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Abstract
Purpose  The aim of this study is to detect the presence of blood spinal cord barrier (BSCB) disruption in patients with 
degenerative cervical myelopathy (DCM).
Methods  In this prospective non-randomized controlled cohort study, 28 patients with DCM were prospectively included. 
All patients had indication for neurosurgical decompression. Furthermore, 38 controls with thoracic abdominal aortic 
aneurysm (TAAA) and indication for surgery were included. All patients underwent neurological examination. Regarding 
BSCB disruption and intrathecal immunoglobulin (Ig) concentrations, cerebrospinal fluid (CSF) and blood serum were 
examined for albumin, IgG, IgA and IgM. Quotients (Q) (CSF/serum) were standardized and calculated according to Reib-
ers’ diagnostic criteria.
Results  Patients and controls distinguished significantly in their clinical status. AlbuminQ, as expression of BSCB disruption, 
was significantly increased in the DCM patients compared to the controls. Quotients of IgG and IgA differed significantly 
between the groups as an expression of intrathecal diffusion. In the subgroup analysis of patients with mild/moderate clinical 
status of myelopathy and patients with severe clinical status, the disruption of the BSCB was significantly increased with 
clinical severity. Likewise, IgAQ and IgGQ presented increased quotients related to the clinical severity of myelopathy.
Conclusion  In this study, we detected an increased permeability and disruption of the BSCB in DCM patients. The severity 
of BSCB disruption and the diffusion of Ig are related to the clinical status in our patient cohort. Having documented this 
particular pathomechanism in patients with DCM, we suggest that this diagnostic tool cloud be an important addition to 
surgical decision making in the future.
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Parameters M [SD] M [SD] M [SD] M [SD] p p

CSF Lactate (mmol/l) 1.6 [0.2] 1.5 [0.1] 1.7 [0.2] 1.5 [0.4] 0.395 0.070

CSF Protein (g/l) 0.5 [0.2] 0.46 [0.1] 0.6 [0.2] 0.3 [0.1] <0.001 0.107

CSF Glucose (mg/dl) 57.6 [9.3] 61.1 [4.8] 55.9 [10.6] 58.8 [16.3] 0.772 0.227

CSF Albumin (mg/dl) 36.6 [13.9] 28.6 [12.3] 40.6 [13.3] 15.2 [5.6] <0.001 0.060

AlbQ (n x 10-3) 
(CSF/Serum)

10.0 [3.5] 7.5 [2.4] 11.3 [3.2] 4.8 [1.9] <0.001 0.013

IgAQ (n x 10-3) 
(CSF/Serum)

2.7 [1.2] 1.7 [0.7] 3.1 [1.1] 1.5 [0.8] <0.001 0.007

IgGQ (n x 10-3) 
(CSF/Serum)

4.7 [1.7] 3.5 [1.0] 5.2 [1.6] 2.4 [0.9] <0.001 0.017

IgMQ (n x 10-3) 
(CSF/Serum)

0.6 [0.3] 0.3 [0.1] 0.7 [0.2] 0.7 [0.6] 0.453 0.002
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Introduction

The spinal cord is an immunologically privileged compart-
ment. As a boundary layer between the spinal cord and the 
periphery, the blood spinal cord barrier (BSCB) forms a 
physical and biochemical barrier between the central nerv-
ous system (CNS) and systemic circulation and protects the 
microenvironment of the spinal cord [1]. Disruption of the 
BSCB is associated with several acute and neurodegenera-
tive diseases such as amyotrophic lateral sclerosis (ALS), 
multiple sclerosis (MS), peripheral nerve lesion and spinal 
cord injury [1–4]. To date, the research on BSCB has mainly 
focused on the association with acute spinal cord injury 
(SCI). Diseases or injuries of the CNS with increased BSCB 
permeability promote edema formation into the spinal cord 
parenchyma and allow the entrance of inflammatory cells 
derived from the peripheral circulation into the spinal cord 
parenchyma [5]. The consequences of BSCB dysfunction are 
the invasion of blood located cells, proteins and molecules in 
the injured parenchyma [6–9]. These secondary pathophysi-
ological cascades contribute to further spinal cord damage 
and extend the damage into areas of the spinal cord, which 
had not been primarily affected [6, 10, 11]. One of these 
pathophysiological players, of ongoing secondary injury, is 
the immune-mediated inflammatory response [12]. There-
fore, BSCB disruption can be the initiation of endogenous 
pathways of inflammation, angiogenesis and activation of 
macrophages, explaining the secondary injury of the spinal 
cord [13]. Patients with chronic progressive, cervical spinal 
stenosis suffer from repetitive microtraumas of the spinal 
cord [14]. Similar to acute SCI, the mechanisms of second-
ary damage of the spinal cord in patients with degenerative 
cervical myelopathy (DCM) via proinflammatory cytokines, 
increased macrophage/microglia expression and Wallerian 
degeneration have been presented in several studies [5, 
15–18].

Concerning the diagnosis of a BSCB impairment, mag-
netic resonance imaging (MRI) has been used, to reflect the 
pathological changes within the spinal cord through changes 
in signal intensity (SI) in patients with cervical myelopathy 
[19, 20]. Additionally, contrast gadolinium-diethylene-tri-
amine-penta acetic acid (Gd-DTPA)-enhanced MRI provides 
information about the integrity of the spinal cord. Several 
studies have reported contrast Gd-DTPA enhancement 
in the spinal cord in MR images in patients with cervical 
myelopathy [21, 22]. However, the mechanism of contrast 
(Gd-DTPA) enhancement, as a rare phenomenon and sign 
of BSCB disruption, has not been fully explained in patients 
with cervical myelopathy [23].

BSCB impairment is a potential promoter of inflamma-
tory and angiogenic reactions and has only been documented 
in one animal model of DCM in the context of endogenous 
inflammatory reactions so far [16]. However, there has been 
no direct proof of BSCB disruption in patients with DCM in 
molecular condition. The aim of this study was to detect the 
presence of BSCB disruption in patients with DCM, using 
the established Reiber diagnostic criteria [24].

Methods

Study procedure and subject characteristics

Study approval was given by the local ethics committee of 
the Medical Faculty of the XXX University (EK 164/13). 
Before investigation, all participants of this study gave writ-
ten informed consent complying with the Declaration of 
Helsinki (Medical Association 2008). Any participant who 
showed neurological disorders other than DCM (e.g., neuro-
degenerative diseases ALS, MS), history of cerebral stroke, 
cerebral hemorrhage, central nervous infections or spinal 
trauma) was excluded from study participation.

DCM patients with moderate (mJOA 12-14) and severe 
(mJOA 11-0) clinical signs of myelopathy and consisting 
of imaging findings of degenerative cervical spinal steno-
sis decompressive surgery were offered as first line therapy. 
Patients with mild (mJOA 14-17) signs of myelopathy sur-
gery or conservative management with structured rehabilita-
tion are possible options. In case of clinical deterioration, 
surgical intervention was strongly recommended. In gen-
eral, the management of patients was performed according 
to the AOSPINE guidelines for DCM [25, 26]. Twenty-eight 
consecutive patients with DCM and indication for surgical 
decompression were enrolled. Four patients of the DCM 
group rejected study associated lumbar puncture; in three 
patients, lumbar puncture was unsuccessful. These patients 
were excluded due to missing cerebrospinal fluid (CSF) sam-
ples. In the thoracic-abdominal aortic aneurysm (TAAA) 
group implantation of lumbar drainage failed in five patients, 
and these patients were excluded as well due to missing CSF 
samples (Fig. 1).

Twenty-one patients (12 female; 9 male; mean age 
63.3 ± 11.6  years) with DCM and indication for cervi-
cal decompression and 33 control patients (12 female; 
21 male; mean age 62.3 ± 15.2 years) with TAAA were 
included in the study. All participants underwent surgery. 
The two groups did not differ with regard to age [t(52) = .26; 
p = 0.796] (Table 1).
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In DCM patients, CSF samples were taken preoperatively 
via lumbar puncture or as part of myelography in accordance 
with the given indication and contraindication for magnetic 
resonance imaging (e.g., cardiac pacemakers). The TAAA 
patients routinely received CSF drainage during surgery 
for intraoperative intrathecal pressure monitoring. Blood 
serum samples were taken simultaneously from all patients 
for calculation of CSF composition and detection of BSCB 
disruption. In general, a Queckenstedt maneuver was carried 
out in each DCM patient [27]. Furthermore, each CSF was 
monitored for an Froin’s syndrome [28].

Moreover, all patients underwent neurological exami-
nation and the objective functional status was assessed by 
modified Japanese Orthopaedic Association Score (mJOA) 
(normal function: 18 points; mild myelopathy: 15–17 points; 

moderate: 12–14 points; severe: 0–11 points) and Neck Dis-
ability Index (NDI) [29–31].

Cerebrospinal fluid analysis/Reiber diagnostic 
criteria [24]

CSF samples and blood serum samples were taken simulta-
neously before surgery and directly transferred to the labo-
ratory for examination. Routine laboratory findings of CSF 
were determined: CSF cell count (/µ), lactate (mmmol/l), 
protein concentration (g/l). Regarding BSCB and intrathecal 
immunoglobulin (Ig) concentrations, CSF and blood serum 
samples were examined via simultaneous nephelometric 
quantification (BN ProSpec® System, Siemens Healthineers) 
for albumin, IgG, IgA and IgM (all mg/dl). Quotients (Q) 

Fig. 1   Flowchart of enrolled 
patients (DCM) and controls 
(TAAA) and finally included 
subjects. CSF cerebrospinal 
fluid, DCM degenerative cervi-
cal myelopathy, LD lumbar 
drainage, LP lumbar puncture, 
TAAA​ thoracic-abdominal aortic 
aneurysm

38 TAAA pa�ents with 
indica�on for surgical 

treatment and lumbar CSF 
drainage

33 TAAA pa�ents
with CSF samples

5 pa�ents were 
excluded

(unsuccessfull LD 
implanta�on)

28 DCM pa�ents with 
indica�on for surgical 

treatment 

21 DCM pa�ents
with CSF samples

7 pa�ents were 
excluded 

(4 rejected LP, 3 
unsuccessfull LP)

Table 1   Demographics and clinical findings

p-value < 0.05 statistically significant
DCM degenerative cervical myelopathy, DCMmimo degenerative cervical myelopathy mild/moderate, DCMse degenerative cervical myelopathy 
severe, TAAA​ thoracic-abdominal aortic aneurysm, mJOA modified Japanese Orthopaedic Association, M mean, SD standard deviation

Parameters Groups

DCM (N = 21) DCMmimo (N = 7, 
33.3%)

DCMse (N = 14, 
66.7%)

TAAA controls 
(N = 33)

DCM  
versus  
TAAA​

DCMmimo 
versus 
DCMse

M [SD] M [SD] M [SD] M [SD] p p

Age (years) 63.3 [11.6] 57.3 [7.8] 66.3 [12.2] 62.3 [15.2] 0.131 0.094
mJOA Score 10.1 [3.2] 13.7 [2.0] 8.4 [1.9] 17.2 [1.3] < 0.001 < 0.001
Neck Disability Index 46.4 [21.0] 40.3 [17.5] 49.4 [22.5] 6.0 [9.0] < 0.001 0.360

MRI findings N [%] N [%] N [%]

Positive TW2 signal 16 [84.2] (2 patients 
myelography)

4 [66.7] (1 patient 
myelography)

12 [92.3] (1 patient 
myelography)

Multisegmental stenosis 15 [71.4] 5 [71.4] 10 [71.4]
Monosegmental stenosis 6 [28.6] 2 [28.6] 4 [28.6]
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(CSF/serum) were calculated according to the standardized 
Reiber diagnostic criteria [24] for IgGQ, IgAQ, IgMQ and 
AlbuminQ (all quotients: n × 10−3). Individual age-related 
references of AlbuminQ were calculated: (4 + age/15) × 10−3 
[32, 33] (Table 2).

Data analyses

All data analyses were performed using IBM SPSS Statistics 
version 25 (IBM Corporation, Armonk, NY). Two one-way 
Analyses of Variances (ANOVAs) were used to compare 
the DCM with the TAAA patient groups: one investigating 
the differences between DCM and control group with regard 
to the routine CSF laboratory parameters lactate, protein, 
glucose and albumin and the other with regard to the CSF 
serum quotients (Q) according to the Reiber diagnostic cri-
teria which were IgAQ, IgGQ, IgMQ and AlbuminQ.

In an exploratory analysis, the DCM group was divided 
into two subgroups, namely patients whom displayed mild to 
moderate (N DCMmimo = 7) and patients with severe clini-
cal myelopathy (N DCMse = 14). The two DCM groups did 
not differ with regard to age [t(19) = − 1.76, p = 0.09]. The 
DCM groups’ CSF serum quotients (IgAQ, IgGQ, IgMQ 
and AlbuminQ) were compared using a one-way ANOVA.

Standardized effect sizes (ES) with the respective confi-
dence intervals (CI, Hedges bias corrected) are reported for 
all significant comparisons. As a rule of thumb, values of 
0.2 indicate a small, values above 0.5 a medium and values 
above 0.8 a large effect.

Results

Demographics and clinical findings

Mean duration of symptoms in patients with DCM was 
15.7 ± 10.7(SD) months. Regarding the clinical severity of 

clinical myelopathy, seven DCM patients (33.3%) presented 
a mild to moderate status (mJOA 12–17) and 14 DCM 
patients (66.7%) a severe (mJOA 0–11) clinical condition. 
Patients of the TAAA control group had no neurological 
deficit or history of neurodegenerative disease. The groups 
differ in their clinical appearance as reflected by signifi-
cant group differences in a one-way ANOVA regarding the 
mJOA (DCM mean ± SD: 10.1 ± 3.2; TAAA mean ± SD: 
17.2 ± 1.3; F(1, 52) = 129.22; p < 0.001) and NDI score 
(DCM mean ± SD: 46.4 ± 21.0; TAAA mean ± SD: 6.0 ± 9.0; 
F(1, 52) = 95.61; p < 0.001) (Table 1).

Laboratory findings

DCM patients presented a BSCB disruption in regard to 
the AlbuminQ according to the individual age-related and 
calculated reference ranges [32, 33]. Ig quotients (IgGQ 
and IgAQ) were increased in all DCM patients, though all 
measured Ig values exclusively represented increased per-
meability of the BSCB and no intrathecal synthesis [32, 
33]. Controls neither presented BSCB disruption concern-
ing AlbuminQ nor increased IgQ in CSF/serum quotients. 
Means and standard deviations (SD) of the routine CSF lab-
oratory findings parameters and the CSF/serum quotients as 
well as group comparisons are shown in Table 3.

DCM versus TAAA control group

The ANOVA concerning the routine CSF laboratory 
parameters revealed significant group differences for pro-
tein [F(1,52) = 64.81, p < 0.001; ES = 2.25 (CI 1.56–2.94)] 
and albumin [F(1,52) = 62.88, p < 0.001; ES = 2.18 (CI 
1.5–2.87)]. Both, protein and albumin were significantly 
increased in DCM compared to control patients. Groups 
neither differ with regard to lactate [F(1,52) = .74, p = 0.40] 
nor glucose [F(1,52) = .09, p = 0.77].

The ANOVA concerning the CSF serum quo-
tients revealed significant group differences for IgAQ 
[F(1,51) = 19.68, p < 0.001; ES = 1.23 (CI 0.63–1.83)], 
IgGQ [F(1,51) = 39.04, p < 0.001; ES = 1.73 (CI 1.09–2.37)] 
and AlbuminQ [F(1,51) = 51.73, p < 0.001; ES = 1.98 (CI 
1.32–2.64)]. All quotients were significantly increased in 
DCM as compared to the control patients. Groups did not 
differ with regard to IgMQ [F(1,51) = .58, p = .453].

DCMmimo versus DCMse

The ANOVA concerning the CSF serum quotients revealed 
significant group differences for IgAQ [F(1,19) = 9.08, 
p = .007; ES = − 1.34 (CI − 2.33 to − .34)], IgGQ 
[F(1,19) = 6.9, p < .017; ES = − 1.16 (CI − 2.14 to − .19)], 
IgMQ [F(1,15) = 14.0, p < .002; ES = − 1.99 (CI − 3.3 to 
− .69)] and AlbuminQ [F(1,19) = 7.5, p < .013; ES = − 1.22 

Table 2   Demographics and clinical findings

CSF cerebrospinal fluid, Ig immunoglobulin, µl microliter, mmol/l 
millimole per liter, g/l gram per liter, mg/dl milligram per deciliter

CSF diagnostics (routine labora-
tory)

CSF diagnostics criteria (Reiber)

CSF cell count (/µl) Albumin (mg/dl)
Lactate (mmmol/l) IgG (mg/dl)
Protein concentration (g/l) IgA (mg/dl)

IgM (mg/dl)
Albumin quotient (individual 

age related (4 + age/15) × 10−3)
IgG quotient (n × 10−3)
IgA quotient (n × 10−3)
IgM quotient (n × 10−3)
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(CI − 2.2 to − .24)]. All quotients were significantly 
increased in DCMse as compared to the DCMmimo patients.

Discussion

Patients in our cohort presented a reduced BSCB function 
due to standardized reference values of increased AlbuminQ 
and diffusion of IgAQ and IgGQ to the intrathecal room 
according to the Reiber diagnostic criteria [24, 33]. The 
control group, without any neurological deficits or neurode-
generative diseases, presented a complete absence of BSCB 
disruption. These results highlight the presence of ongoing 
and lasting BSCB disruption of patients with DCM.

MRI with Gd-DTPA enhancement provides useful 
information in the assessment of spinal cord lesions, but 
the mechanism of intramedullary enhancement in SCI and 
CSM is not clearly resolved. Terae et al. [34] interpreted the 
Gd-DTPA enhancement as a disruption of the spinal cord 
parenchyma and a disturbance of BSCB in the injured spinal 
cord. In addition, the disturbed venous circulation caused 
by injury could resulted in local venous hypertension at the 
affected level [35]. However, Lee et al. described a retro-
spective series as an incidence of 3% of Gd-DTPA enhance-
ment on MRI in patients with cervical spondylolysis. Terae 
et al. investigated in their retrospective study eight patients 
after SCI, and three (37.5%) intramedullary lesions showed 
a contrast enhancement. Concerning DCM, there are some 
studies dealing with DCM and Gd-DTPA enhancement on 
MRI [21, 23, 36]. In these studies, the incidence of detected 
BSCB disruption (Gd-DTPA enhancement) was between 7.3 
and 32%. This is in contrast with our findings. We found 

in all investigated patients an BSCB impairment, using the 
Reiber diagnostic criteria. This leads to the consideration 
that the concept of MRI Gd-DTPA enhancement is not the 
most sensitive diagnostic tool to assess the status of the 
BSCB in patients with DCM.

Furthermore, the subgroup analysis of clinical neurologi-
cal severity of DCM (DCMmimo vs DCMse) presented a 
significant association between the clinical severity (mJOA) 
and the AlbuminQ, as well as the IgQ. AlbuminQ, as key 
marker, provides the most valuable information concerning 
possible BSCB impairment. IgQs, depending on concentra-
tion levels, are indicators for either diffusion in the intrathe-
cal space (BSCB disruption) or primary synthesis of immu-
noglobulins in the intrathecal space (e.g., CNS infections). 
DCM patients in our study presented concentration levels of 
IgQ which were only based on diffusion in the intrathecal 
space caused by an impairment of the BSCB. Only IgMQ 
revealed contrary results. There were no differences between 
DCM patients and controls, but significant lower concentra-
tions in DCMmimo patients. With the highest molecular mass, 
changes in concentrations of IgM, because of diffusion, may 
be expected to be detected less [37]. However, these results 
of IgM remain unclear in the setting of DCM and BSCB.

Regarding our patient’s cohort, the degree of BSCB 
disruption could have considerable influence on the clini-
cal manifestation of cervical myelopathy. Especially the 
chronic setting of this disease and continous impairment of 
the BSCB, could be responsible for the secondary harm to 
the spinal cord. In this context, the pathological decrease of 
CSF flow rate, i.e., the blood–CSF barrier dysfunction with 
an up to 100-fold increase in protein concentrations in CSF, 
has different causes [32, 38, 39]: like a reduced passage of 

Table 3   CSF laboratory parameter

p-value < 0.05 statistically significant
CSF cerebrospinal fluid, DCM degenerative cervical myelopathy, DCMmimo degenerative cervical myelopathy mild/moderate, DCMse degenera-
tive cervical myelopathy severe, Ig immunglobulin, IgQ IgQuotient, TAAA​ thoracic-abdominal aortic aneurysm, M mean, SD standard deviation, 
mmol/l millimole per liter, g/l gram per liter, mg/dl milligram per deciliter

Parameters Groups Comparisons

DCM (N = 21) DCMmimo (N = 7) DCMse (N = 14) TAAA controls 
(N = 33)

DCM versus 
TAAA​

DCMmimo 
versus 
DCMse

M [SD] M [SD] M [SD] M [SD] p p

CSF lactate (mmol/l) 1.6 [0.2] 1.5 [0.1] 1.7 [0.2] 1.5 [0.4] 0.395 0.070
CSF protein (g/l) 0.5 [0.2] 0.46 [0.1] 0.6 [0.2] 0.3 [0.1] < 0.001 0.107
CSF glucose (mg/dl) 57.6 [9.3] 61.1 [4.8] 55.9 [10.6] 58.8 [16.3] 0.772 0.227
CSF albumin (mg/dl) 36.6 [13.9] 28.6 [12.3] 40.6 [13.3] 15.2 [5.6] < 0.001 0.060
AlbQ (n × 10−3) (CSF/serum) 10.0 [3.5] 7.5 [2.4] 11.3 [3.2] 4.8 [1.9] < 0.001 0.013
IgAQ (n × 10−3) (CSF/serum) 2.7 [1.2] 1.7 [0.7] 3.1 [1.1] 1.5 [0.8] < 0.001 0.007
IgGQ (n × 10−3) (CSF/serum) 4.7 [1.7] 3.5 [1.0] 5.2 [1.6] 2.4 [0.9] < 0.001 0.017
IgMQ (n × 10−3) (CSF/serum) 0.6 [0.3] 0.3 [0.1] 0.7 [0.2] 0.7 [0.6] 0.453 0.002
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CSF through the arachnoid villi in inflammatory diseases 
or a blockade of the subarachnoid space (Froin’s syndrome) 
by a tumor or a complete lumbar stenosis [28, 32]. In our 
study, we also identified an increase in protein concentra-
tions in CSF, although in our study we excluded patients 
with lumbar stenosis and trauma. Furthermore, while lum-
bar puncture, (I) a Queckenstedt’s maneuver in each patient 
was carried out, (II) a Froin’s syndrome was never found 
and (III) via MRI imaging a complete spinal block could be 
excluded. However, in the subgroup analysis we could detect 
significant differences of the AlbuminQ and clinical signs of 
myelopathy, measured by mJOA-Score [27]. In other words: 
Patients with a mild or moderate DCM had lower AlbuminQ 
compared to patients with a severe DCM. This observation 
was independent in grade of spinal stenosis in MRI.

The time course of BSCB disruption in SCI has been 
described previously [4, 11, 40, 41]. Dysfunction of the 
BSCB has been documented almost immediately (5 min) 
after trauma [4]. Findings on the re-establishment of BSCB 
vary between the studies. Noble et al. reported about a re-
establishment after 14 days; in other studies the range was 
between 28 and 56 days [6, 42]. To record the condition of 
the BSCB in patients with DCM over time does not seem to 
be feasible due to the chronic character of this disease and a 
lack of sudden onset. In our patients with longer duration of 
clinical symptoms (> 6 months), BSCB impairment was still 
detectable. Based on this finding, we assume that the BSCB 
disruption is a long-lasting process in DCM and this might 
maintain mechanisms of secondary injury of the spinal cord. 
This BSCB-triggered process of secondary injury culmi-
nates in apoptosis of neuronal structures with a reduced 
chance of clinical recovery [15]. For this reason, the diag-
nostic tool of BSCB evaluation could be a valuable addition 
in the decision making on surgical intervention. This applies 
especially to patients with mild clinical signs of myelopathy, 
where surgical treatment is not directly obvious. But these 
patients may already have ongoing chronic and potentially 
irreversible endogenous harm to the spinal cord. Therefore, 
the detection of BSCB disruption could provide impor-
tant information to find the right therapy for the patients. 
Future work needs to address whether the CSF/serum ratios 
improve or stabilize after surgical decompression.

Conclusion

Patients with DCM in our cohort presented BSCB disrup-
tion. Values of BSCB impairment (AlbuminQ and IgQ) 
presented significant differences in relation to the clinical 
neurological status (DCMmimo vs DCMse) of the patients. 
Patients with higher values of BSCB disruption presented 
with a more severe degree of clinical myelopathy in our sub-
group analysis.
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