Y of X is residually nilpotent, meaning
that for each nontrivial y ∈ Y there exists a homomorphism σ of Y onto a nilpotent group with yσ �= 1.
A group need not be residually nilpotent or satisfy any nontrivial identity to have these properties locally,
and we provide an example at the end of this article.
Our goal is to find necessary conditions for the local residual nilpotency for the free constructions

composed of the groups locally satisfying some nontrivial identity. As we show, the suitable condition
under some restrictions is that all amalgamated or associated subgroups are p′-isolated for a prime p.
Recall that a subgroup Y of a group X is called p′-isolated in X whenever for any x ∈ X and any prime
q �= p the condition xq ∈ Y implies that x ∈ Y .
Let us turn to defining the group theory constructions in question.
Given a directed graph Γ with underlying undirected graph Γ, call Γ connected whenever so is Γ;

i.e., each pair of vertices can be connected by a path. Similarly, call Γ acyclic whenever so is Γ. Given
an edge e of Γ, denote the source and target vertices of e by e(1) and e(−1).
Consider a nonempty connected directed graph G = (V,E) with vertex set V and edge set E. The

numbers of vertices and edges might not be finite. Multiple edges and loops are allowed. Associating
to each vertex v ∈ V a group Fv, and to each edge e ∈ E a group He together with two embeddings
ϕ+e : He → Fe(1) and ϕ−e : He → Fe(−1), we obtain the graph of groups G corresponding to G.
Take a maximal (spanning) subtree T = (V,ET ) in G; i.e., a connected acyclic subgraph of G

containing all vertices of G. Refer as the fundamental group of a graph of groups G to the group

F =
〈∗Fv, tf ; Heϕ+e = Heϕ−e, t−1f (Hfϕ+f )tf = Hfϕ−f

(v ∈ V, e ∈ ET , f ∈ E \ ET )
〉
,

(1)

whose generators are those of Fv for v ∈ V and the additional letters tf for f ∈ E \ ET , and whose
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defining relations are those of Fv together with all possible relations of the form

hϕ+e = hϕ−e (e ∈ ET , h ∈ He),
t−1f (hϕ+f )tf = hϕ−f (f ∈ E \ ET , h ∈ Hf ).

It is known that the fundamental group of G is independent of the choice of T ; see Proposition 20
of [1, Chapter 1] for instance. If G is a tree then the fundamental group F of G is called the tree product
of Fv for v ∈ V with amalgamated subgroups Hεe for e ∈ E and ε = ±1. Moreover, if, for all e, f ∈ E
and ε, δ ∈ {1,−1}, the equality e(ε) = f(δ) implies that Heϕεe = Hfϕδf ; then in F all subgroups Heϕεe
of F for e ∈ E and ε = ±1 coincide. Therefore, every group F satisfying this extra condition is called
the free product of the family {Fv | v ∈ V } of groups with one amalgamated subgroup. It is not difficult
to show that the resulting group is isomorphic to the free product of the family {Fv | v ∈ V } of groups
with one amalgamated subgroup defined in accordance with [2].

If G contains one vertex v and at least one edge, then the fundamental group F of G has the
presentation

F =
〈
Fv, tf ; t

−1
f (Hfϕ+f )tf = Hfϕ−f (f ∈ E)

〉
(2)

and F is called the (multiple) HNN-extension of Fv with the family of stable letters {tf | f ∈ E}.
The main result is as follows:

Theorem 1. Consider the fundamental group F of a graph of groups of the form (1). Suppose
that each group Fv for v ∈ V locally satisfies a nontrivial identity and the subgroup Heϕεe is properly
included into Fe(ε) for all e ∈ E and ε = ±1. If F is a locally residually nilpotent group and for every
edge e ∈ E at least one of the indices [Fe(1) : Heϕ+e] and [Fe(−1) : Heϕ−e] exceeds 2 then there exists
a prime p such that Heϕεe is p

′-isolated in Fe(ε) for all e ∈ E and ε = ±1.
Theorem 1 implies Theorems 2 and 3 which generalize the main results of [3–5]. In contrast to

Theorem 1, no additional restrictions on the indices of amalgamated and associated subgroups appear in
Theorems 2 and 3.

Theorem 2. Consider the free product F of a family {Fv | v ∈ V } of groups with one amalgamated
subgroup H. Suppose that all Fv locally satisfy a nontrivial identity and at least two of them include H
properly. If F is a locally residually nilpotent group then there exists a prime p such that the subgroup H
is p′-isolated in Fv for every v ∈ V .
Theorem 3. Consider an HNN-extension F of the form (2). Suppose that Fv locally satisfies

a nontrivial identity, and the subgroup Hfϕεf is properly included into Fv for all f ∈ E and ε = ±1.
If F is a locally residually nilpotent group then there exists a prime p such that Hfϕεf are p

′-isolated
in Fv for all edges f ∈ E and all numbers ε = ±1.
If F is the free product of a family {Fv | v ∈ V } of groups with one amalgamated subgroup H and

the inequality H �= Fv holds only for one v ∈ V , then F = Fv and the local residual nilpotency of this
group certainly does not imply that the subgroup H is p′-isolated for any prime p. Thus, Theorem 2
is false in this case. The claim of Theorem 3 ceases to be valid either if at least one of the associated
subgroups Hfϕεf for f ∈ E and ε = ±1 coincides with the base group Fv; for example, see [5].
Theorems 1–3 in combination with the description [6, 7] of the isolators of subgroups of nilpotent

and residually nilpotent groups of a particular form, as well as the numerous results on the residual p-
finiteness of free constructions of groups, can serve as a foundation for finding a criterion for the residual
nilpotency of the certain generalized free products and the HNN-extensions of nilpotent and residually
nilpotent groups.
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2. Some Auxiliary Statements

Proposition 1 [8, Lemma 2]. If a group X satisfies a nontrivial identity then X satisfies a nontrivial
identity of the form

w(y, x1, x2) = w0(x1, x2)y
ε1w1(x1, x2) . . . y

εnwn(x1, x2), (3)

where n ≥ 1, ε1, . . . , εn = ±1, and w0(x1, x2), . . . , wn(x1, x2) ∈
{
x±11 , x

±1
2 ,
(
x1x

−1
2

)±1}
.

Proposition 2. If p and q are coprimes and X is a finite group of order p then for every x ∈ X
there is an integer m such that x = xqm.

Proof. Take x ∈ X. Then xp = 1. Since (q, p) = 1, there exist m, k ∈ Z with qm + pk = 1. So
x = xqm+pk = (xq)m(xp)k = xqm, as required.

Proposition 3. Given a group X with finitely generated subgroups Y and Z, take x1 ∈ Y and
x2 ∈ Z with [x1, x2] �= 1, as well as two primes p and q. Suppose that

(a) for every prime r and every homomorphism ρ of Y onto a finite r-group the relation r �= p
implies that x1ρ = 1;

(b) for every prime s and every homomorphism σ of Z onto a finite s-group the relation s �= q
implies that x2σ = 1.

If p �= q then X is not a locally residually nilpotent group.
Proof. Take finite sets M and N of generators of Y and Z respectively and the subgroup U

generated by M ∪ N . Suppose that p �= q but X is locally residually nilpotent. Then U is a residually
(finitely generated nilpotent) group. By Hirsch’s Theorem [9], every finitely generated nilpotent group is
residually finite. Hence, U is a residually (finite nilpotent) group.

Put x = [x1, x2]. Take a homomorphism τ of U onto a finite nilpotent group Z sending x to
a nontrivial element and a prime divisor t of the order of xτ . The Burnside–Wielandt Theorem, see
Theorem 2.7 of [10] for instance, shows that Z decomposes as the direct product of the Sylow subgroups
of Z. Denote by T the product of all Sylow subgroups of Z except the subgroup corresponding to t.
Then xτ /∈ T , and so the composition of τ with the natural homomorphism of Z onto Z/T sends x to
a nontrivial element of the finite t-group Z/T .

If t = q; then, according to the inequality p �= q and condition (a), the restriction of τ to Y sends x1
to the identity element. If t �= q then x2τ = 1 by condition (b). Anyway, xτ = 1, which contradicts the
choice of τ .

3. Some Properties of the Generalized Free Products of Groups

Throughout this section F stands for a free product of groups A and B with an amalgamated
subgroup H.

An expression for f ∈ F as f = f1f2 . . . fn with n ≥ 1 is called a reduced form whenever each fk for
1 ≤ k ≤ n lies in one of the factors A and B, but adjacent fk and fk+1 do not lie in the same free factors.
The number n is called the length of this reduced form.

Proposition 4 is a straightforward corollary of the Normal Form Theorem for generalized free products
of two groups; see Corollary 4.4.1 of [11] for instance.

Proposition 4. Each element f ∈ F with at least one reduced form of length greater than 1 lies
outside both free factors A and B; in particular, f is nontrivial.

Proposition 5 [11, Corollary 4.4.3]. A ∩B = H in F .
Proposition 6. Suppose that groups A and B locally satisfy a nontrivial identity, the subgroup H

is properly included into each of them, and at least one of the indices [A : H] and [B : H] exceeds 2.
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Suppose also that there exists a ∈ A \ H such that aq ∈ H for some prime q. Then there is a finitely
generated subgroup S ≤ F with g1, g2 ∈ S enjoying the following properties:

(a) g1 and g2 have reduced forms of length greater than 1; furthermore, the first and the last
syllables of this form of g1 belong to A \H, while the first and the last syllables of this form
of g2 belong to B \H;

(b) for every prime p and for every homomorphism σ of S onto a finite p-group the relation
p �= q implies that g1σ = g2σ = 1.

Proof. Consider the three mutually exclusive cases:

(1) [B : H] > 2;
(2) [B : H] = 2 and q > 2;
(3) [B : H] = 2 and q = 2.

Case 1. [B : H] > 2. Take three representatives 1, b1, and b2 of the distinct right cosets of H in B.
The group U = sgp{aq, b1, b2} is a finitely generated subgroup of B, and so U satisfies a nontrivial identity
that we may assume to be of the form (3) by Proposition 1. Put

S = sgp{a, b1, b2},
g1 = a

−1w(a, b1, b2)a = a−1w0(b1, b2)aε1w1(b1, b2) . . . aεnwn(b1, b2)a,
g2 = w(a, b1, b2) = w0(b1, b2)a

ε1w1(b1, b2) . . . a
εnwn(b1, b2).

By Proposition 1, the elements wr(b1, b2) for r ∈ {0, . . . , n} are of the form b±11 , b±12 , or
(
b1b
−1
2

)±1
.

Since b1 and b2 belong to the distinct right cosets of H in B and are nontrivial, wr(b1, b2) ∈ B \H for
every r ∈ {0, . . . , n}. By assumption, a ∈ A \H. Thus, the above expressions for g1 and g2 are reduced
and property (a) holds for them.
Take some homomorphism σ of S onto a finite p-group with p �= q. Since aq ∈ U , Proposition 2

implies that aσ ∈ Uσ. Since U satisfies (3), this yields g1σ = g2σ = 1. Thus, property (b) holds for the
subgroup S and the elements g1 and g2 of S.

Case 2. [B : H] = 2 and q > 2. Take b ∈ B\H. Then U = sgp{aq, b} is a finitely generated subgroup
of B and so U satisfies a nontrivial identity that, as above, we may assume to be of the form (3). Put

S = sgp{a, b},
g1 = w(b, a, a

2) = w0(a, a
2)bε1w1(a, a

2) . . . bεnwn(a, a
2),

g2 = b
−1w(b, a, a2)b = b−1w0(a, a2)bε1w1(a, a2) . . . bεnwn(a, a2)b.

By Proposition 1, wr(a, a
2) ∈ {a±1, a±2} for all r ∈ {0, . . . , n}. By assumption, a ∈ A \ H, while

the inequality q > 2 with q prime also implies that a2 ∈ A \ H. Consequently, wr(a, a2) ∈ A \ H for
all r ∈ {0, . . . , n}. Thus, the expressions for g1 and g2 are reduced and property (a) holds for them.
Property (b) is verified in the same fashion as in Case 1.

Case 3. [B : H] = 2 and q = 2. Take b ∈ B \ H. Since [B : H] = 2, the hypotheses imply that
[A : H] > 2. Take three representatives 1, a1, and a2 of the distinct right cosets of H in A.
Since [B : H] = 2, it follows that b2 ∈ H, and so U = sgp{b2, a1, a2} is a finitely generated subgroup

of A. Hence, U satisfies a nontrivial identity that we may again assume to be of the form (3). Put

S = sgp{a1, a2, b},
g1 = w(b, a1, a2) = w0(a1, a2)b

ε1w1(a1, a2) . . . b
εnwn(a1, a2),

g2 = b
−1w(b, a1, a2)b = b−1w0(a1, a2)bε1w1(a1, a2) . . . bεnwn(a1, a2)b.

As in Case 1, we verify that wr(a1, a2) ∈ A \ H for every r ∈ {0, . . . , n}. Moreover, b ∈ B \ H.
Therefore, the above expressions for g1 and g2 are reduced and property (a) holds.
Take some homomorphism σ of S onto a finite p-group with p �= q. The relation q = 2, the

containment b2 ∈ U , and Proposition 2 imply that bσ ∈ Uσ. Since U satisfies (3), this implies that
g1σ = g2σ = 1 and so property (b) also holds.
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4. Some Properties of HNN-Extensions

Consider an HNN-extension F of the form (2). An expression for g ∈ F as

g = g0t
ε1
f1
g1 . . . gn−1tεnfngn

with g0, . . . , gn ∈ Fv, f1, . . . , fn ∈ E, and ε1, . . . , εn = ±1, where n ≥ 0, is called a reduced form whenever
it avoids the sequences t−εf , h, and t

ε
f , where f ∈ E, ε = ±1, and h ∈ Hεf . The number n is called

the length of this reduced form. The following proposition can be deduced from Britton’s Lemma for
HNN-extensions with one stable letter; see [12, Chapter IV, § 2] for instance.
Proposition 7. If F is an HNN-extension of the form (2) then every g ∈ F with at least one reduced

form of nonzero length lies outside the base group Fv; in particular, g is nontrivial.

Proposition 8. Consider an HNN-extension F of the form (2). Suppose that the graph G contains
only one edge e. Suppose also that the subgroup Heϕ+e is properly included into some subgroup A of Fv
locally satisfying a nontrivial identity, the subgroup Heϕ−e is properly included into some subgroup B
of Fv locally satisfying a nontrivial identity, and at least one of the indices [A : Heϕ+e] and [B : Heϕ−e]
exceeds 2. If there exist a prime q and a ∈ A\Heϕ+e with aq ∈ Heϕ+e or b ∈ B \Heϕ−e with bq ∈ Heϕ−e
then there is a finitely generated subgroup S ≤ F with g1, g2 ∈ S enjoying the following properties:

(a) g1 and g2 have reduced forms of nonzero length and, furthermore, the form of g1 starts
with t−1e and ends with te, while the form of g2 starts with te and ends with t−1e ;

(b) for every prime p and every homomorphism σ of S onto a finite p-group the relation p �= q
implies that g1σ = g2σ = 1.

Proof. Switching, if necessary, the direction of the edge e to the opposite one and swapping the
subgroups A and B, we may assume that there exists a ∈ A \ Heϕ+e with aq ∈ Heϕ+e. Consider the
three mutually exclusive cases:

(1) [B : Heϕ−e] > 2;
(2) [B : Heϕ−e] = 2 and q > 2;
(3) [B : Heϕ−e] = 2 and q = 2.

Case 1. [B : Heϕ−e] > 2. Take three representatives 1, b1, and b2 of the distinct right cosets
of Heϕ−e in B. The group U = sgp

{
t−1e aqte, b1, b2

}
is a finitely generated subgroup of B and so U

satisfies a nontrivial identity that we may assume to be of the form (3) by Proposition 1. Put

S = sgp{a, b1, b2, te},
g1 = t

−1
e w
(
t−1e ate, b1, b2

)
te

= t−1e w0(b1, b2)t
−1
e a

ε1tew1(b1, b2) . . . t
−1
e a

εntewn(b1, b2)te,

g2 = tew
(
t−1e ate, b1, b2

)
t−1e

= tew0(b1, b2)t
−1
e a

ε1tew1(b1, b2) . . . t
−1
e a

εntewn(b1, b2)t
−1
e .

As in the proof of Proposition 6, we establish that wr(b1, b2) ∈ B \Heϕ−e for every r ∈ {0, . . . , n}.
Together with a ∈ A\Heϕ+e this implies that the expressions for g1 and g2 are reduced and property (a)
holds.

Take some homomorphism σ of S onto a finite p-group with p �= q. Since t−1e aqte ∈ U , Proposition 2
yields

(
t−1e ate

)
σ ∈ Uσ. Since U satisfies (3), this shows that (teg1t−1e

)
σ =

(
t−1e g2te

)
σ = 1. Thus,

property (b) also holds for the subgroup S with g1 and g2.

Case 2. [B : Heϕ−e] = 2 and q > 2. Take b ∈ B \Heϕ−e. Then U = sgp
{
t−1e aqte, b

}
is a finitely

generated subgroup of B and so U satisfies a nontrivial identity that, as above, we may assume to be of
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the form (3). Put

S = sgp{a, b, te},
g1 = w

(
b, t−1e ate, t

−1
e a

2te
)

= w0
(
t−1e ate, t

−1
e a

2te
)
bε1w1

(
t−1e ate, t

−1
e a

2te
)
. . . bεnwn

(
t−1e ate, t

−1
e a

2te
)
,

g2 = t
2
ew
(
b, t−1e ate, t

−1
e a

2te
)
t−2e

= t2ew0
(
t−1e ate, t

−1
e a

2te
)
bε1w1

(
t−1e ate, t

−1
e a

2te
)
. . . bεnwn

(
t−1e ate, t

−1
e a

2te
)
t−2e .

According to Proposition 1, for each r ∈ {0, . . . , n} we have
wr
(
t−1e ate, t

−1
e a

2te
) ∈ {t−1e a±1te, t−1e a±2te

}
.

Since a ∈ A\Heϕ+e and q > 2 is prime, a2 ∈ A\Heϕ+e. Thus, the expressions for g1 and g2 are reduced
and property (a) holds. Property (b) is established in the same fashion as in case 1.

Case 3. [B : Heϕ−e] = 2 and q = 2. The hypotheses and [B : Heϕ−e] = 2 imply that [A : Heϕ+e] > 2.
Take three representatives 1, a1, and a2 of the distinct right cosets ofHeϕ+e in A, as well as b ∈ B\Heϕ−e.
Since [B : Heϕ−e] = 2, the subgroup Heϕ−e is normal in B. Therefore, b−1

(
t−1e aqte

)
b ∈ Heϕ−e and

teb
−1(t−1e aqte

)
bt−1e ∈ Heϕ+e. Consequently, U = sgp

{
teb
−1t−1e aqtebt−1e , a1, a2

}
is a finitely generated

subgroup of A and so U satisfies a nontrivial identity that we may again assume to be of the form (3).
Put

S = sgp{a, b, a1, a2, te},
g1 = t

−1
e w
(
teb
−1t−1e atebt

−1
e , a1, a2

)
te

= t−1e w0(a1, a2)teb
−1t−1e a

ε1tebt
−1
e w1(a1, a2) . . . teb

−1t−1e a
εntebt

−1
e wn(a1, a2)te,

g2 = tew
(
teb
−1t−1e atebt

−1
e , a1, a2

)
t−1e

= tew0(a1, a2)teb
−1t−1e a

ε1tebt
−1
e w1(a1, a2) . . . teb

−1t−1e a
εntebt

−1
e wn(a1, a2)t

−1
e .

As above, we establish that wr(a1, a2) ∈ A\Heϕ+e for every r ∈ {0, . . . , n}. Moreover, a ∈ A\Heϕ+e
and b ∈ B\Heϕ−e. Hence, the expressions for g1 and g2 are reduced and property (a) holds. Property (b)
is established in the same fashion as in case 1, with the only difference that instead of t−1e ate and t−1e aqte
we should use teb

−1(t−1e ate
)
bt−1e and teb−1

(
t−1e aqte

)
bt−1e respectively.

5. Some Properties of the Fundamental
Groups of Arbitrary Graphs of Groups

Consider a fundamental group F of some graph of groups of the form (1) and the tree product P
corresponding to a maximal subtree T . Then F amounts to the multiple HNN-extension of P with the
family of stable letters {tf | f ∈ E \ ET } and Theorem 2 of [13] shows that P may be assumed to be
a subgroup of F . For an edge e ∈ E \ ET , the group F is a multiple HNN-extension of the group

P (e) =
〈
P, te; t

−1
e (Heϕ+e)te = Heϕ−e

〉

with the family of stable letters {tf | f ∈ E \ (ET ∪ {e})}. Consequently, the HNN-extension P (e)
also turns out to be a subgroup of F . Finally, if T̃ = (Ṽ , Ẽ) is a subtree of T with the same groups

and mappings assigned to vertices and edges, while P̃ is the tree product corresponding to T̃ ; then,

according to Theorem 1 of [14], the identity mapping of the generators of P̃ to P determines an isomorphic

embedding. Hence, we may also assume that P̃ is a subgroup of F . These arguments enable us to apply
Propositions 6 and 8 to the above subgroups of F . In the proof of Proposition 9 we will use this possibility
tacitly.
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Proposition 9. Consider the fundamental group F of a graph of groups of the form (1). Suppose
that the group Fv locally satisfies a nontrivial identity for each v ∈ V and the subgroup Heϕεe is properly
included into Fe(ε) for all e ∈ E and ε = ±1. Suppose also that F is a locally residually nilpotent group
and for every edge e ∈ E at least one of the indices [Fe(1) : Heϕ+e] and [Fe(−1) : Heϕ−e] exceeds 2. If there
exist (not necessarily distinct) edges e, f ∈ E and numbers ε, δ = ±1, some elements xe ∈ Fe(ε) \Heϕεe
and xf ∈ Ff(δ) \Hfϕδf , as well as primes p and q such that xpe ∈ Heϕεe and xqf ∈ Hfϕδf then p = q.
Proof. Consider the three mutually exclusive cases:

(1) e, f ∈ ET ;
(2) either e ∈ ET and f /∈ ET or e /∈ ET and f ∈ ET ;
(3) e, f /∈ ET .

Case 1. e, f ∈ ET . At least two among the vertices e(1), e(−1), f(1), and f(−1) are distinct. It is
obvious that, as we change the direction of any number of edges in ET , the presentation of F remains
the same. Therefore, without loss of generality we may assume that e(−1) �= f(1) and that in the tree T
there is a path from f(1) to e(−1) passing through e(1) and f(−1).
According to Proposition 6, applied first to the generalized free product

Pe = 〈Fe(1) ∗ Fe(−1); Heϕ+e = Heϕ−e〉
and xe and then to the generalized free product

Pf = 〈Ff(1) ∗ Ff(−1); Hfϕ+f = Hfϕ−f 〉
and xf , there exist finitely generated subgroups S1 ≤ Pe and S2 ≤ Pf with g1 ∈ S1 and g2 ∈ S2 enjoying
the following properties:

(a) g1 and g2 in Pe and Pf respectively have reduced forms of length greater than 1, and
furthermore the first and the last syllables of this form of g1 belong to Fe(−1) \Heϕ−e, while
the first and the last syllables of this form of g2 belong to Ff(1) \Hfϕ+f ;

(b) for every prime r and every homomorphism ρ of S1 onto a finite r-group the relation r �= p
implies that g1ρ = 1; for every prime s and every homomorphism σ of S2 onto a finite
s-group the relation s �= q implies that g2σ = 1.

Verify that g = [g1, g2] is distinct from 1. Applying Proposition 3 to F , the subgroups S1 and S2,
the elements g1 and g2, and the numbers p and q, we infer that p = q, as required.

Take the subtree T̃ = (Ṽ , Ẽ) of T which amounts to the path connecting e(−1) and f(1), as well as
the tree product P̃ corresponding to T̃ . If e = f then P̃ = Pe = Pf and property (a) shows that in this
group g has a reduced form of length at least 12. By Proposition 4, this implies that g �= 1.
Suppose that e �= f . Take the tree T̃1 obtained from T̃ by removing the edge e and the vertex e(−1)

as well as the tree T̃2 obtained from T̃1 by removing the edge f and the vertex f(1). Denote by P̃1 and P̃2
the tree products corresponding to T̃1 and T̃2. Then P̃ is the free product of Pe and P̃1 with amalgamated

subgroup Fe(1), while P̃1 is the free product of P̃2 and Pf with amalgamated subgroup Ff(−1).
Since in Pe the element g1 has a reduced form of length greater than 1, by Proposition 4 it lies outside

the free factor Fe(1). For the same reason g2 /∈ Ff(−1). By Proposition 5, P̃2 ∩ Pf = Ff(−1) in P̃1. Since
Fe(1) ≤ P̃2, it follows that g2 /∈ Fe(1). Hence, in P̃ regarded as a generalized free product of Pe and P̃1
the element g has a reduced form of length 4 and by Proposition 4 it is distinct from 1.

Case 2. Either e ∈ ET and f /∈ ET , or e /∈ ET and f ∈ ET . Denote by P the tree product
corresponding to the maximal subtree T . Without loss of generality we may assume that e ∈ ET
and f /∈ ET . Therefore, by Proposition 6 applied to the generalized free product

Pe = 〈Fe(1) ∗ Fe(−1); Heϕ+e = Heϕ−e〉
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and xe, as well as Proposition 8 applied to the HNN-extension

P (f) =
〈
P, tf ; t

−1
f (Hfϕ+f )tf = Hfϕ−f

〉

and xf , there exist finitely generated subgroups S1 ≤ Pe and S2 ≤ P (f) with g1 ∈ S1 and g2 ∈ S2
enjoying the following properties:

(a) g1 has a reduced form of length greater than 1 in Pe;
(b) g2 has a reduced form of nonzero length beginning with t

−1
f and ending with tf in P (f);

(c) for every prime r and every homomorphism ρ of S1 onto a finite r-group the relation r �= p
implies that g1ρ = 1; for every prime s and every homomorphism σ of S2 onto a finite
s-group the relation s �= q implies that g2σ = 1.

Consider the connected components T1 and T2 of the graph obtained from T by removing the edge e
and the corresponding tree products P1 and P2. Then the group P amounts to the tree product of P1,
Pe, and P2 with amalgamated subgroups Fe(1) and Fe(−1). Proposition 5 yields P1 ∩ Pe ⊆ Fe(1) ∪ Fe(−1)
and P2 ∩ Pe ⊆ Fe(1) ∪ Fe(−1). Since in Pe the element g1 has a reduced form of length greater than 1,
Proposition 4 yields g1 /∈ Fe(1)∪Fe(−1). This implies that g1 /∈ Fv for each vertex v ∈ V and in particular
g1 /∈ Hfϕ−f . Thus, the expression

[g1, g2] = g
−1
1 g

−1
2 g1g2 ∈ P (f)

is reduced, has nonzero length, and [g1, g2] �= 1 by Proposition 7. As in case 1, this implies that p = q by
Proposition 3.

Case 3. e, f /∈ ET . Consider again the tree product P corresponding to the maximal subtree T .
According to Proposition 8 applied first to the HNN-extension

P (e) =
〈
P, te; t

−1
e (Heϕ+e)te = Heϕ−e

〉

and xe and then to the HNN-extension

P (f) = 〈P, tf ; t−1f (Hfϕ+f )tf = Hfϕ−f 〉
and xf , there are finitely generated subgroups S1 ≤ P (e) and S2 ≤ P (f) with g1 ∈ S1 and g2 ∈ S2
enjoying the following properties:

(a) the elements g1 and g2 in P (e) and P (f) respectively have reduced forms of nonzero length;
furthermore, the form of g1 starts with t

−1
e and ends with te, while the form of g2 starts

with t−1f and ends with tf ;
(b) for every prime r and every homomorphism ρ of S1 onto a finite r-group the relation r �= p

implies that g1ρ = 1; for every prime s and every homomorphism σ of S2 onto a finite
s-group the relation s �= q implies that g2σ = 1.

Take c ∈ Fe(−1) \Heϕ−e and
g = [c−1g1c, g2] = c−1g−11 cg

−1
2 c

−1g1cg2.
Then the expression for g is reduced and has nonzero length in the group F regarded as an HNN-

extension of P ; this is obvious if e �= f , and otherwise follows from the fact that c ∈ P \Heϕ−e. Hence,
Proposition 7 yields g �= 1. Applying Proposition 3 to F , the subgroups c−1S1c and S2, the elements
c−1g1c and g2, and the numbers p and q, we infer that p = q.

6. Proof of Theorem 1

If for all e ∈ E and ε = ±1 the subgroup Heϕεe is isolated in Fe(ε) then we can take any prime as p.
Therefore, assume henceforth that Heϕεe is not isolated in Fe(ε) for some e ∈ E and ε = ±1. Then there
exist xe ∈ Fe(ε) \Heϕεe and a prime p such that xpe ∈ Heϕεe.
Assume that f ∈ E, δ = ±1, xf ∈ Ff(δ) \Hfϕδf , and a prime q is such that xqf ∈ Hfϕδf . Then p = q

by Proposition 9. This implies that if Hfϕδf is not isolated in Ff(δ) for some f ∈ E and δ = ±1 then
Hfϕδf is p

′-isolated. In particular, this holds for Heϕεe.
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7. Proof of Theorem 2

If [Fv : H] ≤ 2 for every vertex v ∈ V then H is 2′-isolated in Fv for each v ∈ V . Therefore, assume
henceforth that there exists v ∈ V such that [Fv : H] > 2.
With the necessary notational changes not affecting the presentation of F , we may assume that all

edges of G are directed away from v. This implies in particular that if two edges are incident to one
vertex then the latter is the target of one and the source of the other.

For some edge e ∈ E denote by ϕe the isomorphism ϕ−1+eϕ−e : Heϕ+e → Heϕ−e. If two edges e, f ∈ E
satisfy e(−1) = f(1) then Heϕ−e = Hfϕ+f by the definition of free product with one amalgamated
subgroup and hence the composition of isomorphisms ϕeϕf is defined.

Consider a star tree G′ with the same set of vertices as G, center at v, and edges going out to all
remaining vertices. Assume also that the same groups are assigned to the vertices of G′ as to those of G.
If e = (v, w) is an edge of G′ and e1, e2, . . . , en is a path in G from v to a vertex w then associate the
group He = He1 and the embeddings ϕ+e = ϕ+e1 and ϕ−e = ϕ+e1ϕe1ϕe2 . . . ϕen to the edge e. This
yields the graph of groups G ′; furthermore, for every edge e = (v, w) in G ′ the isomorphic embeddings of
the groups Fv and Fw assigned to the endpoints of e into F send Heϕ+e and Heϕ−e onto H.
Verify that the fundamental groups F and F ′ of G and G ′ are isomorphic. Indeed, if, as above,

e = (v, w) is an edge of G′ and e1, e2, . . . , en is a path in G from v to w then the relations h = hϕei
for i ∈ {1, . . . , n} and h ∈ Heiϕ+ei valid in F imply that h = hϕe1ϕe2 . . . ϕen for h ∈ He1ϕ+e1 , and so
hϕ+e = hϕ−e for all h ∈ He. Conversely, if g = (u,w) is an edge of G and e1, e2, . . . , en = g is a path in G
from v to w, while e = (v, w) and f = (v, u) are edges of G′ then the relations hϕ+e = hϕ−e for h ∈ He
and hϕ+f = hϕ−f for h ∈ Hf of the group F ′ imply that h = hϕe1ϕe2 . . . ϕen and h = hϕe1ϕe2 . . . ϕen−1
for h ∈ He1ϕ+e1 , whence h = hϕen for all h ∈ Henϕ+en , and so hϕ+g = hϕ−g for all h ∈ Hg. Since the
remaining defining relations and all generators in F and F ′ are the same, the required isomorphism follows.
If Heϕ−e = Fe(−1) for some edge e of G′ then all defining relations of Fe(−1) follow from those

of Fe(1). Thus, all generators and defining relations of Fe(−1), as well as all possible relations of the form
hϕ+e = hϕ−e for h ∈ He can be excluded from the presentation of F ′. This operation is equivalent to
removing from the graph of groups G ′ the edge e together with the vertex e(−1) and associated edge and
vertex groups.

Removing from G ′ all edges of the form described above, we obtain some graph of groups G ′′ whose
fundamental group F ′′ is isomorphic to F and satisfies the hypotheses of Theorem 1. Consequently, there
exists a prime p such that Heϕ+e is p

′-isolated in Fe(1) = Fv and Heϕ−e is p′-isolated in Fe(−1) for every
edge e of G ′′.
Take some vertex w of G distinct from v and such that F satisfies the relation H �= Fw; by the

hypotheses of the theorem, at least one such vertex exists. Then the edge e = (v, w) of G ′ remains as
we pass to G ′′, and since the embeddings of Fv and Fw into F send Heϕ+e and Heϕ−e onto H, we infer
that H is p′-isolated in Fv and Fw. The proof of Theorem 2 is complete.

8. Proof of Theorem 3

If for each e ∈ E at least one of the indices [Fv : Heϕ+e] and [Fv : Heϕ−e] exceeds 2 then the claim
follows from Theorem 1. Assume that [Fv : Heϕ+e] = 2 and [Fv : Heϕ−e] = 2 for some e ∈ E. Take
xe ∈ Fv \Heϕ+e and ye ∈ Fv \Heϕ−e. Since [Fv : Heϕ+e] = [Fv : Heϕ−e] = 2, we see that x2e ∈ Heϕ+e
and

[Heϕ−e : Heϕ+e ∩Heϕ−e] ≤ 2.

Hence, t−1e x2ete ∈ Heϕ−e, t−1e x4ete ∈ Heϕ+e ∩Heϕ−e, and t−2e x4et2e ∈ Heϕ−e. Therefore, U = sgp
{
t−1e x2ete,

t−2e x4et2e, y
}
is a finitely generated subgroup of Fv and so satisfies a nontrivial identity that we may assume

to be of the form (3) by Proposition 1.
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Put

S1 = sgp{xe, ye, te},
g1 = w

(
ye, t

−1
e xete, t

−2
e xet

2
e

)

= w0
(
t−1e xete, t

−2
e xet

2
e

)
yε1e w1

(
t−1e xete, t

−2
e xet

2
e

)
. . . yεne wn

(
t−1e xete, t

−2
e xet

2
e

)
.

By Proposition 1, for each r ∈ {0, . . . , n} we have
wr
(
t−1e xete, t

−2
e xet

2
e

) ∈ {t−1e x±1e te, t−2e x±1e t2e,
(
t−1e xet

−1
e x

−1
e t
2
e

)±1}
.

Since xe ∈ Fv \Heϕ+e and ye ∈ Fv \Heϕ−e, the above expression for g1 is reduced.
Take an odd prime r and some homomorphism ρ of S1 onto a finite r-group. Since (r, 4) = (r, 2) = 1,

the containments t−1e x2ete ∈ U and t−2e x4et2e ∈ U combined with Proposition 2 imply that
(
t−1e xete

)
ρ ∈ Uρ

and
(
t−2e xet2e

)
ρ ∈ Uρ. Since U satisfies (3), this implies that g1ρ = 1. Thus, the subgroup S1 and its

element g1 enjoy the following properties:

(a1) in F the element g1 has a reduced form of nonzero length beginning with t
−1
e and ending

with te;
(b1) for every prime r and every homomorphism ρ of S1 onto a finite r-group the relation r �= 2

implies that g1ρ = 1.

Take f ∈ E \ {e}, δ = ±1, xf ∈ Fv \Hfϕδf , and a prime q such that xqf ∈ Hfϕδf and at least one
of the indices [Fv : Hfϕ+f ] and [Fv : Hfϕ−f ] exceeds 2. Then, according to Proposition 8 applied to the
HNN-extension

Fv(f) =
〈
Fv, tf ; t

−1
f (Hfϕ+f )tf = Hfϕ−f

〉

and xf , there is a finitely generated subgroup S2 ≤ Fv(f) with g2 ∈ S2 enjoying the properties:
(a2) in Fv(f) the element g2 has a reduced form of nonzero length beginning with t

−1
f and ending

with tf ;
(b2) for every prime s and every homomorphism σ of S2 onto a finite s-group the relation s �= q

implies that g2σ = 1.

Put g = [g1, g2]. Since e �= f , the expression for g in F is reduced and of nonzero length. Consequently,
g �= 1 by Proposition 7 and q = 2 by Proposition 3. Thus, all associated subgroups of the HNN-
extension F are 2′-isolated in Fv.

9. An Example

Consider the rank 2 free group Φ = 〈a, b〉. Given i ≥ 1, denote by γiΦ the ith term of the lower
central series of Φ. Put Ni = Φ/γi+1Φ. Choose any nontrivial element ci in γiΦ/γi+1Φ and take the
group

D = 〈Ni (i ≥ 1); [Ni, Nj ] = 1, ci = cj (i �= j)〉
which amounts to the quotient of the direct product of the groups Ni for i ≥ 1 with respect to the normal
closure of the set of elements of the form cic

−1
j for i �= j. It is not difficult to show that, since ci for each

i ≥ 1 lies in the center of Ni and generates in Ni an infinite cyclic subgroup, the identity mapping of the
generators of Ni to D for all i extends to an isomorphic embedding, and so we may assume that each Ni
is a subgroup of D [15]. These embeddings carry all ci to the same c ∈ D.
Since the direct product of the nilpotent groups Ni for i ≥ 1 is obviously a locally nilpotent group,

the quotient D inherits the same property. In particular, D locally satisfies a nontrivial identity and is
a locally residually nilpotent group.
Verify that D does not satisfy any nontrivial identity. Indeed, take an arbitrary nontrivial identity

w(x1, . . . , xn). Since Φ violates w, there are f1, . . . , fn ∈ Φ with w(f1, . . . , fn) �= 1. Since
⋂
i≥1 γiΦ = 1,

see [16], it follows that w(f1, . . . , fn) /∈ γi+1Φ for some i ≥ 1, and so w(f1εi, . . . , fnεi) �= 1, where
εi : Φ → Ni is a natural homomorphism. Consequently, Ni violates w and, since Ni embeds into D, so
does the latter.
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Verify that for each homomorphism of D onto a nilpotent group the image of c comes out trivial;
consequently, D is not a residually nilpotent group. Suppose that σ is a homomorphism of D onto
a nilpotent group of class k and denote by σk+1 the restriction of σ to Nk+1 and by εk+1 : Φ → Nk+1
the natural homomorphism. Since Φεk+1σk+1 is of nilpotency class at most k, we see that γk+1Φ ≤
ker εk+1σk+1. Since c = ck+1 ∈ γk+1Φ/γk+2Φ, this implies that cσ = cσk+1 = 1, as required.
Acknowledgments. The author is grateful to his advisor E. V. Sokolov for valuable advice and

a series of remarks.
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