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1. Introduction

The theory of construction of general integrals has a long history stemming from the fundamental
works by Monge [1] and Darboux [2, 3]. Even though the construction of general solutions to partial
differential equations presents fundamental difficulties, the integrals play an essential role at least because
their combination with other methods facilitates the study of the problems posed for these equations
(see [4]).
Using the theory of characteristics in this article, we construct general integrals for some nonstrictly

hyperbolic equations. The construction of a general integral of an equation is not connected to some
problems (initial-value, boundary-value, or any other). The structure of general solutions depends only
on the equation under study, and the solution itself is in a sense equivalent to the equation. In our earlier
articles [5, 6], we used representations of general integrals for some classes of quasilinear equations to solve
some initial-value and characteristic problems. Note the articles by Gvazava [7, 8] and Bitsadze [9], in
which some general representations of solutions are constructed for a few classes of quasilinear equations
on using the method of characteristics. We consider the new class of equations whose coefficients of
the second derivatives contain squares of the first derivatives of the sought solution; both families of
characteristics depend on an unknown function. This class of equations is noticeable also for the fact
that it admits parabolic degeneration that depends on the unknown solution. One of the equations of
this class admits order degeneration either. The above properties of the class of equations hamper the
construction of the general integrals as well as the statement and study of the characteristic problem.
In the present article we were able to construct general integrals in the form of the sum of two arbitrary
functions for some equations from this class. Also, we formulate an analog of the Asgeirsson principle
and study the characteristic problem for a whole class of equations. Since no general theory of nonlinear
equations is available, studying some particular classes and particular equations is valuable, as this widens
the class of quasilinear equations for which the general integrals are constructed and the various problems
are posed correctly.
Here we present a systematic description of construction of the integrals on using the method of

characteristics as well as application of the integrals to solving the nonlinear characteristic problem.

2. Construction of General Integrals

1. On the plane of variables x and y, we consider the class of nonstrictly hyperbolic quasilinear
equations

L(u) = Φ(x, y, u, ux, uy), (1)
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where
L(u) ≡ (u2y − uy

)
uxx − (2uxuy + uy − ux − 1)uxy +

(
u2x + ux

)
uyy (2)

and Φ is in general a given function of five variables, defined and continuously differentiable on the plane
of the independent variables (x, y) and defined for all finite values of u, ux, and uy. The characteristic
roots

λ1 = −p+ 1
q

, λ2 = − p

q − 1 (3)

of the operator L depend on the derivatives ux and uy of the unknown solution and, at each point, define
two characteristic directions (here and below we use the Monge notation: p ≡ ux and q ≡ uy). These
directions can coincide, which is expressed by the condition

p− q + 1 = 0. (4)

For the solutions satisfying (4), the equation under study is parabolic. Consequently, condition (4)
determines the class of parabolic solutions to (1). If condition (4) is not met everywhere for some concrete
solution, then (1) is hyperbolic along the latter and the condition

p− q + 1 �= 0 (5)

determines the class of hyperbolic solutions to (1). In the case when condition (4) holds only at isolated
points or on lines, (1) is an equation of hyperbolic type with parabolic degeneration. Therefore, (1)
belongs to the class of nonstrictly hyperbolic equations.
Relation (1) describes a rather wide class of equations. It is well known (see [3]) that, to construct

a general integral, it suffices to get some intermediate integrals that, in turn, are obtained on using the
first integrals for the characteristic differential relations and characteristic invariants.
The differential relations (see, for example, [3, 7]) corresponding to the characteristic root λ1 have

the form ⎧
⎪⎨

⎪⎩

(p+ 1) dx+ q dy = 0,

dp− p
q−1 dq − Φ

q2−q dx = 0,
du = p dx+ q dy.

(6)

The differential relations corresponding to the characteristic root λ2 can be written as follows:
⎧
⎪⎨

⎪⎩

p dx+ (q − 1) dy = 0,
dp− p+1q dq − Φ

q2−q dx = 0,
du = p dx+ q dy.

(7)

Note in particular that under condition (4) these two systems of characteristics coincide becoming
a sole system, which is typical for parabolic degeneration.
Since each of the systems (6) and (7) consists of three equations and contains the five variables x, y,

u, p, and q, we should not treat them as ordinary systems of differential equations; but we can pose the
problem of constructing the first integrals for them.
Denote the first integral for (6) by ξ(x, y, u, p, q) = const. From dξ = 0 and (6) we obtain

{
M1(ξ) := ξx − p+1q ξy − ξu + Φ

q2−q ξp = 0,

M2(ξ) := pξp + (q − 1)ξq = 0.
(8)

These two equations are linearly independent and compatible, but they do not define a complete system
(see [10]). To make this system complete, extend it with the use of the Poisson bracket:

M3(ξ) :=M1(M2(ξ))−M2(M1(ξ)) = ξy = 0. (9)
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Further application of the Poisson bracket to the extended system yields the new equations which can
be represented as linear combinations of the previous equations:

{
M4(ξ) :=M1(M3(ξ))−M3(M1(ξ)) = 0,
M5(ξ) :=M2(M3(ξ))−M3(M2(ξ)) = 0. (10)

In case the homogeneous system constituted by five equations (8)–(10) is linearly independent, it
does not admit nontrivial solutions. Consequently, the first integral for (6) cannot depend on x, y, p, q,
and u; so it must be constant. In these cases, it is impossible to construct an integral for (1) by using
characteristics. Similar arguments can be carried out for (7).
From the whole class (1), we will consider the particular equations for which it is possible to construct

general integrals by using characteristics.

2. Start with equation (1) for Φ ≡ 0; i.e.,
(
u2y − uy

)
uxx − (2uxuy + uy − ux − 1)uxy +

(
u2x + ux

)
uyy = 0. (11)

Theorem 1. The general integral for (11) is representable as

f(u+ x) + g(u− y) = x, (12)

where f and g are arbitrary twice continuously differentiable functions on R1.

Proof. For equation (11), the system
{
(p+ 1) dx+ q dy = 0,

(1− q) dp+ p dq = 0 (13)

corresponds to the characteristic root λ1 and the system defined by the root λ2 has the form
{
p dx+ (q − 1) dy = 0,
q dp− (p+ 1) dq = 0. (14)

As in (6) and (7), we add the compatibility equation

du = p dx+ q dy (15)

to both systems (13) and (14). Let us start with (13). Introducing the notation ξ(x, y, u, p, q) for the
first integral of (13), we obtain the system of two linear differential equations of the first order:

{
L1(ξ) := ξx − ξu − p+1q ξy = 0,
L2(ξ) := ξp +

q−1
p ξq = 0.

(16)

To make (16) complete in the Jacobi sense, extend (16) with the Poisson bracket

L3(ξ) := L1(L2(ξ))− L2(L1(ξ)) = p− q + 1
q2(1− q)ξy = 0. (17)

As we can see, (17) is linearly independent of the equations of (16). Further application of the
Poisson bracket to the extended system yields the new equation representable as linear combinations of
the previous equations:

L4(ξ) := L1(L3(ξ))− L3(L1(ξ)) ≡ 0, L5(ξ) := L2(L3(ξ))− L3(L2(ξ)) ≡ 0.
Consequently, the homogeneous system Lk(ξ) = 0, k = 1, 2, 3, where Lk are defined by (16) and (17),
is Jacobi complete. By the Jacobi Theorem (see [3]), since the system of three equations is complete;
it admits n− 3 different first integrals, where n is the number of variables. In our case n = 5; therefore,
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system (13), (15) has two, and only two, independent twice continuously differentiable first integrals
which can be easily obtained by direct integration of equations of the system. By integrating the second
equation of (13), we obtain the first integral

ξ1 =
p

1− q , (18)

and the second equation of (13) together with (15) defines the integral

ξ = u+ x. (19)

Studying (14) and (15) similarly, we conclude that the system also has exactly two independent twice
continuously differentiable first integrals determined explicitly:

η = u− y, η1 =
p+ 1

q
. (20)

Both ξ and ξ1 are the first integrals for (13), (15). Each function depending on ξ and ξ1 is also an integral
for the same system. By the similar arguments applied to (14), (15), we can conclude that each function
of η and η1 is an integral for the corresponding system. Hence, there exist pairwise functional correlations
between the characteristic invariants ξ, ξ1 and the invariants η, η1:

ξ1 = F (ξ), η1 = G(η), (21)

where F and G are arbitrary functions of the class C2(R1). Consequently, (11) admits exactly two
intermediate integrals presented in terms of characteristic invariants in form (21). By (18)–(20), in initial
variables they have the form

p

1− q = F (u+ x),
p+ 1

q
= G(u− y). (22)

Obtaining p and q from (22) and inserting the corresponding expressions into (15), we derive

du = F
G− 1
F +G

dx+
F + 1

F +G
dy.

Hence,
du− dy
G− 1 +

du+ dx

F + 1
= dx. (23)

Introduce the notations

1

G(u− y)− 1 ≡ g
′(u− y), 1

F (u+ x) + 1
≡ f ′(u+ x).

Using these in (23), we easily arrive at (12) by integrating the obtained relation.
Prove that (12) is a general integral for (11) if the arbitrary functions f and g belong to C2(R1).

Indeed, obtain f ′ and g′ from the system
{
(ux + 1)f

′(u+ x) + uxg′(u− y) = 0,
uyf

′(u+ x) + (uy − 1)g′(u− y) = 0, (24)

derived by differentiation of (12) with respect to x and y. Differentiating (24) leads to the system of
three equations for f ′′ and g′′:

(ux + 1)
2f ′′(u+ x) + uxxf ′(u+ x) + u2xg

′′(u− y) + uxxg′(u− y) = 0,
u2yf

′′(u+ x) + uyyf ′(u+ x) + (uy − 1)2g′′(u− y) + uyyg′(u− y) = 0,
(ux + 1)uyf

′′(u+ x) + uxyf ′(u+ x) + ux(uy − 1)g′′(u− y) + uxyg′(u− y) = 0,
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where the first derivatives f ′(u+x) and g′(u−y) are already defined from (24). If we determine f ′′(u+x)
and g′′(u−y) from arbitrary two equations of the last system and put them into the third equation, then
we obtain (11). Thus, the general integral for (11) has the form (12). The theorem is proven.

Remark. It is easy to see that the general integrals for (11) have the representation

f(u+ x) + g(u− y) = y, (25)

f(u+ x) + g(u− y) = u. Owing to arbitrariness of f and g, all these representations are equivalent.
3. Consider the equation containing the derivatives of the first order of the unknown function u on

the right-hand side:

L(u) = −1
y
p(p+ 1)(p− q + 1). (26)

Here L is defined by (2). Note first that the right-hand side of this equation with lower-order derivatives
is not bounded in the neighborhood of the line y = 0. In such case, the equation under consideration can
be classified as a nonlinear version of the Euler–Darboux equation (see [2, 11, 12]). If we rewrite (26) as
follows: yL(u) = −p(p+ 1)(p− q + 1); then we can see that on the line y = 0 the order of this equation
degenerates. Owing to these peculiarities, in the initial-value and characteristic problems there appear
the effects of coincidence of nonlinearity, order degeneration, and type degeneration (see [11]).

Theorem 2. The general integral for (26) is representable by the formula

f(u+ x) + g(u− y)− y2 = 0, (27)

where f and g are arbitrary twice continuously differentiable functions on R1.

Proof. For (26), the system

⎧
⎨

⎩

(p+ 1) dx+ q dy = 0,

yq(q − 1) dp− ypq dq + p(p+ 1)(p− q + 1) dx = 0,
du = p dx+ q dy

(28)

corresponds to the characteristic root λ1 = −p+1q and the system defined by the root λ2 = p
1−q has the

form ⎧
⎨

⎩

p dx+ (q − 1) dy = 0,
yq(q − 1) dp− y(p+ 1)(q − 1) dq + p(p+ 1)(p− q + 1) dx = 0,
du = p dx+ q dy.

(29)

For the first integral ξ(x, y, u, p, q) for (28), we obtain the two linear differential equations of the first
order: {

L1(ξ) := ξx − ξu − p+1q ξy + (p+1)(p−q+1)yq ξq = 0,

L2(ξ) := ξp +
q−1
p ξq = 0.

(30)

As in the case of (11), the construction of the first integrals for (30) is reduced to integration of some
complete system (in the Jacobi sense). To make the system complete, extend it by the Poisson bracket:

L3(ξ) := L1(L2(ξ))− L2(L1(ξ)) = p− q + 1
p(p+ 1)2

(ξx − ξu) = 0.

Since we consider the hyperbolic case (condition (5) holds), L3(ξ) can be written as

ξx − ξu = 0. (31)

As we can see, (31) is linearly independent of the equations of (30). Further application of the
Poisson bracket to the extended system yields a new equation representable by linear combinations of
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the previous equations. Consequently, the homogeneous system Lk(ξ) = 0, k = 1, 2, 3, where Lk are
defined by formulas (30) and (31), is Jacobi complete.
Rewrite the system in equivalent simplified form:

⎧
⎪⎨

⎪⎩

X1(ξ) := ξx − ξu = 0,
X2(ξ) := ξp +

(q−1)y
p(p−q+1)ξy = 0,

X3(ξ) := ξq +
y

p−q+1ξy = 0

(32)

and introduce the new group of variables zk, k = 1, 2, . . . , 5, as follows:

z1 = x, z2 = y, z3 = u+ x, z4 = p, z5 = q.

In terms of zk (32) takes the form
⎧
⎪⎨

⎪⎩

Y1(ξ) := ξz1 = 0,

Y2(ξ) := ξz4 +
(z5−1)z2
z4(z4−z5+1)ξz2 = 0,

Y3(ξ) := ξz5 +
z2

z4−z5+1ξz2 = 0.

(33)

The first equation of (33) shows that the integral ξ is independent of z1, so four of the arguments remain.
The second equation is equivalent to the following system of ordinary differential equations of the first
order:

dz4

1
=
z4(z4 − z5 + 1) dz2
(z5 − 1)z2 =

dz3

0
=
dz5

0
,

for which the two integrals z3 = c and z5 = c are obtained directly. The third integral z4z2
z4−z5+1 = c can

be derived from the equation
dz4

z4(z4 − z5 + 1) =
dz2

(z5 − 1)z2 ,

where z5 plays the role of a parameter.
After the new regular transformation of the variables

t1 = z1, t2 =
z4z2

z4 − z5 + 1 , t3 = z3, t4 = z4, t5 = z5,

the equations Y2 = 0 and Y3 = 0 take the form

R2(ξ) =
∂ξ

∂t4
= 0, R3(ξ) =

∂ξ

∂t5
= 0.

Thus, we established that t2 =
z4z2

z4−z5+1 is the first integral for the system under consideration and, in
terms of the initial variables, the latter can be represented as ξ1 =

py
p−q+1 .

Consequently, the system has two, and only two, independent twice continuously differentiable first
integrals, both of which are presented in explicit form by the formulas

ξ = u+ x, ξ1 =
py

p− q + 1 . (34)

These first integrals can be obtained directly from the system of differential characteristic relations.
However, we carried out complete analysis of the characteristic system in order to make sure that it does
not have any other first integrals.
Consider (29) for the second root λ2. For the first integral η for this system, we have the system of

two equations {
L1(η) :=

1−q
p ηx + ηy + ηu − p−q+1y ηq = 0,

L2(η) := ηp +
q
p+1ηq = 0.

(35)
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Extending (35) by the Poisson bracket to a Jacobi complete system and simplifying the obtained equa-
tions, we obtain ⎧

⎪⎨

⎪⎩

X1(η) := ηx = 0,

X3(η) :=
qy

(p+1)(p−q+1)(ηy + ηu) + ηp = 0,

X2(η) :=
y

p−q+1(ηy + ηu)− ηq = 0.
(36)

System (36) is integrated in much the same way as (32). It can be proved that it also has two, and only
two, twice continuously differentiable first integrals

η = u− y, η1 =
p+ 1

p− q + 1y. (37)

Every function of two variables ξ and ξ1 satisfies system (28). Similarly, the general integral for (29)
is representable by an arbitrary function of η and η1. Hence, there exist functional correlations between
the characteristic invariants ξ and ξ1 and the invariants η and η1, which we write as follows:

ξ1 =
1

2
f ′(ξ), η1 =

1

2
g′(η). (38)

Here f and g are arbitrary functions in C2(R1). Consequently, (26) admits exactly two intermediate
integrals presented in terms of the characteristic invariants (38). These intermediate integrals in initial
variables have the form

y
∂u

∂x
=
1

2
f ′(u+ x)

(
∂u

∂x
− ∂u

∂y
+ 1

)
, (39)

y

(
∂u

∂x
+ 1

)
=
1

2
g′(u− y)

(
∂u

∂x
− ∂u

∂y
+ 1

)
. (40)

We follow the classical scheme of construction of general integrals for (26) using the intermediate
integrals (see, for example, [11]). From (39) and (40), we obtain the values

p = − f ′(ξ)
f ′(ξ) + g′(η)

, q = − g′(η)
f ′(ξ) + g′(η)

and then insert them into (15):

du = − f ′(ξ)
f ′(ξ) + g′(η)

dx+
g′(η) + 2y
f ′(ξ) + g′(η)

dy.

By integrating the above equality, we easily arrive at

f(ξ) + g(η) = y2, (41)

which, by the first relations from (34) and (37), takes form (27); i.e., it is equivalent to the representation
of the general integral for (26).
By analogy to the case of (11), we can show that if we differentiate (27) twice and eliminate the

arbitrary functions f and g and their derivatives; then we obtain equation (26); i.e., (27) is indeed the
general integral for (26), and Theorem 2 is proven completely.

3. Some Properties of Equation (1)

Asgeirsson’s Mean Value Theorem is valid for hyperbolic equations (see [13]). For example, for the
wave equation uxx − uyy = 0, it can be stated as follows: The sums of the values of the solution on the
opposite vertices of an arbitrary characteristic quadrangle are equal. Equation (1) has its own nonlinear
analog of this property. The latter can be easily deduced from the invariants of (1). Denote the vertices
of an arbitrary characteristic curvilinear quadrangle by (xi, yi), i = 1, . . . , 4. (The opposite sides of this
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“quadrangle” are intervals from one family of characteristics.) We denote by ui, i = 1, . . . , 4, the values
of the solution at (xi, yi), i = 1, . . . , 4. The characteristic quadrangle is constituted by intersections of
the two pairs of the characteristic lines. One pair consists of the two nonintersecting lines that belong
to one family of characteristics for the root λ1; denote them by λ1a and λ1b. The second pair consists of
two nonintersecting lines of the family for the root λ2; denote them by λ2a and λ2b.
For clarity, observe that the lines λ1a and λ2a intersect at (x1, y1), the lines λ1a and λ2b intersect

at (x2, y2), the lines λ1b and λ2b intersect at (x3, y3), and the lines λ1b and λ2a intersect at (x4, y4).
Consequently, (x1, y1) and (x2, y2) lie on the characteristic λ1a. Hence, u1+x1 = u2+x2 at these points.
Similarly, since (x3, y3) and (x4, y4) lie on the characteristic λ1b; therefore, u3 + x3 = u4 + x4 at these
points. At the same time, (x1, y1) and (x4, y4) lie on the characteristic λ2a; hence, u1 − y1 = u4 − y4.
Similarly, u2 − y2 = u3 − y3, since (x2, y2) and (x3, y3) lie on the characteristic λ2b.
The characteristic quadrangle been taken arbitrarily, by eliminating u1, u2, u3, and u4 in the obtained

relations, we conclude that the sums of abscissas and ordinates of the opposite vertices of an arbitrary
characteristic quadrangle are equal: x1 + x3 + y1 + y3 = x2 + x4 + y2 + y4. This is the nonlinear analog
of Asgeirsson’s mean value principle. This simple property, together with other methods, essentially
facilitates the study of the problems stated for (1).

Remark. Observe that in the particular case of (11) a stronger property is valid too. Namely, the
sums of the abscissas and ordinates of the opposite vertices are equal:

x1 + x3 = x2 + x4, y1 + y3 = y2 + y4. (42)

4. The Goursat Problem for Equation (11)

Observe that the linear statements of the characteristic problems are not valid in the case of non-
linear equations. The main reason for this is dependence of the characteristic families on the unknown
solution. In this case we should prescribe how the data will be provided. There are various options for
that. For example, we can specify some combinations of the solution or its derivatives on the unknown
characteristics which will be determined together with the solution.
Consider the following nonlinear characteristic Goursat problem:

The Goursat problem (the general case). Let the Jordan arcs γ and δ, starting at the common
point (x0, y0), strictly monotone, smooth, and nonclosed, be given in explicit form by the functions
y = ϕ(x) and y = ψ(x), where ϕ ∈ C2[x0, x1] and ψ ∈ C2[x0, x2]. Without loss of generality, we assume
that x2 > x1. Let ϕ and ψ satisfy the conditions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ′(x) �= 0;−1, x ∈ [x0, x1],
ψ′(x) �= 0;−1, x ∈ [x0, x2],
ϕ(x) �= ψ(x), x ∈ (x0, x1],
ϕ′(x) �= ψ′(x), x ∈ (x0, x1].

(43)

We need to find a solution u(x, y) to (11) and its domain for a given value u0 of u(x, y) at the point
(x0, y0) if γ is a characteristic from the family for the root λ1 and δ is a characteristic from the family
for the root λ2.
Suppose that the above defined functions ϕ and ψ, together with (43), satisfy the following conditions:

the functional equations

u0 + x0 − x− ϕ(x) = z, u0 − ψ(x0) + x+ ψ(x) = t
are uniquely solvable for x on [x0, x1] and [x0, x2] respectively and their solutions

x = τ(z), z ∈ [u0 − ϕ(x0), u0 + x0 − x1 − ϕ(x1)],
x = ν(t), t ∈ [u0 + x0, u0 + x2 − ψ(x0) + ψ(x2)],
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are twice continuously differentiable. We will construct a solution to the Goursat problem and find the
domain of the solution.
By condition of the problem, γ belongs to the family of characteristics for the root λ1. Thereby,

everywhere on this arc the value of the invariant u+ x is constant; it is the same as at (x0, y0); i.e.,

(u(x, ϕ(x)) + x)|γ = u0 + x0.
It is easy to define the values of the characteristic invariant u− y from another family on the same arc;
i.e.,

(u(x, ϕ(x))− y)|γ = u0 + x0 − x− ϕ(x).
Using these values, from the representation of the general integral (25), we obtain

f(u0 + x0) + g(u0 + x0 − x− ϕ(x)) = ϕ(x). (44)

Similarly, since δ belongs to the family of characteristics for the root λ2 by the condition of the problem;
everywhere on this arc the invariant u− y is constant. Consequently,

(u(x, ψ(x))− y)|δ = u0 − y0.
Using this, we can define the value of the characteristic invariant u+ x from the first family on the same
arc:

(u(x, ψ(x)) + x)|δ = u0 − y0 + x+ ψ(x).
From (25) we derive

f(u0 − y0 + x+ ψ(x)) + g(u0 − ψ(x0)) = ψ(x). (45)

To determine the arbitrary functions f and g, we obtain the system consisting of (44) and (45). Put

u0 + x0 − x− ϕ(x) = z, (46)

u0 − y0 + x+ ψ(x) = t (47)

and define x as a function of z of (46). By assumptions, this can be done and (46) has the inverse x = τ(z).
Similarly, define x as a function of t from the functional equation (47); i.e., x = ν(t). Consequently,

f(u0 + x0) + g(z) = ϕ(τ(z)), z ∈ [u0 − ϕ(x0), u0 + x0 − x1 − ϕ(x1)], (48)

f(t) + g(u0 − ψ(x0)) = ψ(ν(t)), t ∈ [u0 + x0, u0 + x2 − ψ(x0) + ψ(x2)]. (49)

Inserting in (48) and (49) u − y and u + x instead of z and t and taking the general integral for the
equation into account, we obtain the integral for the problem in the form

ψ(ν(u+ x)) + ϕ(τ(u− y))− f(u0 + x0)− g(u0 − y0) = y.
Since

f(u0 + x0) + g(u0 − y0) = y0,
which follows from the representation of the general integral taken at (u0, y0); we finally arrive at

ψ(ν(u+ x)) + ϕ(τ(u− y)) = y + y0. (50)

Thus, solving the Goursat problem reduces to solving (50). Integral (50) for the characteristic problem
enables us to define all characteristics starting at the points of the characteristics ϕ(x) and ψ(x).
First, consider the characteristics from the family of the root λ2 which start from the points of γ.

Take a point (α,ϕ(α)) on γ arbitrarily. At this point, the value of the solution u is known: u(α,ϕ(α)) =
u0 + x0 − α. Consequently, we know the value of the invariant u − y of the family of characteristics for
the root λ2. Along the characteristic of the family of λ2 starting at the point (α,ϕ(α)), the invariant of
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the family of characteristics for the root λ2 is constant and equal to u0 + x0 − ϕ(α) − α. Denote this
characteristic by δ(α). Then

(u+ x)|δ(α) = u− y + y + x = u0 + x0 − α− ϕ(α) + y + x.

Inserting the value of the combination of u+x and u− y into (50), which is the integral for the problem,
we arrive at the equation for the characteristic curve δ(α) in implicit form:

ψ(ν(u0 + x0 − α− ϕ(α) + x+ y)) + ϕ(α) = y + y0.

By similar arguments, we come to the equation for the characteristic curve γ(β) from the family for the
root λ1, starting at (β, ψ(β)):

ψ(β) + ϕ(τ(u0 − y0 + β + ψ(β)− x− y)) = y + y0.

Remark. Integral (50) can be represented in equivalent form. For this, rewrite (46) and (47) as
follows:

u0 + x0 − τ(z)− ϕ(τ(z)) = z, u0 − y0 + ν(t) + ψ(ν(t)) = t.
Hence,

ϕ(τ(z)) = u0 + x0 − τ(z)− z, ψ(ν(t)) = t− u0 + y0 − ν(t).
Put these expressions into (50) and after some transformations obtain

τ(u− y) + ν(u+ x) = x+ x0. (51)

It is easy to verify that the solution of the Goursat problem, implicitly defined by (51), satisfies the
conditions of the problem.

The Goursat problem for rectilinear characteristics. Consider the case when ϕ and ψ are
linear functions:

ϕ = ax+ b, ψ = cx+ d. (52)

By (43), require that the following conditions are met:

a �= 0;−1, c �= 0;−1, a �= ±c. (53)

Let us state the problem: Find a solution u(x, y) to (11) by the given value u0 at the point (x0, y0) =(
d−b
a−c ,

ad−bc
a−c
)
and define the domain of u(x, y) if ϕ(x), x > x0, is a characteristic from the family for the

root λ1 and ψ(x), x > x0, is a characteristic from the family for the root λ2.

Theorem 3. Let (52) satisfy (53). Then there exists a solution to the above characteristic problem
for (11) in explicit form:

u =
(1 + a)c

a− c x− 1 + c
a− cy +

(a+ c)u0 + bc+ d

a− c (54)

defined in the domain bounded by the following four characteristics: ϕ, ψ, and

y = cx+ b+ aα− cα, (55)

y = ax+ d− aβ + cβ. (56)

949



Proof. Use the integral for the problem written as in (51). From (46) τ is obtained by inversion of
u0 + x0 − x− ϕ(x). In our case, u0 + x0 − x− ax− b = z; whence

x =
u0 + x0 − b− z

1 + a
≡ τ(z).

Similarly, from (47) we have

ν(t) ≡ t− d− u0 + y0
1 + c

.

Using the obtained expressions in (51), we obtain the integral for the problem

u0 + x0 − b− (u− y)
1 + a

+
u+ x− d− u0 + y0

1 + c
= x+ x0;

whence we find the sought function in explicit form (54). By repeating the above arguments for con-
structing characteristic curves of both families in the general case, the equations of these curves can be
easily derived; in our case they are straight lines (55) and (56). We can see that the characteristics from
one family (ϕ and (55); ψ and (56)) are parallel straight lines. Hence, the domain of the solution to
the problem does not contain singular points, which is not excluded in the general case. The theorem is
proven.

Corollary. In the case of ϕ and ψ being linear together with (42), the same property as for the
wave equation holds:

u(x1, y1) + u(x3, y3) = u(x2, y2) + u(x4, y4). (57)

Example 1. Consider the case when the characteristics

ϕ(x) = x+ 1, x ∈ [0, α], ψ(x) = 2x+ 1, x ∈ [0, β],
in the Goursat problem start at the common point (0, 1) where u(0, 1) = u0.
In this case, the conditions of Theorem 3 are met and the solution of the problem has the form

u = 3y − 4x + u0 − 3. The domain of the solution is the characteristic quadrangle bounded by the
segments of straight lines

y = x+ 1, y = 2x+ 1, y = 2x− α+ 1, y = x+ β + 1.

It is easy to notice that at the vertices of the characteristic quadrangle A(0, 1), B(α, α+1), C(α+β, α+
2β + 1), and D(β, 2β + 1) an analog of Asgeirsson’s Theorem for (11) holds: the sums of abscissas of
the opposite vertices A, C and B, D are equal; the sums of ordinates of the opposite vertices are equal;
and (57) holds together with (42).

Rectilinearity of characteristics is not necessary for existence of a regular solution to the Goursat
problem for (11), which the following example justifies.

Example 2. Let the functions ϕ(x) = x + 2, x ∈ [2, x1], and ψ(x) = x2, x ∈ [2, x2], start at the
common point (2, 4) and u(2, 4) = 4.
As we can see, (43) holds and the solution to the problem has the form u = y−2x+1+√4y − 4x+ 1.

As for the families of characteristic curves, on the one hand, it is a family of parallel straight lines starting
at points of the parabola y = x2, x ∈ [2, x2], and on the other hand, it is a family of branches of the
parabolas starting at the points of y = x + 2, x ∈ [2, x1]. Hence, a regular solution to the problem is
determined in the curvilinear quadrangle bounded by the curves

y = x+ 2, y = x2, y = x+ x22 + x2 + 1−
√
x22 + x2,

√
17− 8x1 + 4x+ y = 2x− 2x1 + 5.
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