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Abstract: We prove that a measurable mapping of domains in a complete Riemannian manifold induces
an isomorphism of Sobolev spaces with the first generalized derivatives whose summability exponent
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Introduction

This article can be regarded as a natural continuation of [1–10]. There are various proofs of the
theorem that a measurable mapping on the Euclidean space Rn [1–5] or a Carnot group G [6–8], which
induces the isomorphism of some spaces of differentiable functions by the change-of-variables formula,
coincides with a quasiconformal mapping almost everywhere.
The study of a similar problem was started in [9] for the measurable mappings of domains of Rie-

mannian manifolds inducing the isomorphism of Sobolev classes with the first generalized derivatives.
A complete solution of the problem discussed in [9] appears in the several articles combined: In [10] this
problem is solved for the Sobolev spaces of functions whose summability exponent differs from the topo-
logical dimension of the manifold. This article includes a complete solution of the problem in the case
that the summability exponent of functions in the Sobolev space coincides with the topological dimension
of the Riemannian manifold.
The method of the present article is a substantial modification of the arguments of [5] which is based

on the results of [4, 9, 10]. The main objects of study, the class IL1p of mappings of Riemannian manifolds,
was introduced in [10].

Definition 1. Take two domains D ⊂ M and D′ ⊂ M′ in two Riemannian manifolds M and M′ of
the same topological dimension n ≥ 2. Say that a measurable mapping ϕ : D → D′ defined a.e. in D is
of class IL1p with p ∈ [1,∞) whenever ϕ induces the composition operator in Sobolev spaces,

ϕ∗ : L1p(D
′) ∩ C∞(D′)→ L1p(D), ϕ∗(f) = f ◦ ϕ, f ∈ L1p(D′) ∩ C∞(D′), (1)

so that
(1) K−1

∥
∥f | L1p(D′)

∥
∥ ≤ ∥∥ϕ∗(f) | L1p(D)

∥
∥ ≤ K∥∥f | L1p(D′)

∥
∥ for all f ∈ L1p(D′) ∩ C∞(D′), where K is

a constant independent of the choice of f ;
(2) ϕ∗

(

L1p(D
′) ∩ C∞(D′)) is dense in L1p(D).

As shown in [6, 10], item (2) of Definition 1 is independent of item (1).
This article gives a full description of the mappings of class IL1n, where n is the topological dimension

of M and M′; i.e., we obtain a full description of the measurable mappings of domains on Riemannian
manifolds which induce, in the sense of Definition 1, isomorphisms of the Sobolev spaces L1n. The case
p �= n is studied in [10], and the general scheme is explained in [9]. The following theorem is the main
result of this article. The definitions of the main concepts reside after its statement.
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Theorem 2 [9]. Take two domains D ⊂ M and D′ ⊂ M′ in two Riemannian manifolds M and M′
of the same topological dimension n ≥ 2. Assume that M′ is a parabolic manifold. A measurable
mapping ϕ : D → D′ is of class IL1n if and only if ϕ coincides a.e. with some quasiconformal mapping
Φ : D \ {xinv} → M for which the domains Φ(D \ xinv}) and D′ are (1, n)-equivalent. Here xinv ∈ D is
some point of D.

Definition 3. A Riemannian manifold M′ is called parabolic whenever cap
(

K;L1n(M
′)
)

= 0 for
every compact set K ⊂M ′ and hyperbolic otherwise.
Recall that the capacity of a compact set K ⊂M ′ in L1n(M′) is the quantity

cap
(

K;L1n(M
′)
)

= inf
{‖∇u | Ln(M′)‖n : u ∈ C∞0 (M′) ∩ L1n(M′) and u ≥ 1 on K

}

.

Definition 4. A homeomorphism Φ : D → D′ of class W 1
n,loc is called quasiconformal whenever

there exists a constant K such that |DΦ(x)|n ≤ K|J(x,Φ)| a.e. in D, where DΦ(x) is the approximative
differential [11] of Φ, while J(x,Φ) = detDΦ(x).

Definition 5. Two open sets D1 and D2 are called (1, p)-equivalent whenever the restriction oper-
ators ri : L

1
p(D1 ∪D2)→ L1p(Di) with ri(f) = f |Di for f ∈ L1p(D1 ∪D2) are isomorphisms.

This definition coincides with the definition of (1, p)-equivalence in [10] and is equivalent to the
definition in [12].

Definition 6 (see [12]). Two open sets D1 and D2 are called (1, p)-equivalent whenever the restric-
tion operators ri : L

1
p(Di) → L1p(D1 ∩ D2) with ri(f) = f |D1∩D2 for f ∈ L1p(Di) are such that r

−1
2 ◦ r1

and r−11 ◦ r2 are isomorphisms.
In the Euclidean space, the theorem similar to Theorem 2 is proved in [1] on assuming that D′ is

a bounded domain. The properties of (1, p)-equivalent domains are studied in Euclidean spaces in [12],
and on Carnot groups in [13, 14].
The proof of Theorem 2 obtained in this article relies largely on the method of [5] with substantial

extensions, which are unavoidable in the current setup, because [5] deals with the Euclidean space Rn as
the domains D and D′ and with a suitable normed function space.
The classes IL1p of mappings with p �= n are thoroughly studied in [10], which also presents a detailed

history of this question and a comprehensive bibliography. For comparison with Theorem 2, let us state
the main result of [10].

Theorem 7 [10, Theorem 1]. Take two domains D ⊂ M and D′ ⊂ M′ in two Riemannian mani-
folds M and M′ of the same topological dimension n ≥ 2. For p ≥ 1 with p �= n, a measurable mapping
ϕ : D → D′ is of class IL1p if and only if ϕ coincides a.e. with some quasi-isometry Φ : D → Φ(D) for
which the domains Φ(D) and D′ are (1, p)-equivalent.

1. Preliminaries

1.1. Sobolev spaces on Riemannian manifolds. Fix a connected complete Riemannian manifold
M = (M, g), meaning a smooth manifoldM with a Euclidean metric gx chosen in each tangent space TxM
and varying smoothly from point to point.
The length of each absolutely continuous piecewise smooth curve γ : [a, b]→M is expressed as l(γ) =

∫ b
a |γ̇(t)| dt, where |γ̇(t)| =

√

gγ(t)(γ̇(t), γ̇(t)) is the length of the tangent vector γ̇(t) in the Euclidean

space Tγ(t)M with inner product gγ(t).
The metric d(x, y) on the Riemannian manifold M is defined as the greatest lower bound of the

lengths of piecewise smooth curves with endpoints x and y.
Take a domain D, meaning a connected open set, in M. Define Lp(D) as the space of functions

summable to power p ∈ [1,∞) as the collection of Lebesgue measurable functions with finite norm

‖f | Lp(D)‖ =
(∫

D

|f(x)|p dω
)1/p

<∞.
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Here dω is the standard volume element on M. If a measurable function u : D → R is summable on each
compact subset of D then u is called locally summable.
A locally summable function v : D → R is called the generalized derivative of a locally summable

function f : D → R along a vector field X on D and denoted by v = Xf whenever
∫

D

vψ dω = −
∫

D

fX∗ψ dω

for every compactly supported function ψ ∈ C∞0 (D). Here X∗ is the differential operator adjoint to the
differential operator X.
The homogeneous Sobolev space L1p(D) consists of locally integrable functions f : D → R with

generalized gradient ∇f ∈ Lp(D). The seminorm in L1p(D) is defined as

∥
∥f | L1p(D)

∥
∥ = ‖∇f | Lp(D)‖ =

(∫

D

|∇f(x)|p dω
) 1
p

,

where dω is the n-dimensional volume element, ∇f(x) is the generalized gradient of f at x ∈ D, and
|∇f(x)| is the length of ∇f(x) in the Euclidean space TxM with inner product gx.
The Sobolev space W 1

p (D) consists of locally summable functions with finite norm

∥
∥f |W 1

p (D)
∥
∥ = ‖f | Lp(D)‖+ ‖∇f | Lp(D)‖.

Say that f is of class W 1
p,loc(D), if f ∈W 1

p (V ) for every bounded subdomain V ⊂ D satisfying V ⊂ D.
Reshetnyak suggested an approach to Sobolev classes of functions with values in a metric space

of [15]. Consider a complete metric space (X, r) with a metric r on X and a domain D in a Riemannian
manifold M. Say that ϕ : D → X is of class W 1

p,loc(D;X) if the following conditions are met:

(A) for every z ∈ X the function [ϕ]z : x ∈ D �→ r(ϕ(x), z) is of class W 1
p,loc(D);

(B) the family of gradients (∇[ϕ]z)z∈X has a majorant in Lp,loc(D); i.e., there exists g ∈ Lp,loc(D)
independent of z such that |∇[ϕ]z(x)| ≤ g(x) for almost all x ∈ D.
If X =M′ is another Riemannian manifold with distance d′ then we obtain a definition of a mapping

of Sobolev class between different Riemannian manifolds and denote this class by W 1
p,loc(D;M

′). In this
case it is convenient to use an equivalent description of a mapping of Sobolev class; see [16, 17] for
instance. A mapping ϕ : D �→M′ belongs to W 1

p,loc(D;M
′) if and only if we can change ϕ on a negligible

set so that
(a) D � x �→ [ϕ]z(x) = d′(ϕ(x), z) belongs to Lp,loc(D) for every point z ∈M′;
(b) ϕ : D →M′ is absolutely continuous on the integral lines of the basis vector fields; i.e., for every

open bounded set U with U ⊂ D, every tuple Xj , for j = 1, . . . , n, of basis vector fields on U , and the
foliation Γk of U determined by Xk, the mapping ϕ is absolutely continuous on γ ∩ U ∈ Γk with respect
to the one-dimensional Hausdorff measure for dτ -almost all curves γ ∈ Γk, for k = 1, . . . , n, where γ is
the integral line exp tXk(x) of Xk beginning at x ∈ U , while the measure1) dτ on the foliation Γk equals
the contraction i(Xk) of the vector field Xk with the volume form ω;
(c) the derivative Xkϕ(x) =

∂
∂tϕ(exp tXk(x))|t=0 exists and belongs to Tϕ(x)M′ a.e. on some open

set U with U ⊂ D and, moreover, |Xkϕ| ∈ Lp(U) for all k = 1, . . . , n.
If ϕ : D �→M′ satisfies only conditions (a) and (b) then we say that ϕ belongs to ACL(D). For this ϕ

the derivatives Xkϕ ∈ Tϕ(x))M′ along the vector fields Xk, for k = 1, . . . , n, exist a.e. in U ; see [11, 16, 17].

1)More exactly, dτ is a measure on every smooth (n− 1)-dimensional surface S transversal to the foliation Γk.
The stated property means the following: Given two (n− 1)-dimensional surfaces S1 and S2 transversal to Γk such
that each curve of the part Γ′k of Γk meets both S1 and S2, the dτ -measure of Γ

′
k ∩ S1 is zero if and only if the

dτ -measure of Γ′k ∩ S2 is too. This clarification applies to [10, p. 64] as well.
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The matrix whose columns are the vectors Xkϕ(x) for j = 1, . . . , n determines the linear operator
Dϕ(x) : TxM �→ Tϕ(x)M

′ from the tangent space TxM into the tangent space Tϕ(x))M′ for almost all x
and is called the (formal) differential of ϕ at x. Denote by |Dϕ|(x) the norm of Dϕ(x). In the case
dimM = dim M ′ the Jacobian J(x, ϕ) = detDϕ(x) amounts to the determinant of the matrix Dϕ(x).
In this case the formal differential Dϕ(x) coincides a.e. with the approximative differential of ϕ (see [11]).
We have the following change-of-variables formula.

Proposition 8 [18]. Suppose that a mapping ϕ : A → M′ of a measurable set, where A ⊂ M, has
an approximative partial derivative on A. Then there exists a negligible set Σϕ ⊂ A such that the change-
of-variables formula in the Lebesgue integral for every nonnegative measurable function f : A→ R is of
the form ∫

A

f(x)|J(x, ϕ)| dω(x) =
∫

M′

( ∑

x∈ϕ−1(y)∩(A\Σϕ)
f(x)
)

dν(y). (2)

If ϕ has the Luzin N -property then we may assume that Σϕ is empty.

1.2. John domains and Poincaré’s inequality. In this subsection we apply the Poincaré in-
equality in John domains, as proved in [19] with the previous results established in [20–23]. Moreover,
below we need a certain special modification of this inequality; see Lemma 12.

Definition 9 [24]. A proper domain Ω ⊂ M is called a John domain of type Jα,β with 0 < α ≤ β,
in symbols Ω ∈ Jα,β , whenever there is x0 ∈ Ω such that we can connect each x ∈ Ω to x0 by a rectifiable
curve γ lying in Ω and satisfying the conditions: If s ∈ [0, l] is the natural parametrization of γ with
γ(0) = x and γ(l) = x0 then

l ≤ β and dist(γ(s), ∂Ω) ≥ αs

l
for all s ∈ [0, l].

Lemma 10 [10, Lemma 3]. Consider an arbitrary domain D in M and two balls B0 and B1 in D.
Then there is a John domain Ω � D of type Jα,β for suitable α and β depending on D and some ball
that includes both balls.

Remark 11. The proof of Lemma 3 of [10] yields the following property: If dist(∂D,B0) > 0 and
dist(∂D,B1) > 0 then for a sufficiently small parameter λ > 0 we can construct a complementary John
domain Ωλ such that Ω � Ωλ � D; namely, Ω and Ωλ are bounded and, moreover, dist(∂D,Ωλ) > 0
and dist(∂Ω,Ωλ) > 0. Indeed, the idea of the proof in [10] amounts to constructing a rectifiable curve Γ
in D connecting the centers of B0 and B1. The John domain Ω is constructed as the collection of balls
centered on Γ of radius at most 12 dist(Γ, ∂D). We can construct Ωλ as the union of concentric balls by

appropriately increasing the radii to any value in the interval
(
1
2 dist(Γ, ∂D),

3
4 dist(Γ, ∂D)

)

.

Lemma 12 [10, Lemma 4]. Consider a compactly embedded John domain U � M of type J(α, β)
and a measurable subset F ⊂ U of positive measure |F | > 0. If p ≤ q ≤ np

n−p with p < n then all

u(x) ∈W 1
p (U) with u|F = 0 satisfy

(∫

U

|u(x)|q dω
) 1
q ≤ |U |

1
q

|F | 1q
CU

(
α

β

)n

diam(U)1−
n
p
+n
q

(∫

U

|∇u(x)|p dω
) 1
p

;

furthermore, CU > 0 is independent of u, α, and β but depends on the constant in the doubling condition
2)

on U ; for details, see Section 6 of [19].

1.3. Properties of mappings of class IL1p. The following properties of mappings of class IL
1
p

are established in [10]:

2)Since U � M, there exist positive reals r0 and M such that |B(x, 2r)| ≤ M |B(x, r)| for all x ∈ U and
r ∈ (0, r0) (see [25] for instance).
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Proposition 13. (1)We may assume that the domain of ϕ is T =
⋃

k Tk with |D\T | = 0, where {Tk}
is an inclusion increasing sequence of bounded sets of positive measure consisting of points of positive
density [10, Lemma 13, Remarks 9, 10].

(2) The mapping ϕ is continuous on each Tk [10, Lemma 13].

(3) On T the mapping ϕ enjoys the Luzin N - and N −1-properties [10, Lemmas 9 and 17].
(4) ϕ : T → D′ is injective [10, Proposition 8].
(5) ϕ(T ) is dense in D′ and |D′ \ ϕ(T )| = 0 [10, Lemma 22].
The operator ϕ∗ of (1) extends to L1p(D) so that the properties of ϕ∗ are preserved.

Lemma 14 [10, Lemma 11]. Take two domainsD ⊂M andD′ ⊂M′ in two Riemannian manifoldsM
and M′ of the same topological dimension n ≥ 2. If a mapping ϕ : D → D′ lies in IL1p with p ∈ [1,∞)
then ϕ∗ : L1p(D′) ∩ C∞(D′) → L1p(D) extends by continuity to the operator ϕ̃

∗ : L1p(D′) → L1p(D) with
the following properties:

(1) We can evaluate ϕ̃∗ : L1p(D′)→ L1p(D) on the classes [f ] ∈ L1p(D′) as

ϕ̃∗([f ]) =
{
f ◦ ϕ for p ≤ n, where f is a representative of [f ],
f̃ ◦ ϕ for p > n, where f̃ is a continuous representative of [f ];

(2) K−1
∥
∥f | L1p(D′)

∥
∥ ≤ ∥∥ϕ̃∗(f) | L1p(D)

∥
∥ ≤ K∥∥f | L1p(D′)

∥
∥;

(3) ϕ̃∗ : L1p(D′)→ L1p(D) is an isomorphism.

2. The Space L1n,F

Henceforth we fix two Riemannian manifolds M and M′ of the same topological dimension n ≥ 2,
two domains D ⊂M and D′ ⊂M′ in M and M′, and a mapping ϕ : D → D′ of class IL1n. Every mapping
of this type enjoys the properties of Subsection 1.3.

Fix k0 ∈ N and a closed set F ⊂ Tk0 of positive measure without isolated points. We may assume
that F ⊂ BF , where BF ⊂ D is some ball. By Remark 14 of [10], we can also assume that ϕ : F → ϕ(F )
is a bi-Lipschitz mapping. This choice ensures that the image of ϕ(F ) inherits the properties of F .
Namely, ϕ(F ) is closed, lacks isolated points, and the measure of ϕ(F ) is positive.

Consider the collection of functions

L1n,F (D) =
{

u ∈ L1n(D) : u(x) = 0 for almost all x ∈ F
}

.

Observe that L1n,F (D) is a closed subspace of L
1
n(D) and the norm

∥
∥u | L1n,F (D)

∥
∥ =

∥
∥u | L1n(D)

∥
∥

makes L1n,F (D) a normed space, which is easy to show by using Lemma 12. Consequently, L
1
n,F (D) is

a Banach space.

By analogy, define the Banach space

L1n,ϕ(F )(D
′) =
{

v ∈ L1n(D′) : v(y) = 0 for almost all y ∈ ϕ(F )
}

.

Using Proposition 13 and Lemma 14, we can verify that f ∈ L1n,ϕ(F )(D′) if and only if f ◦ ϕ ∈ L1n,F (D).
Consequently,

ϕ∗F : L
1
n,ϕ(F )(D

′)→ L1n,F (D), ϕ∗F (f) = f ◦ ϕ, f ∈ L1n,ϕ(F )(D′)

is an isomorphism. The spaces L1n,F will enable us to establish the existence of a quasicontinuous repre-
sentative for ϕ.

Put DF = D \ F and D′F = D′ \ ϕ(F ).
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3. Capacity

This section collects the main properties of capacity in Sobolev spaces, which help us elaborate the
properties of ϕ.

3.1. Capacity in L1n,F (D) and its properties. Let us present the concept of capacity in L
1
n,F (D)

and the properties of capacity we require below. The properties of capacity stated in Subsections 3.1
and 3.2 are similar to the properties of capacity in [3, 26–28; 5, § 6; 13, § 6; 14], where they are justified
in other spaces of functions. For the reader’s convenience, we cite the articles that contain statements
similar in meaning to the formulas in this article. The formulas claimed here can be proved by analogy
with the proofs of their prototypes.
Refer as the capacity Cap

(

K;L1n,F (D)
)

of a compact set K ⊂ DF in L
1
n,F (D) to

Cap
(

K;L1n,F (D)
)

= inf
∥
∥g | L1n,F (D)

∥
∥n, (3)

where the greatest lower bound is taken over all continuous functions g ∈ L1n,F (D) with g ≥ 1 on K.
Remark 15. The greatest lower bound in (3) remains the same when we consider nonnegative

continuous functions in L1n,F (D) with g > 1 on K.

Given E ⊂ DF , the inner capacity of E equals

Cap
(

E;L1n,F (D)
)

= sup
{

Cap
(

K;L1n,F (D)
)

: K ⊂ E with K compact},
while the outer capacity of E equals

Cap
(

E;L1n,F (D)
)

= inf
{

Cap
(

U ;L1n,F (D)
)

: E ⊂ U, U ⊂ DF is open
}

.

The following lemma states the main properties of capacity.

Lemma 16 (cf. [5, Lemma 6.1; 13, Theorem 6.1; 14]). Capacity in L1n,F (D) enjoys the properties:

(1) If K ⊂ DF is a compact set then for every ε > 0 there exists an open set Uε ⊂ DF such that
K ⊂ Uε and for every compact set K ′ ⊂ Uε

Cap
(

K ′;L1n,F (D)
) ≤ Cap(K;L1n,F (D)

)

+ ε.

(2) If E ⊂ E′ then
Cap
(

E;L1n,F (D)
) ≤ Cap(E′;L1n,F (D)

)

, Cap
(

E;L1n,F (D)
) ≤ Cap(E′;L1n,F (D)

)

.

(3) If K1,K2 ⊂ DF are two compact sets then

Cap
(

K1 ∪K2;L1n,F (D)
)

+Cap
(

K1 ∩K2;L1n,F (D)
) ≤ Cap(K1;L1n,F (D)

)

+Cap
(

K2;L
1
n,F (D)

)

.

(4) Take E1, . . . , Ek ⊂ DF , Fi ⊂ Ei, Cap
(
⋃k
i=1 Fi;L

1
n,F (D)

)

<∞. Then

Cap

( k⋃

i=1

Ei;L
1
n,F (D)

)

− Cap
( k⋃

i=1

Fi;L
1
n,F (D)

)

≤
k∑

i=1

(

Cap
(

Ei;L
1
n,F (D)

)− Cap(Fi;L1n,F (D)
))

.

(5) For every increasing sequence E1 ⊂ E2 ⊂ · · · ⊂ Ek ⊂ · · · ⊂ DF we have

Cap

( ∞⋃

k=1

Ek;L
1
n,F (D)

)

= lim
k→∞

Cap
(

Ek;L
1
n,F (D)

)

.
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(6) Take a sequence {Ek} ⊂ DF , k ∈ N, and put E =
⋃∞
k=1Ek. Then

Cap
(

E;L1n,F (D)
) ≤

∞∑

k=1

Cap
(

Ek;L
1
n,F (D)

)

.

A set E is called capacitable whenever

Cap
(

E;L1n,F (D)
)

= Cap
(

E;L1n,F (D)
)

.

By Lemma 16, the capacity of L1n,F (D) is a Choquet capacity [29]. This implies that all analytic

and, in particular, Borel sets are capacitable [29].
Say that some property holds quasieverywhere or for quasiall points of a set whenever it holds

everywhere but a subset of capacity zero.

Definition 17. A function f ∈ L1n,F (D) is called refined whenever there exists a sequence {fs},
s ∈ N, of functions in L1n,F (D) ∩ C(D) such that
(1)
∥
∥f − fs | L1n,F (D)

∥
∥→ 0 as s→∞;

(2) for every positive ε > 0 there is an open set Uε ⊂ DF with Cap(Uε) < ε and fs converges to f
uniformly on DF \ Uε.
Remark 18. (1) Each element of L1n,F (D) includes a refined function; see Corollary 6.4 of [5].

(2) Each sequence of refined functions converging in L1n,F (D) to a refined function f includes a sub-

sequence converging to f quasieverywhere; see Corollary 6.7 of [5].

Lemma 19 (cf. [5, Lemma 6.5; 13, Lemma 6.4]). Given E ⊂ DF and a refined f ∈ L1n,F (D) with
|f(x)| ≥ α > 0 quasieverywhere on E, we have

Cap
(

E;L1n,F (D)
) ≤
∥
∥f | L1n,F (D)

∥
∥n

αn
.

Corollary 20. Two refined functions belonging to the same element of L1n,F (D) coincide quasiev-
erywhere on DF .

Proof. Take two refined functions f and g belonging to the same element of L1n,F (D). In particular,

∥
∥f − g | L1n,F (D)

∥
∥ = 0. (4)

Put Σ = {x ∈ DF : f(x) �= g(x)} and Σk = {x ∈ DF : |f(x)− g(x)| > 2−k}. Then

Σ =
∞⋃

k=1

Σk.

By Lemma 19 and (4), Cap
(

Σk;L
1
n,F (D)

)

= 0 for every k ∈ N. Since outer capacity is countably
semiadditive, see Lemma 16, we infer that Cap

(

Σ;L1n,F (D)
)

= 0. �
Definition 21. Given E ⊂ DF , put

A(E) =
{

f ∈ L1n,F (D) : the refined representative of f̃(x) is at least 1 quasieverywhere on E
}

.

Each function f ∈ A(E) is called admissible for the set E.
Lemma 22 (cf. [14, Lemma 6.5]). For all E ⊂ DF the set A(E) of admissible functions is weakly

closed and convex in L1n,F (D).

Lemma 22 implies the next statement.
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Corollary 23. If E ∈ DF and A(E) �= ∅ then there exists a unique element fE ∈ A(E) such that
∥
∥fE | L1n,F (D)

∥
∥ = inf

{‖f | L1n,F (D)‖ : f ∈ A(E)
}

.

Proof. Denote the right-hand side by I and take a sequence {fk}k∈N ⊂ A(E) with I = limk→∞
∥
∥fk |

L1n,F (D)
∥
∥. Extract from {fk}k∈N a weakly converging subsequence fkj and denote by fE its weak limit:

fE =
w
limj→∞ fkj . Lemma 22 yields fE ∈ A(E). The uniqueness follows by the standard method from

the uniform convexity of the norm in L1n,F (D). �

Corollary 24 (cf. [13, Corollary 6.5]). Given an increasing sequence {Em}m∈N with A(Em) �= ∅ for
all m, put E =

⋃∞
m=1Em. Then

A(E) =

∞⋂

m=1

A(Em), lim
m→∞

∥
∥fEm | L1n,F (D)

∥
∥ = inf

{∥
∥f | L1n,F (D)

∥
∥ : f ∈ A(E)}.

Theorem 25 (cf. [5, Theorem 6.11; 13, Theorem 6.4]). For every E ⊂ DF we have

Cap
(

E;L1n,F (D)
)

= inf
{∥
∥f | L1n,F (D)

∥
∥n : f ∈ A(E)}.

If A(E) �= ∅ then there is fE such that
Cap
(

E;L1n,F (D)
)

=
∥
∥fE | L1n,F (D)

∥
∥n.

The function fE in Theorem 25 is called a capacity function for E.

Lemma 26. If f ∈ L1n,F (D) is a refined function then

f(x) = lim
r→0

1

|B(x, r)|
∫

B(x,r)

f(z) dω(z) (5)

for quasiall x ∈ DF .

Proof. Since the result is local, we can work in an arbitrary ball 2B ⊂ DF within some coordinate
neighborhood. Using Lemma 12, we can conclude that the refined function f ∈ L1n,F (D) lies in W 1

n(2B).
Since the Euclidean metric is equivalent to the Riemannian metric in the ball 2B, Poincaré’s inequality
holds in 2B. Hence, we can apply the conclusion of [30] to obtain the pointwise estimate

|f(x)− f(y)| ≤ cd(x, y)(g(x) + g(y)) (6)

for all x, y ∈ B \Σ, where Σ ⊂ B is a negligible set, while g ∈ Ln(B). Theorem 4.5 of [31] shows that for
every refined function satisfying (6) we have (5) for quasiall x ∈ B. �
Definition 27. A function f defined quasieverywhere on DF is called quasicontinuous whenever

for every ε > 0 we can find an open set Uε ⊂ DF such that Cap
(

Uε;L
1
n,F (D)

)

< ε and the restriction

of f to DF \ Uε is continuous.
Remark 28. Proposition 34 shows that a function of class L1n,F (D) is quasicontinuous if and only

if it is refined.

Definition 29. Given a measurable set E ⊂ DF , call x ∈ DF a nonzero density point for E
whenever

lim
r→0
|B(x, r) ∩ E|
|B(x, r)| > 0.

Denote the collection of all points x ∈ DF of nonzero density for E by Ẽ.

781



Lemma 30 (cf. [5, Proposition 6.16; 13, Theorem 6.5]). Consider a set E ⊂ DF of positive measure.

If f ∈ L1n,F (D) is quasicontinuous and f(x) ≥ g(x) for almost all x ∈ E, where g : E ∪ Ẽ → R is a lower
semicontinuous function, then f(x) ≥ g(x) for quasiall x ∈ Ẽ.
Proof. Since f is quasicontinuous, we see that for every ε > 0 there exists an open set Uε such that

Cap
(

Uε;L
1
n,F (D)

)

< ε and f is continuous on DF \Uε. Take a nonnegative capacity function fm for U 1
m
.

Since
∥
∥fm | L1n,F (D)

∥
∥→ 0 as m→∞, by passing to a subsequence we may assume that

lim
m→∞ fm(x) = 0 for quasiall x ∈ DF . (7)

By Lemma 26, for every m we have

fm(x) = lim
r→0

1

|B(x, r)|
∫

B(x,r)

fm(z) dω(z) for quasiall x ∈ DF . (8)

Thus, (7) and (8) hold for quasiall x ∈ Ẽ. Take x ∈ Ẽ so that (7) and (8) hold. Since x is a point of
positive density for E, there is a real ρ0 > 0 such that

|E∩B(x,ρ)|
|B(x,ρ)| > δ > 0 for all ρ ∈ (0, ρ0). Verify that

for all sufficiently large m we have

|U 1
m
∩ E ∩B(x, ρ)| < |E ∩B(x, ρ)|

for ρ sufficiently small.
Indeed, since limm→∞ fm(x) = 0 for m sufficiently large; therefore, fm(x) < δ. Furthermore,

lim
ρ→0
|U 1
m
∩ E ∩B(x, ρ)|
|E ∩B(x, ρ)| ≤ lim

ρ→0
|B(x, ρ)|
|E ∩B(x, ρ)| limρ→0

1

|B(x, r)|
∫

U 1
m
∩E∩B(x,ρ)

fm(y) dω(y)

≤ 1
δ
lim
ρ→0

1

|B(x, ρ)|
∫

B(x,ρ)

fm(y) dω(y) = δ
−1fm(x) < 1.

Thus, there are m(x) ∈ N and ρ(x) > 0 such that for all m > m(x) and ρ ∈ (0, ρ(x)) the measure of
Vρ = (E ∩B(x, ρ)) \ U 1

m
is positive.

Appreciating the continuity of f on DF \U 1
m
and the property that f(y) ≥ g(y) for almost all y ∈ E,

we obtain

f(x) = lim
ρ→0

1

|Vρ|
∫

Vρ

f(y) dy ≥ lim
ρ→0

1

|Vρ|
∫

Vρ

g(y) dy ≥ g(x). �

Corollary 31 (cf. [5, Corollary 6.17; 13, Corollary 6.7]). Consider a measurable set E ⊂ DF of
positive measure. If two quasicontinuous functions f1, f2 ∈ L1n,F (D) coincide almost everywhere on E
then they coincide quasieverywhere on Ẽ.

Proof. Indeed, putting f(x) = f1(x) − f2(x) or f(x) = f2(x) − f1(x) in Lemma 30 with g ≡ 0
yields f1(x) − f2(x) ≥ 0 or f2(x) − f1(x) ≥ 0 quasieverywhere on Ẽ. Consequently, f1(x) = f2(x)

quasieverywhere on Ẽ. �

Corollary 32 (cf. [5, Corollary 6.19]). Cap
(

E∪ Ẽ;L1n,F (D)
)

= Cap
(

E;L1n,F (D)
)

for every E ⊂ DF .

Proof. Claim (2) of Lemma 16 yields

Cap
(

E ∪ Ẽ;L1n,F (D)
) ≥ Cap(E;L1n,F (D)

)

. (9)

If Cap
(

E;L1n,F (D)
)

=∞ then the equality is obvious.
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Assume that Cap
(

E;L1n,F (D)
)

< ∞, Then, by Theorem 25 and Remark 18, there exists a re-
fined function fE such that Cap

(

E;L1n,F (D)
)

=
∥
∥fE | L1n,F (D)

∥
∥n and f(x) ≥ 1 quasieverywhere on E.

Lemma 30 shows that f(x) ≥ 1 quasieverywhere on Ẽ. Therefore, fE ∈ A(E ∪ Ẽ). Consequently,
Cap
(

E ∪ Ẽ;L1n,F (D)
) ≤ ∥∥fE | L1n,F (D)

∥
∥n = Cap

(

E;L1n,F (D)
)

,

which together with (9) implies the required equality. �
Corollary 33 [5, Corollary 6.20]. Under the hypotheses of Lemma 30, if f(x) = g(x) almost ev-

erywhere on some set E ⊂ DF , where f is a quasicontinuous function on DF , while g is a continuous

function on E ∪ Ẽ, then f(x) = g(x) for quasiall x ∈ Ẽ.
Proof. The claim follows immediately from Lemma 30 because g is in particular lower semicontin-

uous on E ∪ Ẽ. �
Proposition 34. Definitions 17 and 27 are equivalent: every refined function is quasicontinuous;

and, conversely, every quasicontinuous function of class L1n,F (D) is refined.

Proof. Indeed, if f is a refined function then by condition (2) of Definition 17 for every ε > 0 there
is an open set Uε of capacity less than ε > 0 such that the sequence of continuous functions fn ∈ L1n,F (D)
converges uniformly on the complement DF \ Uε. Consequently, f is continuous on DF \ Uε.
Assume that f ∈ L1n,F (D) is quasicontinuous. Then by Remark 18 there exists a refined function f̃

coinciding with f almost everywhere in DF . By the above argument, f̃ is quasicontinuous, and so
Corollary 31 implies that f and f̃ coincide quasieverywhere. It remains to observe that each function
coinciding quasieverywhere with a refined function is refined itself. �
3.2. Capacity in the space of potentials. Consider an open connected set Ω in Rn. Refer as the

capacity of a compact set K ⊂ Ω in W 1
n(Ω) to

cap
(

K;W 1
n(Ω)

)

= inf
∥
∥g |W 1

n(Ω)
∥
∥n,

where the greatest lower bound is taken over all continuous functions g ∈W 1
n(Ω) with g ≥ 1 on K. Given

E ⊂ Ω, the inner capacity of E equals
cap
(

E;L1n(Ω)
)

= sup
{

cap
(

K;W 1
n(Ω)

)

: K ⊂ E with K compact},
while the outer capacity of E equals

cap
(

E;W 1
n(Ω)

)

= inf
{

cap
(

U ;W 1
n(Ω)

)

: E ⊂ U with U open}.
The properties of capacity in W 1

n(Ω) are similar to the properties of capacity in L
1
n,F (D) established

above (see [5] for instance).
The space of Bessel potentials in the Euclidean space Rn is the space Sαp (R

n) of functions of the form

g(x) = Jα ∗ f(x) =
∫

Rn

Jα(x− y)f(y) dy,

where f ∈ Lp(Rn) with p ∈ (1,∞) and Jα is the Bessel kernel [25] on Rn with α ∈ (0,∞). Define the
norm in the space of potentials as

∥
∥g | Sαp (Rn)

∥
∥ = ‖f | Lp(Rn)‖.

If α = k is a positive integer then Skp (R
n) coincides with the Sobolev space W k

p (R
n) [25]. Henceforth we

are interested in the case α = 1 because S1p(R
n) coincides with W 1

p (R
n).

The Bessel capacity of an arbitrary subset E ⊂ Rn is defined as
cap
(

E;S1p(R
n)
)

= inf

{∫

M

f(y)p dy : J1 ∗ f(x) ≥ 1 at x ∈ E
}

.

For more details see [26] which shows that the capacity on S1p(R
n) is an outer capacity.
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Proposition 35 [26, Corollary 2]. For x ∈ Rn and r < 1 the Bessel capacity of balls satisfies the
equivalence cap

(

B(x, r);S1n(R
n)
) ∼ (log 2r

)1−n
.

Remark 36. By the equivalence [25] of the norms of S1n(R
n) and W 1

n(R
n), cap

(

E;S1n(R
n)
)

and

cap
(

E;W 1
n(R

n)
)

are also comparable; i.e., there exist constants m and M with

m cap
(

E;W 1
n(R

n)
) ≤ cap(E;S1n(Rn)

) ≤M cap(E;W 1
n(R

n)
)

.

In particular, cap
(

E;W 1
n(R

n)
)

= 0 if and only if cap
(

E;S1n(R
n)
)

= 0.

Lemma 37. For Σ ⊂ DF the following two properties are equivalent:

Cap
(

Σ;L1n,F (D)
)

= 0 and cap
(

Σ;W 1
n(M)

)

= 0.

Proof. Suppose that Cap
(

Σ;L1n,F (D)
)

= 0. Since capacity is countably semiadditive, we may
assume that Σ lies in some ball BΣ ⊂ D, while F lies in some ball BF ⊂ D. Furthermore, we have
dist(BF , BΣ) > 0, dist(∂D,BF ) > 0, and dist(∂D,BΣ) > 0.
Since Cap

(

Σ;L1n,F (D)
)

= 0, there is a nested sequence of open sets {Uk} such that
BΣ ⊃ U1 ⊃ U2 ⊃ · · · ⊃ Σ and Cap

(

Uk;L
1
n,F (D)

) ≤ 1
2k
.

By Theorem 25, there is a sequence of functions hk ∈ L1n,F (D) such that hk ≥ 1 quasieverywhere on Uk
and
∥
∥hk | L1n,F (D)

∥
∥ ≤ 1/2k. Passing to the cutoff min(1, hk), we may assume that hk = 1 everywhere

on Uk.
Consider a John domain Ω ⊂ D that includes the balls BΣ and BF with dist(∂Ω, ∂D) > 0;

see Lemma 10. Given δ > 0 sufficiently small, choose an additional John domain Ωδ ⊃ Ω with
dist(∂Ω, ∂Ωδ) ≥ δ and dist(∂D, ∂Ωδ) ≥ δ (see Remark 11). Poincaré’s inequality yields ‖hk | Ln(Ωδ)‖ ≤
C
∥
∥hk | L1n(Ωδ)

∥
∥ (see Lemma 12). Therefore, passing to a subsequence, we may assume that hk → 0 a.e.

on Ωδ and ∇hk → 0 a.e. on Ωδ. Choose a cutoff η ∈ C∞0 (M) such that η = 1 on Ω and η = 0 on M \Ωδ.
Then the product ηhk ∈W 1

n(M) satisfies

ηhk(x) =

{
hk(x) for x ∈ Ω,
0 for x ∈M \ Ωδ.

Furthermore, |∇(ηhk)| ≤ |(∇η)hk| + |η∇hk| and
∥
∥ηhk | W 1

n(M)
∥
∥ → 0 as k → ∞. Consequently,

cap
(

Uk;W
1
n(M)

)→ 0 as k →∞, whence
cap
(

Σ;W 1
n(M)

)

= 0. (10)

Suppose that (10) holds. Then there is an inclusion-decreasing sequence {Wk} ⊂ BΣ of open sets,
which include Σ, such that cap

(

Σ;W 1
n(M)

) ≤ 1/2k+1, and a sequence of uk ∈ W 1
n(M) such that uk = 1

quasieverywhere on Wk and
∥
∥uk |W 1

n(M)
∥
∥n ≤ 1/2k.

Define the cutoff η′ ∈ C∞0 (M) such that η′ = 1 on BΣ and η′ = 0 on M \ λBΣ, with λ > 1, for which
D ⊃ λBΣ ⊃ BΣ and λBΣ ∩BF = ∅. Then the functions η′ ·uk = fk ∈ L1n,F (D) satisfy fk = 1 on Wk and
∥
∥fk | L1n,F (D)

∥
∥n ≤ c/2k, where c is a constant independent of k. This yields Cap(Σ;L1n,F (M)

)

= 0. �
Remark 38. The method of proof of Lemma 37 applies to a more general statement. Consider

a sequence {Uk}∞1 ⊂ DF of open sets included into some ball B(0, R) such that dist(Uk, ∂DF ) ≥ η > 0
for all k ∈ N. Then the following two equalities are equivalent:

lim
k→∞

Cap
(

Uk;L
1
n,F (D)

)

= 0, lim
k→∞

cap
(

Uk;W
1
n(M)

)

= 0.

Moreover, the last property is independent of the choice of F . In particular, Proposition 35 implies
an estimate for the capacity of B(x, r) ⊂ DF :

Cap
(

B(x, r);L1n,F (D)
)

= O

((

log
2

r

)1−n)
= o(1) as r → 0.

The next lemma describes a characteristic property of capacity zero sets.
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Lemma 39. A set Σ ⊂ DF has outer capacity zero if and only if there is a lower semicontinuous
function u ∈ L1n,F (D) such that u =∞ on Σ. The norm of u can be chosen arbitrarily small.
Proof. Necessity. Step 1. Firstly, consider the special location of Σ; i.e., Σ ⊂ BΣ � W ⊂ DF ,

where W is a coordinate neighborhood, while BΣ is a ball such that ρBΣ ⊂ W for some real ρ > 1.
Passing into a coordinate neighborhood, we may assume that ρBΣ ⊂ W ⊂ Rn. By Lemma 37, we infer
that

Cap
(

Σ;L1n,F (D)
)

= cap
(

Σ;W 1
n(M)

)

= cap
(

Σ;W 1
n(W )

)

= cap
(

Σ;W 1
n(R

n)
)

= cap
(

Σ;S1n(R
n)
)

= 0.

Then there is a sequence of nonnegative functions fk ∈ Ln(R
n) such that ‖fk | Ln(Rn)‖ ≤ 2−k and

fk ∗ J1(x) ≥ 1 at all x ∈ Σ. The function
f =

∞∑

k=1

fk (11)

is nonnegative, lies in Ln(R
n), and f ∗ J1(x) = ∞ at all x ∈ Σ. Since the kernel J1(z) is nonnegative

on Σ and continuous everywhere but one point z = 0, the convolution f ∗ J1(x) is lower semicontinuous
by Fatou’s Lemma.
Consider the Lipschitz function η :W → [0, 1] such that

η(x) =

{
0 if x /∈ ρBΣ,
1 if x ∈ BΣ.

Since W 1
n(R

n) = S1n(R
n), the restriction of the product η(x) · f ∗ J1(x) to W : namely, u(x) = η(x) · (f ∗

J1)(x)|W , lies in L1n,F (D) and satisfies all claims of the lemma.
Observe that we can make the norm of u(x) arbitrarily small because the property of f ∗ J1(x) to be

equal to∞ at the points of Σ is independent of the number of terms in (11). Therefore, removing finitely
many terms of the series in (11) if need be and using the absolute convergence of the series, we can make

∥
∥f ∗ J1 |W 1

n(W )
∥
∥ = ‖f ∗ J1 | Ln(W )‖+

∥
∥f ∗ J1 | L1n(W )

∥
∥ ≤ ∥∥f ∗ J1 |W 1

n(W )
∥
∥

arbitrarily small. Since

|∇(η · f ∗ J1)(x)| ≤ |∇η(x)| · |f ∗ J1(x)|+ |η(x)| · |∇(f ∗ J1)(x)|,
we can also make

∥
∥u | L1n,F (D)

∥
∥ arbitrarily small.

Step 2. Assume that the set Σ ⊂ DF of outer capacity zero is located arbitrarily.
By Corollary 2 of [32], there exists a locally finite covering3) {Bk}k≥1 of the open set D \ F by balls

Bk ⊂ D \F and a partition of unity {ψk}k≥1 subordinate to this covering; we may assume that each ball
of Bk lies in some coordinate neighborhood. Moreover, there exists a vanishing monotone sequence {ρk}
of positive reals such that the sequence of balls {(1+ρk)Bk} constitutes a finite covering of D \F locally.
The intersection Σ ∩ Bk has outer capacity zero and satisfies the hypotheses of the first step. Con-

sequently, there exists a nonnegative lower semicontinuous function uk ∈ L1n,F (D) such that uk =∞ on
Σ ∩Bk and

∥
∥uk | L1n,F (D)

∥
∥ ≤ ε

2k
, where ε is an arbitrary real specified aforehand.

The function u(x) =
∑∞

k=1 uk(x) lies in L
1
n,F (D), is lower semicontinuous, u =∞ on Σ, and

∥
∥u | L1n,F (D)

∥
∥ ≤

∞∑

k=1

∥
∥uk | L1n,F (D)

∥
∥ ≤

∞∑

k=1

ε

2k
≤ ε.

3)This means that for each x ∈ D \F there is a neighborhood U ⊂ D \F intersecting only finitely many balls
of the covering {Bk}.
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Sufficiency. Assume that there exists a lower semicontinuous function u ∈ L1n,F (D) such that

u = ∞ on some Σ ⊂ DF . For each λ > 0 the set Uλ = {x ∈ DF : u(x) > λ} is open and includes Σ,
while the refined function u(x)

λ lies in the class A(Uλ) of admissible functions for the capacity estimate

Cap
(

Σ;L1n,F (D)
) ≤ Cap(Uλ;L1n,F (D)

) ≤
∥
∥u | L1n,F (D)

∥
∥n

λn
.

In the last step we used Lemma 19. Since λ is arbitrary, Cap
(

Σ;L1n,F (D)
)

= 0. �

Theorem 40 [27, Theorem 9]. Consider a compact set K ⊂ Rn and a nondecreasing continuous
function h(ρ) with h(0) = 0. Suppose that

1∫

0

h(ρ)
1
n−1

dρ

ρ
<∞.

Then there exists a constant A such that H∞h (K) ≤ A cap
(

K;W 1
n(R

n)
)

. Therefore, H∞h (K) = 0 provided
that cap

(

K;W 1
n(R

n)
)

= 0, where H∞h (K) stands for the Hausdorff capacity.
The next statement is analogous to Lemma 7.19 of [5].

Lemma 41. Consider a coordinate neighborhood W ⊂ DF and a ball Bγ with λBγ ⊂ W for some

λ > 1. A sequence {γm}m∈N of continua included into the closed ball Bγ ⊂ DF satisfies

lim
m→∞Cap

(

γm;L
1
n,F (D)

)

= 0

if and only if limm→∞ diam γm = 0.
Proof. Assume that limm→∞Cap

(

γm;L
1
n,F (D)

)

= 0. There is a sequence fm ∈ L1n,F (D) of con-
tinuous functions with fm = 1 on γm and limm→∞

∥
∥fm | L1n,F (D)

∥
∥ = 0. We have dist(Bγ , F ) > 0

and λBγ ⊂ DF . Define a cutoff η ∈ C∞0 (M) such that η = 1 on Bγ and η = 0 on M \ λBγ . Then
η · fm = um ∈ W 1

n(M) and Poincaré’s inequality (Lemma 12) shows that limm→∞
∥
∥fm | W 1

n(M)
∥
∥ = 0.

Hence,

lim
m→∞ cap

(

γm;W
1
n(M)

)

= lim
m→∞ cap

(

γm;W
1
n(W )

)

= 0, lim
m→∞ cap

(

γm;W
1
n(R

n)
)

= 0.

Putting h(ρ) = ρ in Theorem 40, we infer that limm→∞H∞1 (γm) = 0. It remains to observe that
H∞1 (E) = diam(E).
The converse is obvious. �
3.3. Generalized Teichmüller capacity.

Definition 42. Refer as the generalized Teichmüller capacity of the annulus Dr,R(x0) = {x ∈ Rn :
r < d(x0, x) < R} to

CT (r,R) = inf
u

∫

Dr,R

|∇u|n dx,

where the greatest lower bound is taken over all quasicontinuous functions u ∈ W 1
n(Dr,R(x0)) such that

minu|S(0,t)(x0) ≤ 0 and maxu|S(0,t)(x0) ≥ 1 for almost all t ∈ (r,R).
Each quasicontinuous function is continuous on almost all spheres (see Proposition 56). Note that

the maximum and minimum in Definition 42 apply to precisely those spheres.

Proposition 43 [33, Proposition 7]. The generalized Teichmüller capacity CT (r,R) is strictly pos-
itive for all 0 < r < R <∞.

786



Corollary 44 [33, Corollary 4]. For the generalized Teichmüller capacity we have the lower bound

CT (r,R) ≥ γ1 log R
r
.

Proposition 45. Consider a domain U inM′ and two connected sets γ0, γ1 ⊂ U of positive diameter.
If γ0 and γ1 share a limit point in U then no quasicontinuous function v ∈ L1n(U) with v|γ0 = 0 and
v|γ1 = 1 can exist.
Proof. Assume on the contrary that some function with these properties exists. Consider the

annulus Dr,R ⊂ U centered at a common limit point x ∈ U such that B(x,R) lies in some coordinate
neighborhood. Then the definition of generalized Teichmüller capacity, see Definition 42, and Corollary 44
yield ∫

U

|∇v|n dx ≥ γ2
∫

Dr,R

|∇v|n dx ≥ γ2CT (r,R) ≥ γ1γ2 log R
r
, (12)

where γ2 is a constant depending on the geometry in the neighborhood W . As r → 0, we infer from this
that

∥
∥v | L1n(U)

∥
∥n =∞, which contradicts the membership of v in L1n(U). �

4. Properties of the Mapping ϕ

Continue studying ϕ : D → D′ of class IL1n. All these mappings enjoy the properties that are stated
in Subsection 1.3.

4.1. Construction of a quasicontinuous representative for ϕ. In this subsection we construct
a quasicontinuous mapping ψ which coincides with ϕ almost everywhere on DF .

Lemma 46. Consider a set E ⊂ DF of positive measure such that ϕ is continuous on E and a lower
semicontinuous function f ∈ L1n,ϕ(F )(D′). If g = ϕ∗f is a refined function in L1n,F (D) then g(x) ≥ f ◦ϕ(x)
quasieverywhere on E ∩ Ẽ.
Proof. Since ϕ is continuous on E, the function f ◦ϕ is lower semicontinuous on E. The properties

of ϕ∗ in Lemma 14 show that g = f ◦ϕ a.e. on D; and, in particular, g(x) ≥ f ◦ϕ(x) for almost all x ∈ E.
By Lemma 30, we see that g(x) ≥ f ◦ ϕ(x) for quasiall x ∈ E ∩ Ẽ. �
From of Lemma 46 we obtain the next

Corollary 47. Consider a set E ⊂ DF of positive measure consisting of positive density points such
that ϕ is continuous on E and a lower semicontinuous function f ∈ L1n,ϕ(F )(D′). If g = ϕ∗f is a refined
function in L1n,F (D) then g(x) ≥ f ◦ ϕ(x) quasieverywhere on E.
Lemma 48. Consider a set E ⊂ DF of positive measure consisting of positive density points such

that ϕ is continuous on E. If Σ ⊂ D′F is a set of outer capacity zero then ϕ−1(Σ)∩E is of capacity zero.
Proof. Take the lower semicontinuous function f ∈ L1n,ϕ(F )(D′) constructed in Lemma 39. By Corol-

lary 47, the refined function g = ϕ∗f is at least f ◦ϕ quasieverywhere on E. In particular, g(x) =∞ for
quasiall x ∈ ϕ−1(Σ) ∩ E. Lemma 19 yields Cap(ϕ−1(Σ) ∩ E;L1n,F (D)

)

= 0. �
Lemma 48 implies the next statement.

Lemma 49. Consider some sequence fk ∈ L1n,ϕ(F )(D′) of refined functions converging quasievery-
where to f ∈ L1n,ϕ(F )(D′). Then the sequence fk ◦ ϕ converges to f ◦ ϕ ∈ L1n,F (D) almost everywhere
on D and quasieverywhere on T ∩DF , where T is the set from Proposition 13.

Proof. Recall that T =
⋃

k Tk and |D \T | = 0, where {Tk} is a sequence of bounded sets of positive
measure, increasing with respect to inclusion and consisting of positive density points. The mapping ϕ
is continuous on each Tk.
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Take a set S ⊂ D′F of outer capacity zero on which there is no convergence. By Lemma 48 ϕ−1(S)∩
Tk ∩DF is of capacity zero for each k. Consequently, by claim (5) of Lemma 16, ϕ

−1(S) ∩ T ∩DF is of
capacity zero. Hence, we obtain the convergence of the sequence fk◦ϕ to f ◦ϕ ∈ L1n,F (D) quasieverywhere
on T ∩DF . The convergence of the sequence fk ◦ϕ to f ◦ϕ ∈ L1n,F (D) almost everywhere on D is obvious:
|D \ T | = 0. �
Lemma 50. Consider a set E ⊂ DF of positive measure consisting of positive density points such

that ϕ is continuous on E and a refined function f ∈ L1n,ϕ(F )(D
′). If g = ϕ∗f is a refined function

in L1n,F (D) then g|E coincides quasieverywhere with f ◦ ϕ|E .
Proof. Take a sequence fk ∈ L1n,ϕ(F )(D′) of continuous functions converging to f everywhere but

some set Σ of outer capacity zero. Using Remark 18, we may assume that the sequence of refined
functions gk = ϕ∗fk converges quasieverywhere to ϕ∗f . According to Corollary 33, gk = ϕ∗fk coincides
quasieverywhere on E with fk ◦ ϕ|E . Therefore, g coincides quasieverywhere on E with f ◦ ϕ. �
Corollary 51. Consider the set T of Proposition 13 and a refined function f ∈ L1n,ϕ(F )(D

′). If
g = ϕ∗f is a refined function in L1n,F (D) then g|T∩DF coincides quasieverywhere with f ◦ ϕ|T∩DF .
Proof. Recall that T =

⋃

k Tk and |D \T | = 0, where {Tk} is a sequence of bounded sets of positive
measure increasing by inclusion and consisting of positive density points. The mapping ϕ is continuous
on each of Tk. Put E = Tk ∩DF in Lemma 50. Then g = ϕ∗f , refined in L1n,F (D), coincides with f ◦ ϕ
quasieverywhere on Tk ∩DF . Hence, the claim follows because k is an arbitrary positive integer. �
We continue studying the properties of ϕ.

Lemma 52. Consider two Riemannian manifolds M and M′ of the same topological dimension
n ≥ 2 with two domains D ⊂M and D′ ⊂M′. Assume that M′ is a parabolic manifold. If a measurable
mapping ϕ : D → D′ is of class IL1n then there exist Sϕ ⊂ D of capacity zero and a quasicontinuous

mapping ψ : DF \ Sϕ → D′F such that ψ(x) = ϕ(x) a.e. on DF .

Proof. By Corollary 31, it suffices, given an arbitrary open ball Q � DF , to construct a quasicon-
tinuous mapping ϕ̄ : Q→M′ coinciding with ϕ a.e. on Q.
Take a continuous function f ∈ L1n,F (D) with f ≥ 1 on Q. There exists a refined g ∈ L1n,ϕ(F )(D′) with

f = ϕ∗g. By Corollary 51, f |T∩Q and g ◦ ϕ|T∩Q coincide quasieverywhere. Consider the set SQ ⊂ T ∩Q
of capacity zero on which the values of f |T∩Q and g ◦ϕ|T∩Q differ. The mapping ϕ : T ∩Q→M′ satisfies
the hypotheses of Lemmas 46, 48–50, and their corollaries. Moreover, g(y) = g(ϕ(x)) = f(x) ≥ 1 for
all y ∈ ϕ(T ∩ Q \ SQ). Therefore, the capacity of ϕ(T ∩ Q \ SQ) is finite. Henceforth, consider ϕ only
on T ∩ Q \ SQ, assuming that ϕ is undefined on Q \ (T ∩ Q \ SQ). By the image of V ⊂ Q we should
understand ϕ(V ∩ (T ∩Q \ SQ)).
Put Pk = ϕ(Q)∩B(0, k) and CPk = ϕ(Q)\Pk = ϕ(Q)\B(x0, k), where x0 ∈ T∩Q\SQ is an arbitrary

point, for k ∈ N. Verify that
Cap
(

CPk;L
1
n,ϕ(F )(D

′)
)→ 0 as k →∞. (13)

Indeed, fix k0 ∈ N and 0 < r < k0 − 1 such that ϕ(F ) ⊂ B(x0, r) and
CPk ⊂ D′ \B(x0, k − 1) ⊂M′ \B(x0, k − 1)

for k > k0. This implies directly that

Cap
(

CPk;L
1
n,ϕ(F )(D

′)
) ≤ Cap(M′ \B(x0, k − 1);L1n,ϕ(F )(M′)

)

.

The capacity on the right vanishes as k →∞. This property follows since M′ is parabolic, because ϕ(F )
is a compact set in D′, while the support of an arbitrary function admissible for capacity in Definition 3
lies in M′ ∩B(x0, k − 1) for some k. Thus, we obtain (13) as k →∞.
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Take a sequence of functions gk ∈ A(CPk) such that
∥
∥gk | L1n,ϕ(F )(D′)

∥
∥n = Cap

(

CPk;L
1
n,ϕ(F )(D

′)
)

.

By Corollary 51, the refined function fk = ϕ∗gk coincides quasieverywhere on T ∩DF with gk ◦ ϕ.
Thus, fk ∈ A(ϕ−1(CPk)).
Denote by CFk the subset of the ball Q consisting of the points in ϕ

−1(CPk) and all nonzero density
points of ϕ−1(CPk). Corollary 32 shows that

Cap
(

CFk;L
1
n,F (D)

)

= Cap
(

ϕ−1(CPk);L1n,F (D)
)

. (14)

Furthermore,

Cap
(

ϕ−1(CPk);L1n,F (D)
) ≤ ∥∥fk | L1n,F (D)

∥
∥n

≤ Kn
∥
∥gk | L1n,ϕ(F )(D′))

∥
∥n = KnCap

(

CPk;L
1
n,ϕ(F )(D

′)
)

,

where K is the norm of ϕ∗. From (13) and (14) we deduce that

lim
k→∞

Cap
(

CFk;L
1
n,F (D)

)

= 0. (15)

Put Fk = Q \CFk. Observe that Fk ⊃ SQ and Fk ⊃ (D \ T )∩Q. If x ∈ Fk ∩ T \SQ then ϕ(x) ∈ Pk,
and for all points x ∈ Fk we have

lim
r→0
|Fk ∩B(x, r)|
|B(x, r)| = 1. (16)

Indeed, for r sufficiently small and satisfying B(x, r) ⊂ Q we obtain |B(x, r)| = |Fk ∩ B(x, r)|+ |CFk ∩
B(x, r)| or

1 =
|Fk ∩B(x, r)|
|B(x, r)| +

|CFk ∩B(x, r)|
|B(x, r)| . (17)

By the construction of CFk, for x �∈ CFk, which means x ∈ Fk, we see that
|CFk ∩B(x, r)|/|B(x, r)| → 0 as r → 0;

i.e., (17) implies (16).
Take the cutoff ηk ∈ C∞0 (M′) such that ηk(x) = 1 at x ∈ B(x0, k) and ηk(x) = 0 for x �∈ B(x0, k+1),

for k ∈ N. Consider a refined function ψi,k ∈ L1n,F (D) such that ψi,k = ϕ∗(yi · ηk). Here yi(·) are the
coordinate functions.4) Corollary 51 yields ψi,k(x) = (yi · ηk)(ϕ(x)) for quasiall x ∈ Fk ∩ T . Therefore,

(ϕ∗(yiηk))(x) = (yi · ηk)(ϕ(x)) = yi(ϕ(x)) = ϕi(x)
for quasiall points x ∈ Fk ∩ T . Thus, almost everywhere on Fk the coordinate function ϕi coincides with
the refined function ψi,k.
Put

ϕ̄i,k(x) =

{
ψi,k(x) if x ∈ Fk \ SQ,
ϕi(x) if x ∈ Q \ Fk.

Since ϕi changes on a negligible set, for every k ∈ N the equality ϕi(x) = ϕ̄i,k(x) holds a.e. on Q.
Assume that k < m. By the construction of Fk, we have Fk ⊂ Fm; therefore, on Fk ∩T the functions

ϕ∗(yiηk) and ϕ∗(yiηm) coincide quasieverywhere with ϕi.

4)We consider an arbitrary isometric embedding i :M′ → Rm into the Euclidean space Rm of sufficiently large
dimension. The coordinate functions yi(·) for i = 1, . . . ,m are the coordinate functions of i ◦ f : M → Rm. It is
known, see [34] for instance, that ϕ ∈W 1

p,loc(D,M
′) if and only if yi ∈W 1

p,loc(D,R) for all i = 1, . . . ,m.
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Since by construction all points of Fk are of density 1, the refined functions ψi,m and ψi,k coincide
quasieverywhere on Fk; see Corollary 31. This enables us to define the function

ϕ̄iQ(x) =

⎧

⎨

⎩

ψi,k(x) if x ∈ Fk \ SQ,
ϕi(x) if x ∈ Q \

∞⋃

k

Fk

quasieverywhere on Q. Since Q \⋃∞k Fk =
⋂∞
k CFk, by (15) the function ϕ̄iQ is defined quasieverywhere

on the ball Q.
Verify that ϕ̄iQ is quasicontinuous on Q. Fix ε > 0. Then there are open sets U1, U2, and U3 such

that
(1) there exists an index k such that CFk ⊂ U1 and Cap(U1) < ε/3 by (15) and Lemma 16;
(2) ψi,k is continuous on DF \ U2 and Cap(U2) < ε/3 because ψi,k is a quasicontinuous function;
(3) U3 contains all points of the capacity zero set Q \ U1 at which the values of ϕ̄iQ and ψi,k differ,

and Cap(U3) < ε/3 because ϕ̄iQ and ψi,k coincide quasieverywhere on Fk outside CFk.

The set U = U1 ∪ U2 ∪ U3 is of capacity Cap(U) < ε, while ϕ̄iQ is continuous on Q \ U . Since ε > 0
is arbitrary, ϕ̄iQ is a quasicontinuous function. Therefore, ϕ̄Q : Q \ SQ → D′F is quasicontinuous, where
SQ ⊂ Q is a capacity zero set.
Covering the domain DF by a countable collection of open balls Qj with finite multiplicity and

repeating the above procedure on each ball Qj , we construct the quasicontinuous mapping

ψ(x) = ϕ̄Qj (x) if x ∈ Qj .
The mapping ψ(x) is well defined in view of the following properties: For two disjoint balls Qj and Qi
we have ϕQj (x) = ϕQi(x) for all x ∈ Qi ∩ Qj with the exception of some set Σij ⊂ Qi ∩ Qj of capacity
zero; see Corollary 31. Remove from DF the set

Sϕ =
⋃

i	=j
Σij ∪

⋃

j

SQj (18)

of capacity zero.
Then ψ is well-defined on DF \ Sϕ. Furthermore, ψ(x) = ϕ(x) for almost all x ∈ DF . �
Assume that the image of V ⊂ DF is ψ(V \ Sϕ).
Remark 53. The mapping ψ enjoys the following property: ψ(x) = ϕ(x) for all x ∈ T \Z, where Z

is a capacity zero set.

4.2. Construction of the mapping ϕ0. All subsequent statements rely on the mapping ψ :
DF \ Sϕ → D′F constructed in Lemma 52 on assuming that the Riemannian manifold M

′ is parabolic.
Thus, henceforth we assume tacitly that M′ is parabolic.
In this subsection we construct ϕ0 such that ϕ0 = ψ quasieverywhere and the equivalent estimates

on the capacity of the image and preimage are satisfied; see Lemma 55.
The following lemma describes the properties of ψ and strengthens Lemmas 46, 48, and 50.

Lemma 54. (1) Take a lower semicontinuous function f ∈ L1n,ϕ(F )(D
′). If g = ϕ∗f is a refined

function in L1n,F (D) then g(x) ≥ f ◦ ψ(x) quasieverywhere on DF ∩ ψ−1(D′F ).
(2) For Σ ⊂ D′F , if Cap

(

Σ;L1n,ϕ(F )(D
′)
)

= 0 then Cap
(

ψ−1(Σ) ∩DF ;L
1
n,F (D)

)

= 0.

(3) If f ∈ L1n,ϕ(F )(D′) ∩ C(D′) then the refined function ϕ∗f coincides with f ◦ ψ quasieverywhere
on DF ∩ ψ−1(D′F ).
(4) Suppose that

f(y) =
∞∑

k=1

fk(y), where fk ∈ L1n,ϕ(F )(D′) ∩ C(D′) and
∞∑

k=1

∥
∥fk | L1n,ϕ(F )(D′)

∥
∥ <∞
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holds quasieverywhere in D′F . Then the refined function ϕ
∗f coincides with

∑∞
k=1(f ◦ ψ)(x) quasievery-

where on DF ∩ ψ−1(D′F ).
(5) For every refined function f ∈ L1n,ϕ(F )(D′) the refined g = ϕ∗f coincides with f ◦ ψ quasievery-

where on DF ∩ ψ−1(D′F ).
(6) For all A ⊂ DF and B ⊂ D′F such that ψ(A) ⊂ D′F we have

Cap
(

ψ−1(B);L1n,F (D)
) ≤ KnCap

(

B;L1n,ϕ(F )(D
′)
)

, (19)

Cap
(

A ∩ ψ−1(D′F );L1n,F (D)
) ≤ KnCap

(

ψ(A) ∩D′F ;L1n,ϕ(F )(D′)
)

, (20)

where K = max(‖ϕ∗‖, ‖ϕ∗−1‖).
Proof. (1) Given ε > 0, choose an open set Uε ⊂ DF such that ψ is continuous on DF \ Uε and

Cap
(

Uε;L
1
n,F (D)

)

< ε. Lemma 30 also yields Cap
(

Ũε;L
1
n,F (D)

)

< ε. Observe that all points of DF \ Ũε
are positive density points. Therefore, so are all points of (DF∩ψ−1(D′F ))\Ũε because |DF \ψ−1(D′F )| = 0.
The composition f ◦ ψ(x) is lower semicontinuous at all points of (DF ∩ ψ−1(D′F )) \ Uε. Lemma 46

shows that g(x) ≥ f ◦ψ(x) quasieverywhere on (DF ∩ψ−1(D′F )) \ Ũε. Since ε is arbitrary, it follows that
g(x) ≥ f ◦ ψ(x) quasieverywhere on DF ∩ ψ−1(D′F ).
(2) Take the lower semicontinuous function f ∈ L1n,ϕ(F )(D′) constructed in Lemma 39. By claim 1,

the refined function g = ϕ∗f is at least f ◦ϕ quasieverywhere on DF ∩ψ−1(D′F ). In particular, g(x) =∞
for quasiall x ∈ ϕ−1(Σ) ∩ DF ∩ ψ−1(D′F ) = ϕ−1(Σ) ∩ DF . Therefore, Lemma 19 yields Cap

(

ϕ−1(Σ) ∩
DF ;L

1
n,F (D)

)

= 0.

(3) If g = ϕ∗f is a refined function in L1n,F (D) then by Proposition 1 we simultaneously have
g(x) ≥ f ◦ ψ(x) and −g(x) ≥ −f ◦ ψ(x) quasieverywhere on DF ∩ ψ−1(D′F ). Hence, g(x) = f ◦ ψ(x)
quasieverywhere on DF ∩ ψ−1(D′F ).
(4) Suppose that fk ∈ L1n,ϕ(F )(D′) ∩ C(D′) with f(y) =

∑∞
k=1 fk(y) quasieverywhere on D

′
F and

∞∑

k=1

∥
∥fk | L1n,ϕ(F )(D′)

∥
∥ <∞.

By Proposition 2, f ◦ ψ(x) =∑∞k=1 fk ◦ ψ(x) converges quasieverywhere on DF ∩ ψ−1(D′F ). Moreover,
∞∑

k=1

∥
∥fk ◦ ψ | L1n,ϕ(F )(D′)

∥
∥ ≤ K

∞∑

k=1

∥
∥fk | L1n,ϕ(F )(D′)

∥
∥ <∞. (21)

By an available method (see [5] for instance) we can deduce from (21) that
∑∞

k=1 fk ◦ ψ(x) converges
uniformly on DF outside some open set of however small capacity. Therefore, f ◦ ψ is refined, and so
ϕ∗f(x) =

∑∞
k=1(f ◦ ψ)(x) quasieverywhere on DF ∩ ψ−1(D′F ).

(5) Take a sequence fk ∈ L1n,ϕ(F )(D′) of continuous functions converging to f everywhere but a set Σ
of outer capacity zero. By claims 2 and 4, the sequence of refined functions gk = ϕ∗fk converges
quasieverywhere to the refined function g = ϕ∗f . According to claim (3), the refined functions gk = ϕ∗fk
coincide with fk ◦ ϕ|DF∩ψ−1(D′F ) quasieverywhere on DF ∩ ψ−1(D′F ). Therefore, the refined function
g = ϕ∗f coincides with f ◦ ψ quasieverywhere on DF ∩ ψ−1(D′F ).
(6) Consider the capacity function fB ∈ L1n,ϕ(F )(D′) for B (see Proposition 13); i.e.,

Cap
(

B;L1n,ϕ(F )(D
′)
)

=
∥
∥fB | L1n,ϕ(F )(D′)

∥
∥n.

By the definition of capacity function, {y ∈ B | fB(y) < 1} has capacity zero. Therefore, the refined
function g = ϕ∗fB satisfies g(x) ≥ 1 quasieverywhere on ψ−1(B). Since

∥
∥g | L1n,F (D)

∥
∥ ≤ K∥∥fB | L1n,ϕ(F )(D′)

∥
∥;
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we deduce the chain of inequalities

Cap
(

ψ−1(B);L1n,F (D)
) ≤ ∥∥g | L1n,F (D)

∥
∥n

≤ Kn
∥
∥fB | L1n,ϕ(F )(D′)

∥
∥n = KnCap

(

B;L1n,ϕ(F )(D
′)
)

,

which implies (19).
Consider the capacity function fψ(A) ∈ L1n,ϕ(F )(D′) for ψ(A)∩D′F . The set {y ∈ ψ(A) | fψ(A)(y) < 1}

is of capacity zero. Hence, the refined function g = ϕ∗fψ(A) satisfies g(x) ≥ 1 quasieverywhere on
A ∩ ψ−1(D′F ). From

∥
∥g | L1n,F (D

)‖ ≤ K∥∥fψ(A) | L1n,ϕ(F )(D′)
∥
∥ we deduce that

Cap
(

A ∩ ψ−1(D′F );L1n,F (D)
) ≤ ∥∥g | L1n,F (D)

∥
∥n

≤ Kn
∥
∥fψ(A) | L1n,ϕ(F )(D′)

∥
∥n = KnCap

(

ψ(A) ∩D′F ;L1n,ϕ(F )(D′)
)

,

which implies (20). �
Now, fix some countable system

B = {Bj} (22)

of balls in DF constituting a base for the open sets U ⊂ DF . Assume that the balls involved enjoy the
properties:
(1) Bj � DF for all j ∈ N;
(2) together with each ball Bj = Bj(xj , rj) the system B also contains the countable collection of

balls centered at xj of radius of the form 2
−k dist(xj , DF ) for k ∈ N.

Lemma 55. There exist a set Sψ ⊂ DF of capacity zero and a mapping ϕ0 : DF \ Sψ → D′F such
that ϕ0(x) coincides with ψ(x) for quasiall x ∈ DF . For the mapping ϕ0 all claims of Lemma 54 hold, as
well as the estimate

Cap
(

ϕ0(Bj) ∩D′F ;L1n,ϕ(F )(D′)
) ≤ K−nCap(Bj ;L1n,F (D)

)

(23)

for every ball Bj of (22).

Proof. Take some ball B ∈ B in the countable base of neighborhoods (22) and the capacity function
gB ∈ A(B) of B; see Theorem 25. Since ϕ∗ is an isomorphism (see Lemma 14), there exists a refined
function fB ∈ L1n,ϕ(F )(D′) such that gB(x) = fB ◦ ψ(x) for quasiall x ∈ DF ∩ ψ−1(D′F ) by claim (3) of
Lemma 54.
Consider ΣB = {x ∈ B ∩ ψ−1(D′F ) : fB(ψ(x)) < 1}. Then, since fB(ψ(x)) = gB(x) ≥ 1 for quasiall

x ∈ B ∩ ψ−1(D′F ), it follows that Cap
(

ΣB;L
1
n,F (D)

)

= 0.

Since ψ((B ∩ ψ−1(D′F )) \ ΣB) = (ψ(B) ∩D′F ) \ ψ(ΣB) ⊂ D′F , the function fB is admissible for the
set (ψ(B) ∩D′F ) \ ψ(ΣB) ⊂ D′F ; i.e., f ∈ A((ψ(B) ∩D′F ) \ ψ(ΣB)). Therefore,

Cap
(

ψ((B ∩ ψ−1(D′F )) \ ΣB);L1n,ϕ(F )(D′)
) ≤ ∥∥fB | L1n,ϕ(F )(D′)

∥
∥n

≤ K−n∥∥gB | L1n,F (D)
∥
∥n = K−nCap

(

B;L1n,F (D)
)

.

Assume that ϕ0(x) equals ψ(x) on DF \
⋃

Bj∈B ΣBj and is undefined on
⋃

Bj∈B ΣBj . Claim 6 of

Lemma 16 shows that Cap
(⋃

Bj∈B ΣB;L
1
n,F (D)

)

= 0. Hence, ϕ0 and ψ coincide quasieverywhere on DF .

Thus, ϕ0 is now defined on DF \ Sψ, where
Sψ = Sϕ ∪

⋃

Bj∈B

ΣBj ,

while Sϕ is defined in (18). The validity of all claims of Lemma 54 for ϕ0 can be verified directly. �
By the image ϕ0(V ) of an arbitrary set V ⊂ DF we understand ψ

(

V \ Sψ).
4.3. Topological properties of the mapping ϕ0. Continue studying the properties of the

quasicontinuous mapping ϕ0. Note that we consider the balls B(x, r) and the spheres S(x, r) in the
Riemannian metric.
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Proposition 56 [33, Proposition 5]. (1) The mapping ϕ0 is defined and continuous at all points of
the sphere S(x, r) for almost all r ∈ (0,dist(x, ∂DF )).
(2) The mapping ϕ0 is continuous on almost all integral lines of the basis vector fields: For each ball

B(x, r) ⊂ DF and almost all integral lines γ ⊂ B(x, r) of the basis vector field Xi, for i = 1, . . . , n. The
mapping ϕ0 is defined and continuous at all points of γ.

Proposition 57. There exists a negligible set Σ ⊂ DF such that arbitrarily small neighborhoods of
x1, x2 ∈ B \ Σ, where B ⊂ DF is an open ball, contain points that can be connected by a curve γ ⊂ B
on which ϕ0 is continuous.

Proof. Step 1. Fix a countable system

B = {Bj} (24)

of balls in DF constituting a base for open sets U ⊂ DF . Assume that the balls involved enjoy the
properties:
(1) Bj � DF for all j ∈ N;
(2) together with each ball Bj = Bj(xj , rj), the system B also contains the countable collection of

balls centered at xj of radii 2
−krj ;

(3) each ball Bj ∈ B lies in some coordinate neighborhood.
In order to prove Proposition 57, it clearly suffices to find in each ball Bj a negligible set ΣBj ⊂ Bj

such that arbitrarily small neighborhoods of x1, x2 ∈ Bj \ ΣBj contain points that can be connected by
a curve γ ⊂ Bj on which ϕ0 is continuous.
Indeed, if this is established then as Σ ⊂ DF we can take the union

⋃

j ΣBj , which has measure zero.

Two arbitrary points x1, x2 ∈ B \Σ, where B ⊂ DF is some open ball, can be connected by a continuous
curve γ ⊂ B. On this curve we can fix finitely many points x1 = y1, y2, . . . , yl+1 = x2 so that two adjacent
points yj and yj+1 lie in some ball {Bj}, and the balls may repeat. Since the distance from γ to ∂DF

is positive in arbitrarily small neighborhoods of yj , yj+1 ∈ Bj \ ΣBj , there are y′j , y′j+1 ∈ Bj \ ΣBj which
we can connect by a curve γj ⊂ Bj and on which ϕ0 is continuous. It remains to connect yj and y

′
j by

a curve on which ϕ0 is continuous. We can take yj and y
′
j in some cube (see Steps 2 and 3 of the proof)

which guarantees that the required curve exists.

Step 2. Take a ball Bj ∈ B included into some coordinate neighborhood and put B = Bj . In a co-
ordinate neighborhood W ⊃ B consider the constant vector fields ∂

∂xi
, for i = 1, 2, . . . , n. Take a cube

Q ⊂ B with sides parallel to the coordinate axes. We can connect two arbitrary points x1, x2 ∈ Q by
a broken line σ = σ1 ∪ σ2 ∪ · · · ∪ σk, where k ≤ n, consisting of segments of the integral lines of ∂

∂xi
.

Step 3. As a negligible set ΣB ⊂ B, take the collection of all points in B outside the union of all
integral lines of ∂

∂xi
for i = 1, . . . , n, on each of which ϕ0 is continuous; see Proposition 56.

Step 4. Assume that x1, x2 ∈ B \ΣB and take a continuous curve Γ ⊂ B connecting x1 and x2. Put

RΓ =
dist(Γ, ∂B)

Λ
,

where we choose a positive real Λ so that for every point x ∈ Γ the cube Q(x,RΓ) lies in B, with the
sides of Q(x,RΓ) parallel to the coordinate axes, while the edge length f Q(x,RΓ) equals 2RΓ.
Cover Γ with finitely many cubes Qj ⊂ B of the above form with edge length 2RΓ and choose points

x1 = y1, y2, . . . , yl+1 = x2 on this curve so that two adjacent points yj and yj+1 lie in {Qj}, where the
cubes may repeat. By the choice of a suitable cube {Qj}, we can connect yj and yj+1 by a curve γj ⊂ Qj
constructed in Step 1 of the proof. The compound curve γ = γ1∪γ2∪· · ·∪γl need not yet be the required
one because some points y2, . . . , yl may belong to Σ.

Step 5. In order to construct the required curve, take a ball B(y1, ε) of sufficiently small radius such
that the tubular neighborhood

⋃

tB(γ(t), ε) of γ is inside B. For every ε > 0 this tubular neighborhood
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contains a curve that is composed of segments of integral lines of the vector fields ∂
∂xi
, for i = 1, . . . , n,

on each of which ϕ0 is continuous. The initial point of this curve lies in B(x1, ε), while the terminal one,
in B(x2, ε).
Since we can take ε arbitrarily small, the proof of Proposition 57 is complete. �
Given x ∈ T ∩DF , put

B̂(x, r) =
{ ⋃

ρ∈(0,r)
S(x, ρ) | ϕ0 : S(x, ρ)→M′ is continuous

}

⊂ DF .

Therefore, B̂(x, r) differs from B(x, r) only in that we have removed from B(x, r) all spheres S(x, ρ) with
ρ ∈ σx,r ⊂ (0, r) on which ϕ0 is discontinuous and, furthermore, the collection σx,r of these radii is of
measure zero on (0, r).

Lemma 58. Given a sequence {rk} of positive reals converging to 0 as k → ∞, a point x ∈ DF ,

and a sequence uk ∈ B̂(x, rk)∩DF with ϕ0(uk)→ y ∈ D′F as k →∞, where y is some point, the images
ϕ0(B̂(x, rk)) tend to y ⊂ D′F as k →∞; i.e.,

{y} =
⋂

k∈N
ϕ0(B̂(x, rk)) ∈ D′F . (25)

Proof. Obviously, (25) is equivalent to

sup
z∈B̂(x,rk)∩DF

d(ϕ0(z), y)→ 0 (26)

as k → ∞. Assume on the contrary that (26) is false. Then there exist ϑ > 0 and a sequence κk ∈
(0, rk) \ σx,rk of radii satisfying

diam({y} ∪ ϕ0(S(x,κk)) = sup
z∈S(x,κk)∩DF

d(ϕ0(z), y) ≥ ϑ, k ∈ N. (27)

Since uk ∈ B̂(x, rk) ∩DF , it follows that uk ∈ S(x, τk), where τk ∈ (0, rk) \ σx,rk and τk → 0 as k →∞.
Clearly, for k sufficiently large each B(x, rk) lies in some ball Bk = B(xjk , ρjk) of the collection (24)

such that xjk ∈ B(x, rk) and ρjk > 2rk; the latter ensures that B(x, rk) ⊂ Bk. Furthermore, ρjk → 0 as
k →∞, i.e., as rk vanishes, so does ρjk ; see the description of the collection (24) above.
Given k ∈ N, consider the curve γk ⊂ Bk of Proposition 57 with endpoints in B(x,min(τk,κk)) and

Bk \B(x, rk), at whose points ϕ0 is defined and continuous.
Denote the compact set S(x, τk)∪S(x,κk)∪ γk by Kk. Then Kk ⊂ Bk, the set Kk is connected, and

ϕ0 : Kk → D′F is continuous. Using this choice of Kk and Bk = B(xjk , ρjk) and appreciating (23), we
obtain the chain of inequalities

Cap
(

ϕ0(Kk) ∩D′F ;L1n,ϕ(F )(D′)
) ≤ Cap(ϕ0(B̂(x, rk)) ∩D′F ;L1n,ϕ(F )(D′)

)

≤ Cap(ϕ0(Bk) ∩D′F ;L1n,ϕ(F )(D′)
)

≤ K−nCap(Bk;L1n,F (D)
)

= O

((

log
2

ρjk

)1−n)
= o(1) (28)

as k →∞. The last row here follows from the condition uk → x ∈ DF as k →∞ and Remark 38.
From (28) we infer that Cap

(

ϕ0(Kk) ∩D′F ;L1n,ϕ(F )(D′)
) → 0 as k → ∞. Applying Theorem 40 to

the compact set ϕ0(Kk) and taking into account the condition ϕ0(uk)→ y ∈ D′F as k →∞, we find that
diamϕ0(Kk) → 0 as k → ∞. Consequently, diam({y} ∩ ϕ0(Kk)) → 0 as k → ∞. This contradicts (27)
because S(x,κk) ⊂ Kk. �
The next statement shows that the images of concentric spheres on which ϕ0 is continuous contract

to a point as the radius vanishes.
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Corollary 59. If x ∈ T ∩DF then

sup
y∈ϕ0(B̂(x,r))∩DF

d(y, ϕ0(x))→ 0 as r → 0. (29)

Proof. Fix k with x ∈ Tk ∩DF . Assume on the contrary that (29) is false. Then there exist ϑ > 0
and a sequence rl → 0 as l→∞ such that

sup
y∈ϕ0(B̂(x,rl))∩DF

d(y, ϕ0(x)) ≥ 2ϑ

for all l ∈ N. Hence, we extract a sequence κl ∈ (0, rl) \ σx,rl of radii for which
sup

y∈ϕ0(S(x,κl))∩DF
d(y, ϕ0(x)) ≥ ϑ, l ∈ N.

Since x is a positive density point, for all rl there are τl ∈ (0, rl) \ σx,rl with S(x, τl) ∩ Tk �= ∅.
Since ϕ0 is continuous on Tk ∩DF , see Proposition 56, for each choice of the points ul ∈ S(x, τl)∩Tk �= ∅
we have ul → x and ϕ0(ul)→ y = ϕ0(x) ∈ D′F as l→∞. Hence, the sequence ul satisfies all hypotheses
of Lemma 58, which yields (29). �
Proposition 56 and Corollary 59 imply the following properties of ϕ0.

Corollary 60. Assume that x ∈ T ∩ DF . Given a sufficiently small ρ > 0, there is δx,ρ > 0 such
that
(1) for the spheres S(x, r) ⊂ DF of radius r ∈ (0, δx,ρ) \ σx,r their images ϕ0(S(x, r)) lie in

B(ϕ0(x), ρ) ⊂ D′F ; i.e.,
ϕ0(B̂(x, δx,ρ)) ⊂ B(ϕ0(x), ρ) ⊂ D′F ; (30)

(2) for almost all integral lines γ of the basis vector fields, ϕ0(γ ∩B(x, δx,ρ)) lie in B(ϕ0(x), ρ) ⊂ D′F .
Corollary 61. Assume that x ∈ T ∩DF . The balls satisfying (30) enjoy the following property: For

every point y ∈ B(x, δx,ρ) the images ϕ0(B̂(y, τ)) tend to a unique point z ∈ B(ϕ0(x), ρ) ⊂ D′F as τ → 0.
Proof. Fix a sequence τk → 0 as k →∞. For k ∈ N we can find uk ∈ B(x, δx,ρ)∩ B̂(y, τ). We have

uk → x as k → ∞, while ϕ0(uk) ∈ B(ϕ0(x), ρ) ⊂ D′F . Extracting a subsequence, we may assume that
ϕ0(uk)→ y ∈ D′F . Hence, uk satisfies all hypotheses of Lemma 58, which implies the claim. �
Definition 62. Assume that x ∈ T ∩ DF . For ρ > 0 sufficiently small use Corollary 60 to find

δx,ρ > 0 such that

ϕ0(B̂(x, δx,ρ)) ⊂ B(ϕ0(x), ρ) ⊂ D′F .
If y ∈ B(x, δx,ρ) lies in T ∩DF then

lim
z→y,z∈B̂(y,δ1)

ϕ0(z) = ϕ0(y),

where δ1 is a sufficiently small positive real; otherwise the value of ϕ0 at y is unspecified, but by Corol-
lary 61 the limit

lim
z→y,z∈B̂(y,δ2)

ϕ0(z) ∈ D′F

exists, which we take as ϕ0(y). Here δ2 is a sufficiently small positive real.

Consequently, at all points of B(x, δx,ρ) we have defined some mapping that we denote by the same
symbol ϕ0. It has the following property:

ϕ0(y) ∈ B(ϕ0(x), ρ) ⊂ D′F for all y ∈ B(x, δx,ρ). (31)

Moreover, in this case

{ϕ0(y)} =
⋂

r→0
ϕ0(B̂(y, r)) ∈ D′F .
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Proposition 63. The mapping ϕ0 : B(x, δx,ρ)→ B(ϕ0(x), ρ) ⊂ D′F , where x ∈ T ∩DF , is continu-
ous.

Proof. Case 1: y ∈ B(x, δx,ρ) ∩ T ∩DF . By Definition 62, for τ > 0 sufficiently small there exists

δy,τ > 0 such that (31) yields the inclusions ϕ0(B̂(y, δy,τ )) ⊂ B(ϕ0(y), τ) ⊂ B(ϕ0(x), ρ) ⊂ D′F , showing
that ϕ0 is continuous at y ∈ B(x, δx,ρ) ∩ T ∩DF .

Case 2: y ∈ B(x, δx,ρ) \ (T ∩DF ). By Definition 62, for τ > 0 sufficiently small there exists δy,τ > 0

such that ϕ0(B̂(y, δy,τ )) ⊂ B(ϕ0(y), τ) ⊂ B(ϕ0(y), τ) ⊂ D′F .
As in case 1, ϕ0(z) ∈ B(ϕ0(y), τ) ⊂ D′F for every z ∈ B(y, δy,τ ). Hence, we similarly infer that ϕ0 is

continuous at y ∈ B(x, δx,ρ) \ (T ∩DF ). �
Proposition 64. The mappings

ϕ0 : B(x, δx,ρ)→ B(ϕ0(x), ρ), ϕ0 : B(y, δy,ρ)→ B(ϕ0(y), ρ),

where x, y ∈ T ∩DF , coincide on the intersection B(x, δx,ρ)∩B(y, δy,ρ) whenever the latter is nonempty.
Proof. In accordance with Definition 62, we can define the value of ϕ0 at z ∈ B(x, δx,ρ)∩B(y, δy,ρ)

starting with either ϕ0 : B(x, δx,ρ) → B(ϕ0(x), ρ) or ϕ0 : B(y, δy,ρ) → B(ϕ0(y), ρ). There is a ball
B(z, rz) ⊂ B(x, δx,ρ) ∩B(y, δy,ρ) on which both ways yield the same. �
Definition 65. For the points x ∈ T ∩ DF , consider the family of balls B(x, δx,ρ) ⊂ DF from

Definition 62. By Proposition 64, on the open set

U =
⋃

x∈T∩DF
B(x, δx,ρ)

a continuous mapping is well-defined; we denote it by ϕ̃0. Furthermore, U ⊂ DF and |DF \ U | = 0.
The mapping ϕ̃0 : U → D′F obviously extends ϕ0 : T ∩ DF → D′F to a continuous mapping of the

open set U . Since T ∩DF is dense in U , this continuation is unique.

Proposition 66. The mapping ϕ̃0 : U → ϕ̃0(U) is a homeomorphism.

Proof. Proposition 13 implies that
(1) ϕ : T ∩DF → D′F is injective;
(2) ϕ(T ∩DF ) is dense in D

′
F and |D′F \ ϕ(T ∩DF )| = 0;

(3) ϕ : T ∩DF → D′F enjoys the Luzin N - and N −1-properties.
Consequently, by Lemma 14 the inverse mapping ϕ−1 : T ′ → DF , where T

′ = ϕ0(T ), induces the
composition operator ϕ∗−1 : L1p(D) ∩ C∞(D)→ L1p(D

′).
Applying the results established above to ϕ−1 : T ′ → DF , we obtain the continuous mapping ˜ϕ−10 :

V → DF defined on some open set V ⊂ D′F with values in DF ; furthermore, |D′F \ V | = 0. We can do it
so that ϕ̃0(U) = V .
Since ϕ0(T ∩DF ) is dense in V , the above implies that ϕ̃0 : U → V ⊂ D′F is injective and a homeo-

morphism. �
4.4. The mapping ϕ̃0 : U → V is quasiconformal. In this subsection U ⊂ DF is an open set

of Definition 65, while V = ϕ̃0(U). Here is the main result of the subsection.

Proposition 67. ϕ̃0 : U → V is quasiconformal.

Proof. See [35] for instance. However, we will present other arguments here, which are more widely
applicable.
A proof of Proposition 67 reduces essentially to establishing the absolute continuity of ϕ̃0 : U → V

on almost all integral lines of the basis vector fields (briefly, ϕ̃0 ∈ ACL(U)) and the pointwise inequality
|Dϕ̃0(x)| ≤ K|J(x, ϕ̃0)| 1n a.e. on U. (32)

Since ϕ̃0 : U → V is an approximatively differentiable homeomorphism [10, Lemma 21], (2) implies
that the Jacobian J(x, ϕ̃0) is locally integrable on U . Moreover, by Hölder’s inequality, so is the power

J(x, ϕ̃0)
1
n of the Jacobian.
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Lemma 68 [10, Lemma 20]. Consider two Riemannian manifolds M and M′ of the same dimen-
sion n ≥ 2 with two domains D ⊂ M and D′ ⊂ M′ and a measurable mapping ϕ : D → D′ of class IL1n.
If u ∈ Lip(D′) ∩ L1n(D′) and ‖u | L1n(D′)‖ ≤ 1 then

|∇(u ◦ ϕ)|(x) ≤ K · J(x, ϕ) 1n a.e. on D,

where K is some constant.

Lemma 69. Given two Riemannian manifolds M and M′ of the same dimension n ≥ 2 with two
domains D ⊂ M and D′ ⊂ M′ and a measurable mapping ϕ : D → D′ of class IL1n, we have ϕ̃0 ∈
W 1
n,loc(U).

Proof. Verify that ϕ̃0 ∈ ACL(U). Take a countable dense set {zj} of points in V . Define the
countable family of functions drzj : V → R+ by drzj (y) = (r − dzj (y))+, where r ∈ Q+ = {x ∈ Q | x > 0}
and dzj (y) = d(zj , y). Each of these functions satisfies the pointwise equality ϕ

∗drzj (x) = drzj ◦ ϕ̃0(x) for
r ∈ Q+, j ∈ N, and all x ∈ U . Moreover, each of these functions satisfies the hypotheses of Lemma 68.
Therefore,

∣
∣∇(drzj ◦ ϕ̃0)

∣
∣(x) ≤ CJ(x, ϕ̃0) 1n for almost all x ∈ U .

Consider the foliation Γs of the open set U determined by the vector field Xs and its integral line γ.
Almost all lines γ in Γs satisfy the conditions:
(1) ϕ̃0 is continuous on γ; see Proposition 56.
(2) For measurable functions we have the pointwise inequality

∣
∣∇(ϕ̃∗0drzj

)∣
∣(t) ≤ KJ(t, ϕ̃0) 1n , r ∈ Q+, j ∈ N,

almost everywhere on γ, and J(t, ϕ̃0)
1
n is integrable on each compact subset of γ.

(3) For almost all x0 ∈ γ there exists a finite limit of
1

d(x0, x)

∫

[x0,x]

J(t, ϕ̃0)
1
n dσ

as x→ x0 along γ, equal to J(x0, ϕ̃0)
1
n ; here [x0, x] ⊂ γ is a segment of an integral line.

(4) ϕ∗drzj is absolutely continuous on γ for all j ∈ N and r ∈ Q+.
Fix a curve γ ∈ Γs on which all four properties hold.
Assume that x0 ∈ U ∩ γ is a point of positive linear density on γ at which condition (3) holds.

Put z = ϕ̃0(x0). Fix a subsequence {zjl} of {zj} converging to z = ϕ̃0(x0) and keep for the entries the
notation zl. Since ϕ̃0 is continuous on γ at x0, we can choose δ, r, and L so that ϕ̃0(B(x0, δ) ∩ γ) ⊂ V
(see Corollary 60) and drzl ◦ ϕ̃0(x) �= 0 for all l ≥ L and all x ∈ B(x0, δ) ∩ γ.
Integrating KJ(x, ϕ̃0)

1
n , where K is independent of r and z, over the part of γ from x0 to x, where

x ∈ B(x0, δ) ∩ γ, we infer that

K

∫

[x0,x]

J(t, ϕ̃0)
1
n dt ≥

∫

[x0,x]

∣
∣∇(ϕ̃∗0drzj

)∣
∣(t) dt

≥ ∣∣drzl ◦ ϕ̃0(x0)− drzl ◦ ϕ̃0(x)
∣
∣ = |r − dzl(ϕ̃0(x0))− r + dzl(ϕ̃0(x))|

= | − dzl(ϕ̃0(x0)) + dzl(ϕ̃0(x))| → dz(ϕ̃0(x)) = d(ϕ̃0(x0), ϕ̃0(x)) as l→∞.
Therefore,

d(ϕ̃0(x0), ϕ̃0(x)) ≤ K
∫

[x0,x]

J(t, ϕ̃0)
1
n dσ (33)

for all x ∈ B(x0, δ) ∩ γ. With (33) the absolute continuity of the integral implies that ϕ̃0 is absolutely
continuous on B(x0, δ) ∩ γ.
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Since the choices of basis fields Xj , the integral lines γ ∈ Γj , and z0 ∈ γ are arbitrary, ϕ̃0 is absolutely
continuous along almost all integral lines.
From (33) we have

d(ϕ̃0(x0), ϕ̃0(x))

d(x0, x)
≤ K

d(x0, x)

∫

[x0,x]

J(t, ϕ̃0)
1
n dσ.

Passing to the limit as x→ x0, we obtain

|Xsϕ̃0(x0)| ≤ KJ(x0, ϕ̃0) 1n . (34)

Consequently, |Xsϕ̃0| ∈ Ln,loc(DF ) for all s and ϕ̃0 ∈W 1
n,loc(U). �

For other properties of mappings of Sobolev classes on a Riemannian manifold, in particular the
change-of-variables formula, see [36] for instance.

Proof of Proposition 67. Lemma 69 shows that ϕ̃0 : U → V lies in the Sobolev class W 1
n,loc(U).

Inequality (32) follows from (34).

4.5. The local connectedness of U and V . Put S = DF \ U . Assume that x ∈ S. The two
cases are possible:

(1) there is r0 > 0 such that ϕ̃0(B̂(x, r)) ⊂ D′F for all r < r0;
(2) ϕ̃0(S(x, rk)) ∩ ∂D′F �= ∅ for some sequence rk → 0.
In case 1 we can assign the value of ϕ̃0 at x by putting

ϕ̃0(x) =
⋂

r→0
ϕ̃0(B̂(x, r)) ∈ D′F .

This value of ϕ̃0(x) leads to a situation like in Definition 62. Consequently, we can prescribe ϕ̃0(x)
not only at x, but also at the points in some ball B(x, δx,ρ) by the method of Definition 62. As in
Proposition 63, we prove that ϕ̃0 : B(x, δx,ρ) → D′F is continuous at all points in B(x, δx,ρ). Therefore,
we can increase U and V while decreasing S.
Assume henceforth that (2) holds for all x ∈ S.
Take x ∈ S. There is a sequence {xk ∈ U} converging to x such that ϕ̃0(xk) → ∂D′ as k → ∞.

In this case the following lemma applies:

Lemma 70. B(x, r) ∩ U is connected for every ball B(x, r) ⊂ DF centered at some x ∈ S.
Proof. Suppose that the claim is false and B(x, r) ∩ U consists of several connected components.

Then ∂D′F divides ϕ̃0(B(x, r)) into several connected components: ϕ̃0(B(x, r)) = V1 ∪ V2 ∪ · · · or D′F \
ϕ̃0(S(x, r)) = V0 ∪ V1 ∪ V2 ∪ · · · .
In DF consider the smooth cutoff

η =

{
1 on B(x, r/2),

0 outside B(x, r).

Assume, for instance, that
∣
∣ϕ̃−10 (V1) ∩B(x, r/2)

∣
∣ > 0. Construct g : D′F → R satisfying

g(y) =

{
η ◦ ϕ̃−10 (y) on V1,

0 on V0 ∪ V2 ∪ V3 ∪ · · · .
Clearly, g is a continuous function on V . Verify that g ∈ L1n,ϕ(F )(D′). Since

ϕ̃0 : B(x, r) ∩ U → ϕ̃0(B(x, r)) ∩ V
is quasiconformal, g belongs to L1n(ϕ̃0(B(x, r)) ∩ V ). Consequently, g is locally integrable and has
generalized derivatives in ϕ̃0(B(x, r)) ∩ V summable to power n. In particular, in some coordinate
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neighborhood W ′ of M′ the function g is absolutely continuous on almost all integral lines of the basis
vector fields ∂

∂xj
, and the derivatives vj =

∂g
∂xj
exist a.e. in ϕ̃0(B(x, r))∩ V for j = 1, 2, . . . , n. It remains

to show that vj is a generalized derivative of g in W
′; namely,

∫

W ′

g(y) · ∂η
∂xj
(y) dy = −

∫

W ′

vj(y) · η(y) dy (35)

for every test function η ∈ C∞0 (W ′). Fubini’s Theorem yields
∫

W ′

g(y) · ∂η
∂xj
(y) dy =

∫

PrjW ′

dy1 . . . d̂yj . . . dyN

∫

Pr−1j (y)∩W ′

g(y) · ∂η
∂xj
(y) dyj ,

where PrjW
′ is the projection of W ′ to the hypersurface transversal to the vector field ∂

∂xj
and Pr−1j (y)

is the integral line of ∂η
∂xj
passing through y ∈ PrjW ′. Since g = 0 on V0 ∪ V2 ∪ V3 ∪ · · · , we obtain

∫

Pr−1j (y)∩W ′

g(y) · ∂η
∂xj
(y) dyj =

∫

Pr−1j (y)∩V0∪V1∩V2∪...

g(y) · ∂η
∂xj
(y) dyj =

∫

Pr−1j (y)∩V1

g(y) · ∂η
∂xj
(y) dyj .

We can express Pr−1j (y) ∩ V1 as the countable union of intervals: Pr−1j (y) ∩ V1 =
⋃

l γl. Then

∫

Pr−1j (y)∩V1

g(y) · ∂η
∂xj
(y) dyj =

∑

l

∫

γl

g(y) · ∂η
∂xj
(y) dyj .

Integrating by parts, we see that

∫

γl

g(y) · ∂η
∂xj
(y) dyj = g(y)ψ(y)

∣
∣
∣

γl(t
l
1)

γl(t
l
0)
−
∫

γl

∂g

∂xj
(y) · ψ(y) dyj .

Observe that γl
(

tl0
) ∈ ∂V1 and the two cases are possible:

(1) γl
(

tl0
) ∈ D′F and then g

(

γl
(

tl0
))

= 0;

(2) γl
(

tl0
) ∈ ∂D′F and then ψ

(

γl
(

tl0
))

= 0.

The situation is similar for γl
(

tl1
)

. Therefore, the term outside the integral vanishes:

g(y)ψ(y)
∣
∣
γl(t

l
1)

γl(t
l
0)
= 0,

and we have justified (35). Consequently, g ∈ L1n,ϕ(F )(W ′). Since W ′ ⊂ D′F is an arbitrary coordinate
neighborhood, g ∈ L1n,ϕ(F )(D′F ).
Moreover, ϕ∗g belongs to L1n,F (D) and a.e. on B(x, r/2) takes only two values 0 and 1. Consequently,

∇ϕ∗g = 0 a.e. on B(x, r/2), and so ϕ∗g = g ◦ ϕ̃0 is a constant function on B(x, r/2). The resulting
contradiction leads to the conclusion that B(x, r) ∩ U is connected. �
The image has a similar property.

Lemma 71. B(y, r) ∩ V is connected for every ball B(y, r) ⊂ D′F centered at some y ∈ ϕ0(S).
4.6. Continuation of ϕ̃0 to S and the properties of the continuation. In this subsection we

need the following lemma:
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Lemma 72. Given two curves γ1, γ2 : [0, 1) → V with positive distance between them, no point
of DF can be a limit point for both preimages β1 = ϕ̃0

−1(γ1) and β2 = ϕ̃0−1(γ2).
Proof. Assume on the contrary that some y ∈ DF is a limit point for both ϕ̃0

−1(γ1) and ϕ̃0−1(γ2):
there exist two sequences tk ∈ [0, 1) and τk ∈ [0, 1) with tk → 1 and τk → 1 as k → ∞ such that
β1(tk)→ y and β2(τk)→ y as k →∞. Consider a continuous function g ∈ L1n(D′) with g = 0 on γ1 and
g = 1 on γ2. Then f = g ◦ ϕ̃0 : U → R is a continuous function taking the values 0 on β1 and 1 on β2.
Moreover, ϕ∗(g) ∈ L1n(D). The existence of this function contradicts Proposition 45. �
Verify that the mapping ϕ̃0 extends to the subset of S excluding the points that are possibly mapped

to the point at infinity. Take x ∈ S. The two cases are possible:
(1) For some sequence {xn ∈ U} converging to x the sequence of images ϕ̃0(xn) converges to some

z ∈ ∂D′F .
(2) For every sequence {xn ∈ U} converging to x we have the convergence d(ϕ̃0(xn), x0) → ∞,

where x0 is a fixed point of the compact set ϕ(F ). This case is treated below.
Let us show that in the first case ϕ̃0 extends by continuity at x ∈ S.
Proposition 73. The mapping ϕ̃0 : U → V extends by continuity at all points x ∈ S, for each

of which there exists a sequence {xn ∈ U} converging to x such that the sequence of images ϕ̃0(xn)
converges to some z ∈ ∂D′F . The extended mapping is injective.
Proof. Verify that the limit z is independent of the choice of {xn}. Take another sequence U �

x′n → x with ϕ̃0(x
′
n) → z′ ∈ ∂D′F and suppose that z �= z′. Since V is locally connected, we can

construct two curves γ, γ′ ⊂ V lying at some positive distance dist(γ, γ′) ≥ δ > 0 from each other and
passing through the images ϕ̃0(xn) and ϕ̃0(x

′
n) respectively starting with some n > n0. Then ϕ̃0

−1(γ)
and ϕ̃0

−1(γ′) have the limit point x ∈ DF . Lemma 72 yields a contradiction.
Extend ϕ̃0 by putting ϕ̃0(x) = z. This yields a continuous extension of ϕ̃0 to S with the exception

of the points mapped to the point at infinity. Denote the extension by the same symbol.
Verify that ϕ̃0 is injective. Suppose that there is z ∈ Z with z = ϕ̃0(x1) = ϕ̃0(x2), where x1, x2 ∈ S

and x1 �= x2. Consider two curves γ1 and γ2 passing through x1 and x2 respectively and lying at some
positive distance δ = dist(γ1, γ2) from each other. Consider arbitrary sequences

{

x1n ∈ U
}

and
{

x2n ∈ U
}

such that xin → xi as n → ∞ and xin ∈ γi. Construct a sequence of curves σn connecting the points
ϕ̃0
(

x1n
)

and ϕ̃0
(

x2n
)

so that diamσn → 0. Then Cap
(

ϕ̃−10 (σn);L1n(U)
) → 0 and diam ϕ̃−10 (σn) → 0. We

arrive at a contradiction because diam ϕ̃−10 (σn) ≥ δ. �
Thus, of S only those points remain that match the second case preceding Proposition 73. The

following statement shows that if S is nonempty then S amounts to a single point.

Lemma 74. At most one point xinv ∈ S may exist such that for every sequence {xn} ⊂ U converging
to xinv we have d(ϕ̃0(xn), x0)→∞ as n→∞ (the case of inversion).
Proof. Firstly, verify that S has capacity zero. Choose a ball B(0, r0) with ϕ(F ) ⊂ B(0, r0),

and a sequence of balls B(0, Rk), for k ∈ N, such that Rk > r and limk→∞Rk = ∞. Observe that
S ⊂ ⋂k ϕ̃−10 (M′ \B(0, Rk)).
We have

Cap
(

S;L1n,F (D)
) ≤ Cap(ϕ̃−10 (M′ \B(0, Rk)) ∩DF ;L

1
n,F (D)

)

≤ KnCap
(

(M′ \B(0, Rk)) ∩D′F ;L1n,ϕ(F )(D′)
) ≤ KnCap

(

M
′ \B(0, Rk);L1n,ϕ(F ))(M′)

)

.

By Definition 3, Cap
(

M
′ \B(0, Rk);L1n,ϕ(F ))(M′)

)

vanishes as k →∞. Thus, Cap(S;L1n,F (D)
)

= 0.

Verify that S cannot contain more than one point. Assume on the contrary that there are two dis-
tinct points x1, x2 ∈ S satisfying the properties mentioned. Consider two sequences

{

x1n
}

,
{

x2n
} ⊂ U with

limn→∞ x1n = x1 and limn→∞ x2n = x2. Choose two spheres S(x1, r1), S(x2, r2) ⊂ U on which ϕ̃0 is contin-
uous (see Proposition 56) and such that B(x1, r1) ∩B(x2, r2) = ∅. Since ϕ̃0 is continuous and injective,
800



ϕ̃0(S(x1, r1)) subdivides D
′
F into two connected components, one bounded and one unbounded; further-

more, ϕ̃0(B(x1, r1) \ S) lies in the unbounded component, whereas ϕ̃0(U \B(x1, r1)) lies in the bounded
component. On the other hand, B(x2, r2) \ S ⊂ U \B(x1, r1), and consequently ϕ̃0(B(x2, r2) \ S) lies in
the bounded component D′F \ ϕ̃0(S(x1, r1)), which contradicts the assumption that d

(

ϕ̃0
(

x2n
)

, x0
)→∞

as n→∞. �
As a result, we obtain a continuous injective mapping ϕ̃0 : DF \ {xinv} → D′F .

Proposition 75. ϕ̃0 : DF \ {xinv} → ϕ̃0(DF \ {xinv}) is a homeomorphism.
Proof. It suffices to verify that

ϕ̃0 : DF \ {xinv} → ϕ̃0(DF \ {xinv})
is open. Indeed, for every ball B(x, r) ⊂ DF \ {xinv} we have μ(ϕ̃0, B(x, r), ϕ0(x)) �= 0. From this we see
that ϕ̃0(x) is an interior point of the image.
Now we can prove that ϕ̃0 is of Sobolev class W

1
n,loc(DF \ {xinv}), extending Lemma 69.

Lemma 76. Given two Riemannian manifolds M and M′ of the same dimension n ≥ 2 with two
domains D ⊂ M and D′ ⊂ M′ and a measurable mapping ϕ : D → D′ of class IL1n, we have ϕ̃0 ∈
W 1
n,loc(DF \ {xinv}).
Proof. This lemma is straightforward from Lemma 69. In the hypotheses of the latter, we should

take DF \ {xinv} as U . �
The argument above implies

Proposition 77. ϕ̃0 : DF \ {xinv} →M′ is quasiconformal.
Proof. The previous statements show that the homeomorphism ϕ̃0 is of class W

1
n(DF \ {xinv}),

and the pointwise inequality |D(x, ϕ̃0)| ≤ K|J(x, ϕ)| 1n holds almost everywhere in DF \ {xinv} because
|S| = 0; observe that J(x, ϕ) = J(x, ϕ̃0) almost everywhere. Consequently, ϕ̃0 : DF \ {xinv} → M′ is
quasiconformal. �
Proposition 78. ϕ̃0 : D \ {xinv} →M′ is quasiconformal.
Proof. Choose another closed set F1 ⊂ Tk0 of positive measure without isolated points lying at pos-

itive distance from F . Repeating the procedure described above, we can show that ϕ̃0 is quasiconformal
on the open set D \ {xinv}. �
4.7. Proof of Theorem 2. Let us now prove the main result of this article.

Sufficiency. We may assume that ϕ : D → D′ is quasiconformal. By Definition 4, the quasicon-
formal mapping ϕ is locally of Sobolev class, ϕ ∈W 1

n,loc. Moreover, ϕ is differentiable and has the Luzin

N - and N −1-properties [36].
For every f ∈ L1n(D

′) ∩ C∞(D′) the composition f ◦ ϕ is absolutely continuous on almost all in-
tegral lines of the basis vector fields because so is f . Moreover, [17, p. 263] shows that ∇L (f ◦ ϕ) =
Dhϕ

T (x)∇L f(ϕ(x)), where Dϕ(x) = {Xiϕj(x)} for i, j = 1, . . . , n1 is the differential. Hence,
∫

D

|∇L (f ◦ ϕ)|n dx =
∫

D

|Dhϕ
T (x)∇L f(ϕ(x))|n dx

≤
∫

D

|Dhϕ
T (x)|n · |∇L f(ϕ(x))|n dx =

∫

D

|∇L f |n(ϕ(x)) · |Dhϕ(x)|n dx

≤ K
∫

D

|∇L f |n(ϕ(x)) · |J(x, ϕ)| dx =
∫

D′

|∇L f |n(y) dy.

Here we use the pointwise inequality |Dhϕ(x)|n ≤ K|J(x, ϕ)| for almost all x ∈ D and (2).
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By Lemma 14, the resulting inequality holds for all f ∈ L1n(D′); i.e.,
∥
∥ϕ∗(f) | L1n(D)

∥
∥ ≤ K 1

n

∥
∥f | L1n(D′)

∥
∥.

The mapping ϕ−1 is also quasiconformal. Then for g ∈ L1n(D) we have
∥
∥ϕ−1∗(g) | L1n(D′)

∥
∥ ≤ K

1
n
1

∥
∥g | L1n(D)

∥
∥, (36)

where K1 is the quasiconformality coefficient of the inverse mapping. Observe that f ∈ L1n(D′)∩C∞(D′)
satisfies ϕ−1∗(f ◦ ϕ) = f . Consequently, (36) becomes K−

1
n

1

∥
∥f | L1n(D′)

∥
∥ ≤ ∥∥ϕ∗(f) | L1n(D)

∥
∥. Thus,

K
− 1
n

1

∥
∥f | L1n(D′)

∥
∥ ≤ ∥∥ϕ∗(f) | L1n(D)

∥
∥ ≤ K 1

n

∥
∥f | L1n(D′)

∥
∥, (37)

where the constants K and K1 depend only on the properties of ϕ.
In order to verify that ϕ∗

(

L1n(D
′)∩C∞(D′)) is dense in L1n(D), take g ∈ L1n(D). There is a sequence

gn ∈ L1n(D)∩C∞(D) with
∥
∥g−gn | L1n(D)

∥
∥→ 0. On the other hand, (37) yields gn◦ϕ−1 ∈ L1n(D′). Hence,

there is a sequence fnk ∈ L1n(D′)∩C∞(D′) with
∥
∥gn ◦ϕ−1−fnk | L1n(D′)

∥
∥→ 0 as k →∞. Then for some

sequence ln of positive integers we have ϕ
∗fnln ∈ ϕ∗

(

L1n(D
′) ∩ C∞(D′)) and ∥∥g − ϕ∗fnln | L1n(D)

∥
∥ → 0

as n→∞.
Necessity. The existence of a quasiconformal mapping Φ is established in Lemma 76; moreover,

Φ = ϕ̃0 : D \ {xinv} →M′. Basing on the argument above, we see that the composition operator
Φ∗ : L1n(Φ(D \ {xinv}))→ L1n(D \ {xinv})

is an isomorphism. Since evidently L1n(D \ {xinv}) = L1p(D), this yields the isomorphism

ϕ∗−1 ◦ Φ∗ : L1n(Φ(D \ {xinv}))→ L1n(D
′)

satisfying ϕ∗−1 ◦ Φ∗(f)(x) = f(x) for all points x ∈ Φ(D \ {xinv}) ∩D′, where f ∈ L1n(Φ(D \ {xinv}) is
an arbitrary function.
Consequently, the restriction operator makes the space L1n(Φ(D \ {xinv}) ∪D′) isomorphic to both

L1n(Φ(D \ {xinv})) and L1n(D′). Thus, Φ(D \ {xinv}) and D′ are (1, n)-equivalent domains.
By analogy with Theorem 3.1 of [12] and Proposition 6.10 of [13], we can obtain the properties:
(1) |Φ(D)ΔD′| = 0;
(2) B \ Φ(D)ΔD′ is connected for every ball B ⊂ D′. �
4.8. Corollary: removable sets for quasiconformal mappings. Recall that a closed set E ⊂ D

is called removable for quasiconformal mappings whenever each quasiconformal mapping ϕ : D \E →M′
extends to a quasiconformal mapping of D.

Corollary 79. Consider U ⊂ D such that U and D are (1, n)-equivalent. Then D \ U is removable
for quasiconformal mappings.

Proof. Take a quasiconformal mapping ϕ1 : U →M′. To prove the corollary, we need to construct
a quasiconformal continuation of ϕ1 to D.
By Theorem 2, the composition operator ϕ∗1 : L1n(ϕ1(U))→ L1n(U) is an isomorphism. Since U and D

are (1, n)-equivalent sets, the restriction operator r∗ : L1n(D)→ L1n(U) is also an isomorphism.
Consider a measurable mapping ϕ : D → ϕ1(U) with ϕ(x) = ϕ1(x) for x ∈ U . The composition

operator ϕ∗ : L1n(ϕ1(U))∩C∞(ϕ1(U))→ L1n(D) defined as ϕ
∗f = f◦ϕ extends to an isomorphism between

L1n(ϕ1(U)) and L
1
n(D) because ϕ

∗f = r∗−1◦ϕ∗1f for f ∈ L1n(ϕ1(U))∩C∞(ϕ1(U)). By Theorem 2, there is
a quasiconformal mapping Φ : D →M′ coinciding with ϕ almost everywhere. Furthermore, Φ(x) = ϕ(x)
if x ∈ U . Thus, Φ is a required continuation. �
802



References

1. Vodopyanov S. K. and Goldshtein V. M., “Lattice isomorphisms of the spaces W 1n and quasiconformal mappings,” Sib.

Math. J., vol. 16, no. 2, 174–189 (1975).

2. Vodopyanov S. K. and Goldshtein V. M., “Functional characteristics of quasi-isometric mappings,” Sib. Math. J., vol. 17,

no. 4, 580–584 (1976).

3. Romanov A. S., “A change of variable in the Bessel and Riesz potential spaces,” in: Functional Analysis and Mathe-

matical Physics [Russian], Inst. Mat., Novosibirsk, 1985, 117–133.

4. Vodop’yanov S. K., “Composition operators on Sobolev spaces,” in: Complex Analysis and Dynamical Systems II.

Contemporary Mathematics, Amer. Math. Soc., Providence, 2005, 247–301 (Contemp. Math.; V. 382).

5. Vodopyanov S. K., “Lp-Potential theory and quasiconformal mappings on homogeneous groups,” in: Modern Problems

of Geometry and Analysis [Russian], Nauka, Novosibirsk, 1989, 45–89.

6. Vodopyanov S. K. and Evseev N. A., “Isomorphisms of Sobolev spaces on Carnot groups and quasi-isometric mappings,”

Sib. Math. J., vol. 55, no. 5, 817–848 (2014).

7. Vodopyanov S. K. and Evseev N. A., “Isomorphisms of Sobolev spaces on Carnot groups and metric mapping properties,”

Dokl. Math., vol. 82, no. 2, 232–236 (2015).

8. Vodopyanov S. K. and Evseev N. A., “Isomorphisms of Sobolev spaces on Carnot groups and quasiconformal mappings,”

Sib. Math. J., vol. 56, no. 5, 789–821 (2015).

9. Vodopyanov S. K., “On admissible changes of variables for Sobolev functions on (sub)Riemannian manifolds,” Dokl.

Math., vol. 93, no. 3, 318–321 (2016).

10. Vodopyanov S. K., “Admissible changes of variables for Sobolev functions on (sub-)Riemannian manifolds,” Sb. Math.,

vol. 210, no. 1, 59–104 (2019).

11. Federer H., Geometric Measure Theory, Springer-Verlag, New York (1969).

12. Vodopyanov S. K. and Goldshtein V. M., “Criteria for the removability of sets in spaces of L1p quasiconformal and

quasi-isometric mappings,” Sib. Math. J., vol. 18, no. 1, 35–50 (1977).

13. Chernikov V. M. and Vodopyanov S. K., “Sobolev spaces and hypoelliptic equations. I,” Siberian Adv. Math., vol. 6,

no. 3, 27–67 (1996).

14. Chernikov V. M. and Vodopyanov S. K., “Sobolev spaces and hypoelliptic equations. II,” Siberian Adv. Math., vol. 6,

no. 4, 64–96 (1996).

15. Reshetnyak Yu. G., “Sobolev-type classes of functions with values in a metric space,” Sib. Math. J., vol. 38, no. 3,

567–582 (1997).

16. Vodopyanov S. K., “P -Differentiability on Carnot groups in various topologies and related topics,” in: Studies on

Analysis and Geometry [Russian], Izdat. Inst. Mat., Novosibirsk, 2000, 603–670.
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vector fields,” Ann. Inst. Fourier (Grenoble), vol. 45, no. 2, 577–604 (1992).

24. John F., “Rotation and strain,” Comm. Pure Appl. Math., vol. 14, 391–413 (1961).

25. Stein E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University

Press, Princeton, NJ (1993).

26. Reshetnyak Yu. G., “The concept of capacity in the theory of functions with generalized derivatives,” Sib. Math. J.,

vol. 10, no. 5, 818–842 (1969).

27. Mazya V. G. and Havin V. P., “Non-linear potential theory,” Russian Math. Surveys, vol. 27, no. 6, 71–148 (1972).

803



28. Heinonen J. and Kilpelänen T., and Martio O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon

Press, Oxford (1993).

29. Choquet G., “Theory of capacities,” Ann. Inst. Fourier (Grenoble), vol. 9, 83–89 (1959).

30. Bojarski B., “Remarks on some geometric properties of Sobolev mappings,” in: Functional Analysis and Related Topics

(S. Koshi (ed.)), World Scientific, Singapore, 1991, 65–76.

31. Kinnunen J. and Latvala V., “Lebesgue points for Sobolev functions on metric spaces,” Rev. Mat. Iberoam., vol. 18,

685–700 (2002).
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