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Abstract
We consider a class of Caputo fractional p-Laplacian differential equations with
integral boundary conditions which involve two parameters. By using the
Avery–Peterson fixed point theorem, we obtain the existence of positive solutions for
the boundary value problem. As an application, we present an example to illustrate
our main result.
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1 Introduction
In this paper, we investigate the following integral boundary value problem (short for BVP)
of Caputo fractional differential equations with p-Laplacian operator and parameters:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Dβ
0+ϕp(Dα

0+x(t)) + f (t, x(t), Dβ
0+x(t)) = 0, t ∈ (0, 1),

(ϕp(Dα
0+x(0)))(i) = ϕp(Dα

0+x(1)) = 0, i = 1, 2, . . . , m – 1,
x(0) + x′(0) =

∫ 1
0 g0(s)x(s) ds + a,

x(1) + x′(1) =
∫ 1

0 g1(s)x(s) ds + b,
x(j)(0) = 0, j = 2, 3, . . . , n – 1,

(1)

where 1 < n – 1 < α < n, 1 < m – 1 < β < m, α – β > 1, Dα
0+ and Dβ

0+ are the Caputo fractional
derivatives. ϕp is the p-Laplacian operator, ϕp(s) = |s|p–2s, p > 1, ϕ–1

p = ϕq, 1/p + 1/q = 1.
g0, g1 ∈ C([0, 1], [0, +∞)), f ∈ C([0, 1] × [0, +∞) × [0, +∞), [0, +∞)) are given functions.
a, b > 0 are disturbance parameters.

As we all know, fractional differential equation theory is becoming more and more per-
fect because of its extensive application, and many significant achievements have been
made; see [1–12]. As one of many applications, turbulence problem can be well character-
ized by the p-Laplacian operator; see [13]. Fractional p-Laplacian equations are becoming
more and more important, they can be used to describe a class of diffusion phenomena,
which have been widely used in the fields of fluid mechanics, material memory, biology,
plasma physics, finance and chemistry. Many important results related to the boundary
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value problems of fractional differential equations with p-Laplacian operator have been
obtained; see [14–24]. But in practical problems, disturbance is objective. As a bound-
ary value problem with disturbance parameter can describe real problems better, many
scholars turn their attention to it.

In [6], Jia et al. consider the fractional-order differential equation integral boundary
value problem with disturbance parameters

⎧
⎪⎨

⎪⎩

–CDδu(t) = f (t, u(t)), t ∈ J ,
m1u(0) – n1u′(0) = 0,
m2u(1) – n2u′(1) =

∫ 1
0 g(s)u(s) ds + a,

where J = [0, 1], 1 < δ ≤ 2, f ∈ C([0, 1] × [0, +∞), [0, +∞)), mi ≥ 0, ni ≥ 0, m2
i + n2

i > 0,
i = 1, 2, g ∈ C([0, 1], [0, +∞)), disturbance parameter a > 0, and CDδ is the Caputo frac-
tional derivative of order δ. By using an upper and lower solution method, the fixed point
index theorem and the Schauder fixed point theorem, sufficient conditions are obtained
for the problem to have at least one positive solution, two positive solutions and no solu-
tion.

In [25], Wang et al. consider a class of fractional differential equations with integral
boundary conditions which involve two disturbance parameters. By using the Guo–
Krasnoselskii fixed point theorem, new results on the existence and nonexistence of pos-
itive solutions for the boundary value problem are obtained. The problem is given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dα
0+x(t) = f (t, x(t)), t ∈ (0, 1),

x(0) = x′(0) = 0,
x(1) =

∫ 1
0 g1(s)x(s) ds + a,

x′(1) =
∫ 1

0 g2(s)x(s) ds – b,

where Dα
0+ is the standard Riemann–Liouville fractional derivative with 3 < α ≤ 4,

f : [0, 1] × [0, +∞) → [0, +∞) is a continuous function, g1, g2 ∈ L1[0, 1] and a, b ≥ 0.
In [26] Hao et al. consider the existence of positive solutions of higher order fractional

integral boundary value problem with a parameter

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

–Dη–2
0+ (u′′(t)) + λf (t, u(t)) = 0, t ∈ J ,

u′′(0) = u′′′(0) = · · · = un–2(0) = 0,
CDk–2

0+ (u′′(t))|t=1 = 0,
αu(0) – βu′(0) =

∫ 1
0 u(s) dA(s),

γ u(1) + δu′(1) =
∫ 1

0 u(s) dB(s),

where Dη–2
0+ , Dk–2

0+ are the standard Riemann–Liouville fractional derivative, n – 1 < η ≤ n,
η ≥ 4, 2 ≤ k ≤ n – 2, α,β ,γ , δ > 0.

∫ 1
0 u(s) dA(s) and

∫ 1
0 u(s) dB(s) denote the Riemann–

Stieltjes integrals of u with respect to A and B. A(t), B(t) are nondecreasing on [0, 1],
f : [0, 1] × [0, +∞) → [0, +∞) is continuous, λ > 0 is a parameter. By using the Guo–
Krasnoselskii fixed point theorem on cones, under different conditions of nonlinearity,
existence and nonexistence, results for positive solutions are derived in terms of different
parameter intervals.

The purpose of this paper is to establish conditions ensuring the existence of three pos-
itive solutions of BVP (1) and give an estimate of these solutions by using the Avery–
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Peterson fixed point theorem. Our supposed problem is different from the problems stud-
ied before and mentioned above. Our result is new and our work extends the application
of the theorem.

In this paper, a positive solution x = x(t) of BVP (1) means a solution of (1) satisfying
x(t) > 0, t ∈ [0, 1].

Throughout this paper, we always assume that the following condition is satisfied:
(L0) 0 < a < b < 2a < +∞, 0 ≤ g0(t) ≤ g1(t) ≤ 2g0(t), 0 ≤ ∫ 1

0 g0(s) ds,
∫ 1

0 g1(s) ds < 1.

2 Preliminaries and lemmas
The basic theory of fractional-order differential equation and boundary value problem can
be obtained from many places in the literature, which will not be repeated here; see [1–9].
Here we present some necessary basic results that will be used.

Lemma 2.1 (see [2]) The Caputo fractional derivative of order n – 1 < α < n for tβ is given
by

Dα
0+tβ =

{
Γ (β+1)

Γ (β–α+1) tβ–α , β ∈ N and β ≥ n or β /∈ N and β > n – 1,
0, β ∈ {0, 1, . . . , n – 1}.

Lemma 2.2 (see [19]) Let h ∈ C[0, 1] and 1 < m – 1 < β < m. Then the BVP

{
Dβ

0+ u(t) = h(t), 0 < t < 1,
u(1) = u(i)(0) = 0, i = 1, 2, . . . , m – 1,

has an unique solution

u(t) = –
∫ 1

0
H(t, s)h(s) ds,

where

H(t, s) =
1

Γ (β)

{
(1 – s)β–1 – (t – s)β–1, 0 ≤ s ≤ t ≤ 1,
(1 – s)β–1, 0 ≤ t ≤ s ≤ 1.

(2)

Denote

M1 =
∫ 1

0
g0(s) ds, M2 =

∫ 1

0
sg0(s) ds,

N1 =
∫ 1

0
g1(s) ds, N2 =

∫ 1

0
sg1(s) ds,

δ–1 = 1 + M2 + N1 – M2N1 + M1(N2 – 2) – N2,

ω(t) = δ
(
b(M2 – 1 + t – M1t) + a(2 – N2 – t + N1t)

)
.

(3)

From (L0), we know, for t ∈ (0, 1),

1 > N1 > N2 > M2 > 0, 1 > N1 > M1 > M2 > 0, 2M1 > N1, 2M2 > N2. (4)
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Thus

δ–1 = 1 + M2 + N1 – M2N1 + M1(N2 – 2) – N2

= 1 + M2 + N1 – M2N1 + M1N2 – 2M1 – N2

= (1 + M1N2 – 2M1) + M2 + N1 – M2N1 – N2

= (1 – M1) + (M1N2 – N2) + (M2 – M2N1) + (N1 – M1)

= (1 – M1) + N2(M1 – 1) + M2(1 – N1) + (N1 – M1)

= (1 – M1)(1 – N2) + M2(1 – N1) + (N1 – M1)

> 0.

Thus, the following lemma holds.

Lemma 2.3 Let (L0) hold, y ∈ C[0, 1] and 1 < n – 1 < α < n, 1 < m – 1 < β < m, then the
following boundary value problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dα
0+ x(t) = y(t), 0 < t < 1,

x(j)(0) = 0, j = 2, 3, . . . , n – 1,
x(0) + x′(0) =

∫ 1
0 g0(s)x(s) ds + a,

x(1) + x′(1) =
∫ 1

0 g1(s)x(s) ds + b,

(5)

has an unique solution

x(t) =
∫ 1

0
G(t, s)y(s) ds + ω(t) (6)

and

Dβ
0+x(t) =

1
Γ (α – β)

∫ t

0
(t – s)α–β–1y(s) ds, (7)

where

G(t, s) = G1(t, s) + G2(t, s), (8)

G1(t, s) =
1

Γ (α)

{
(t – s)α–1 + (1 – t)(1 – s)α–2(α – s), 0 ≤ s ≤ t ≤ 1,
(1 – t)(1 – s)α–2(α – s), 0 ≤ t ≤ s ≤ 1,

(9)

G2(t, s) = δ

∫ 1

0

(
(M2 – 1 + t – M1t)g1(τ ) + (2 – N2 – t + N1t)g0(τ )

)
G1(τ , s) dτ . (10)

Proof Consider BVP (5), we have

x(t) =
1

Γ (α)

∫ t

0
(t – s)α–1y(s) ds + C0 + C1t + C2t2 + · · · + Cn–1tn–1.
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In view of x(j)(0) = 0 (j = 2, 3, . . . , n – 1), we know C2 = C3 = · · · = Cn–1 = 0, and

x(0) = C0, x′(0) = C1, x(1) =
1

Γ (α)

∫ 1

0
(1 – s)α–1y(s) ds + C0 + C1,

x′(1) =
1

Γ (α – 1)

∫ 1

0
(1 – s)α–2y(s) ds + C1,

so that

x(t) =
1

Γ (α)

∫ t

0
(t – s)α–1y(s) ds + C0 + C1t. (11)

From the boundary condition of BVP (5), by methods similar to Lemma 2.4 in [19],
through traditional analytical calculation and integration techniques, we have

x(t) =
∫ 1

0
G1(t, s)y(s) ds +

∫ 1

0
G2(t, s)y(s) ds + ω(t)

=
∫ 1

0
G(t, s)y(s) ds + ω(t),

where ω(t), G1(t, s) and G2(t, s) are given by (3), (9) and (10).
On the other hand, in view of (11), because 1 < m – 1 < β < α – 1 < n – 1, by Lemma 2.1,

we have

Dβ
0+x(t) = Dβ

0+

(
1

Γ (α)

∫ t

0
(t – s)α–1y(s) ds + C0 + C1t

)

= Dβ
0+

(
Iα

0+y(t) + C0 + C1t
)

= Dβ
0+Iα

0+y(t) + Dβ
0+(C0) + Dβ

0+(C1t)

= Dβ
0+Iα

0+y(t)

= Iα–β
0+ y(t)

=
1

Γ (α – β)

∫ t

0
(t – s)α–β–1y(s) ds. (12)

�

Lemma 2.4 The BVP (1) is equivalent to the following integral equation:

x(t) =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
H(s, τ )f

(
τ , x(τ ), Dβ

0+x(τ )
)

dτ

)

ds + ω(t) (13)

and

Dβ
0+x(t) =

1
Γ (α – β)

∫ t

0
(t – s)α–β–1ϕq

(∫ 1

0
H(s, τ )f

(
τ , x(τ ), Dβ

0+x(τ )
)

dτ

)

ds, (14)

where H(t, s), ω(t) and G(t, s) are given by (2), (3) and (8).
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Proof From Lemma 2.2 and Lemma 2.3, let y(t) = ϕq(u(t)), h(t) = –f (t, x(t), Dβ
0+x(t)), we

have

y(t) = ϕq
(
u(t)

)
= ϕq

(∫ 1

0
H(t, s)f

(
s, x(s), Dβ

0+x(s)
)

ds
)

= ϕq

(∫ 1

0
H(t, s)f

(
s, x(s), Dβ

0+x(s)
)

ds
)

.

Immediately we obtain

x(t) =
∫ 1

0
G(t, s)y(s) ds + ω(t)

=
∫ 1

0
G(t, s)ϕq

(∫ 1

0
H(s, τ )f

(
τ , x(τ ), Dβ

0+x(τ )
)

dτ

)

ds + ω(t).

From (12), (14) holds.
On the other hand, if x(t) satisfies (13), we can easily prove that x(t) satisfies BVP (1). �

Lemma 2.5 Assume (L0) hold, then the function H(t, s) defined by (2), the function G(t, s)
defined by (8), and then the function ω(t) defined by (3) satisfies

(1) H(t, s) ≥ 0 is continuous for all t, s ∈ [0, 1];
(2) H(t, s) ≤ H(s, s) for all t, s ∈ [0, 1];
(3)

∫ 1
0 H(t, s) ds = 1–tβ

Γ (β+1) ≤ 1
Γ (β+1) for all t ∈ [0, 1];

(4) G(t, s) ≥ 0 is continuous for all t, s ∈ [0, 1];
(5) ω(t) > 0 for all t ∈ [0, 1].

Proof (1) and (2) are proved in [19], we omit the proofs.
(3) For t ∈ [0, 1], by a simple integral operation, we can obtain

∫ 1

0
H(t, s) ds =

∫ t

0

(
(1 – s)β–1 – (t – s)β–1)ds +

∫ 1

t
(1 – s)β–1 ds

=
1 – tβ

Γ (β + 1)
≤ 1

Γ (β + 1)
.

(4) From (9), we know G1(t, s) ≥ 0, t, s ∈ [0, 1], and G1(t, s) > 0, t, s ∈ (0, 1). Combined
with (L0), for t ∈ [0, 1], we have

∂G2(t, s)
∂t

= δ

∫ 1

0

(
(1 – M1)g1(τ ) + (–1 + N1)g0(τ )

)
G1(τ , s) dτ

= δ

∫ 1

0

(
g1(τ ) – M1g1(τ ) – g0(τ ) + N1g0(τ )

)
G1(τ , s) dτ

= δ

∫ 1

0

(
g1(τ ) – g0(τ ) – M1g1(τ ) + N1g0(τ )

)
G1(τ , s) dτ

> δ

∫ 1

0

(
g1(τ ) – g0(τ ) – M1g1(τ ) + M1g0(τ )

)
G1(τ , s) dτ

= δ

∫ 1

0

(
g1(τ ) – g0(τ ) – M1

(
g1(τ ) – g0(τ )

))
G1(τ , s) dτ
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= δ

∫ 1

0

(
g1(τ ) – g0(τ )

)
(1 – M1)G1(τ , s) dτ

> 0,

so that G2(t, s) monotonically increase with respect to t.
As a consequence, from (10), we get

G2(t, s) ≥ G2(0, s) = δ

∫ 1

0

(
(M2 – 1)g1(τ ) + (2 – N2)g0(τ )

)
G1(τ , s) dτ

≥ δ

∫ 1

0

(

(M2 – 1)g1(τ ) +
1
2

(2 – N2)g1(τ )
)

G1(τ , s) dτ

= δ

∫ 1

0

(

M2 –
1
2

N2

)

g1(τ )G1(τ , s) dτ

≥ 0.

Hence, G(t, s) ≥ 0.
(5) From (3), for t ∈ [0, 1], we know

ω′(t) = b(1 – M1) + a(N1 – 1)

> a(1 – M1) + a(N1 – 1)

> a(1 – N1) + a(N1 – 1)

= 0,

so that

ω(t) ≥ ω(0) = b(M2 – 1) + a(2 – N2)

> b(M2 – 1) + a(2 – 2M2)

= (1 – M2)(2a – b)

> 0, t ∈ [0, 1]. �

Lemma 2.6 Let η ∈ (0, 1
2 ), then

max
t∈[0,1]

G(t, s) ≤ G1(0, s) + G2(1, s),

min
t∈[0,η]

G(t, s) ≥ ρ
(
G1(0, s) + G2(1, s)

)
,

where

ρ =
M2 – 1

2 N2

1 – M1 + M2 + N1 – N2
. (15)

Proof Step 1: We prove

min
t∈[0,η]

G1(t, s) ≥ (1 – η)G1(0, s) >
1
2

max
t∈[0,1]

G1(t, s). (16)
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For 0 ≤ s < t ≤ 1 and t ∈ [0,η],

Γ (α)
∂G1(t, s)

∂t
= (α–1)(t –s)α–2 –(α–s)(1–s)α–2 ≤ (α–s)(t –s)α–2 –(α–s)(1–s)α–2 < 0,

so that

G1(t, s) ≤ G1(s, s) = (α – s)(1 – s)α–1 < (α – s)(1 – s)α–2 = G1(0, s)

and

G1(t, s)
G1(0, s)

=
(t – s)α–1 + (α – s)(1 – t)(1 – s)α–2

(α – s)(1 – s)α–2

=
(t – s)α–1

(α – s)(1 – s)α–2 + 1 – t

≥ 1 – t

≥ 1 – η >
1
2

.

For s ≥ t and t ∈ [0,η],

Γ (α)
∂G1(t, s)

∂t
= –(α – s)(1 – s)α–2 < 0

so that

G1(t, s) ≤ G1(0, s) = (α – s)(1 – s)α–2

and

G1(t, s)
G1(0, s)

=
(α – s)(1 – t)(1 – s)α–2

(α – s)(1 – s)α–2 = 1 – t ≥ 1 – η >
1
2

.

Therefore, (16) holds.
Step 2: We prove

min
t∈[0,η]

G2(t, s) ≥ ρG2(1, s) = ρ max
t∈[0,1]

G2(t, s). (17)

From Lemma 2.5, we know that G2(t, s) is a monotone increasing function with respect
to t ∈ [0, 1], so that

min
t∈[0,η]

G2(t, s) = G2(0, s), max
t∈[0,1]

G2(t, s) = G2(1, s).

By (L0) and (4), we have

G2(0, s)
G2(1, s)

=
δ
∫ 1

0 ((M2 – 1)g1(τ ) + (2 – N2)g0(τ ))G1(τ , s) dτ

δ
∫ 1

0 ((M2 – 1 + 1 – M1)g1(τ ) + (2 – N2 – 1 + N1)g0(τ ))G1(τ , s) dτ

≥
∫ 1

0 ((M2 – 1)g1(τ ) + 1
2 (2 – N2)g1(τ ))G1(τ , s) dτ

∫ 1
0 ((M2 – M1)g1(τ ) + (1 – N2 + N1)g1(τ ))G1(τ , s) dτ
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=
∫ 1

0 (M2 – 1 + 1 – 1
2 N2)g1(τ )G1(τ , s) dτ

∫ 1
0 (M2 – M1 + 1 – N2 + N1)g1(τ )G1(τ , s) dτ

=
(M2 – 1

2 N2)
∫ 1

0 g1(τ )G1(τ , s) dτ

(1 – M1 + M2 + N1 – N2)
∫ 1

0 g1(τ )G1(τ , s) dτ

=
M2 – 1

2 N2

1 – M1 + M2 + N1 – N2

= ρ.

Obviously, ρ > 0 and

ρ –
1
2

=
M2 – 1

2 N2

1 – M1 + M2 + N1 – N2
–

1
2

=
M2 – 1 + M1 – N1

2(1 – M1 + M2 + N1 – N2)
< 0,

so that 0 < ρ < 1
2 and (17) hold.

Finally, from (16) and (17), we can easily show that the following results hold:

max
t∈[0,1]

G(t, s) = max
t∈[0,1]

(
G1(t, s) + G2(t, s)

)

≤ max
t∈[0,1]

G1(t, s) + max
t∈[0,1]

G2(t, s)

= G1(0, s) + G2(1, s)

and

min
t∈[0,η]

G(t, s) ≥ min
t∈[0,η]

G1(t, s) + min
t∈[0,η]

G2(t, s)

≥ 1
2

G1(0, s) + ρG2(1, s)

> ρG1(0, s) + ρG2(1, s)

= ρ
(
G1(0, s) + G2(1, s)

)

≥ ρ max
t∈[0,1]

G(t, s). �

Lemma 2.7 Assume (L0) hold, then the function ω(t) satisfies the following properties:
(1) ω(t) ≤ ω(1) = maxt∈[0,1] ω(t);
(2) mint∈[0,η] ω(t) ≥ ρ maxt∈[0,1] ω(t), where ρ is given by (15).

Proof From Lemma 2.5 and (3), we have

min
t∈[0,η]

ω(t) = ω(0) = δ
(
b(M2 – 1) + a(2 – N2)

)
,

max
t∈[0,1]

ω(t) = ω(1) = δ
(
b(M2 – M1) + a(1 – N2 + N1)

)
,

and

ω(0)
ω(1)

=
δ(b(M2 – 1) + a(2 – N2))

δ(b(M2 – M1) + a(1 – N2 + N1))

≥ b(M2 – 1) + 1
2 b(2 – N2)

b(M2 – M1) + b(2 – N2 – 1 + N1)
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=
M2 – 1

2 N2

1 – M1 + M2 + N1 – N2

= ρ.

Hence,

ω(t) ≤ ω(1) = max
t∈[0,1]

ω(t), min
t∈[0,η]

ω(t) ≥ ρ max
t∈[0,1]

ω(t). �

To finish this section, we present the well-known Avery–Peterson fixed point theorem
as follows.

Let γ and θ be nonnegative continuous convex functionals on P, ϕ be a nonnegative
continuous concave functional on P, and ψ be a nonnegative continuous functional on P.
For A, B, C, D > 0, we define the following convex set:

P(γ ; D) =
{

x ∈ P : γ (x) < D
}

,

P(γ ,ϕ; B, D) =
{

x ∈ P : B ≤ ϕ(x),γ (x) ≤ D
}

,

P(γ , θ ,ϕ; B, C, D) =
{

x ∈ P : B ≤ ϕ(x), θ (x) ≤ C,γ (x) ≤ D
}

,

and a closed set

P(γ ,ψ ; A, D) =
{

x ∈ P : A ≤ ψ(x),γ (x) ≤ D
}

.

Lemma 2.8 (see [27]) Let P be a cone in a real Banach space E. Let γ and θ be nonnegative
continuous convex functionals on P, ϕ be a nonnegative continuous concave functional on P,
and ψ be a nonnegative continuous functional on P satisfying ψ(λx) ≤ λψ(x) for 0 ≤ λ ≤ 1,
such that, for some positive numbers M and D, ϕ(x) ≤ ψ(x), ‖x‖ ≤ Mγ (x) for all x ∈ P(γ ; D).
Suppose

T : P(γ ; D) → P(γ ; D)

is completely continuous and there exist positive numbers A, B, and C with A < B such that
(H1) {x ∈ P(γ , θ ,ϕ; B, C, D) : ϕ(x) > B} 	= Ø, and ϕ(x) > B for x ∈ P(γ , θ ,ϕ; B, C, D);
(H2) ϕ(Tx) > B for x ∈ P(γ ,ϕ; B, D) with θ (Tx) > A;
(H3) 0 /∈ P(γ ,ψ ; A, D) and ψ(Tx) < A for x ∈ P(γ ,ψ ; A, D) with ψ(x) = A.
Then T has at least three fixed point x1, x2, x3 ∈ P(γ ; D) such that

γ (xi) ≤ D, i = 1, 2, 3; ϕ(x1) > B, A < ϕ(x2), ψ(x2) < B; ψ(x3) < A.

3 Main results
In this section, we prove the existence of positive solution of BVP (1) by applying the
following Avery–Peterson fixed point theorem.

We consider the Banach space E = {x ∈ C[0, 1] : Dβ
0+x ∈ C[0, 1]} with the norm

‖x‖ = max
{

max
t∈[0,1]

∣
∣x(t)

∣
∣, max

t∈[0,1]

∣
∣Dβ

0+x(t)
∣
∣
}

.
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Let

P =
{

x ∈ E : x(t) ≥ 0, Dβ
0+x(t) ≥ 0, min

t∈[0,η]
x(t) ≥ ρ max

t∈[0,1]
x(t)

}
,

then P is a cone in E.
Define the operator T : P → E by

Tx(t) :=
∫ 1

0
G(t, s)ϕq

(∫ 1

0
H(s, τ )f

(
τ , x(τ ), Dβ

0+x(τ )
)

dτ

)

ds + ω(t).

Lemma 3.1 Assume (L0) hold, then T : P → P is a completely continuous operator.

Proof For x ∈ P, it is easy to see that T is continuous operator and Tx(t) ≥ 0. By (14), we
have

Dβ
0+Tx(t) =

1
Γ (α – β)

∫ t

0
(t – s)α–β–1ϕq

(∫ 1

0
H(s, τ )f

(
τ , x(τ ), Dβ

0+x(τ )
)

dτ

)

ds ≥ 0.

From Lemma 2.5 and Lemma 2.6 and Lemma 2.7, similar to Lemma 3.1 in [19], we can
easily prove that T is a completely continuous operator. �

Define continuous nonnegative convex functionals as

γ (x) = ‖x‖, θ (x) = ψ(x) = max
t∈[0,1]

∣
∣x(t)

∣
∣.

Define continuous nonnegative concave functionals as

ϕ(x) = min
t∈[0,η]

∣
∣x(t)

∣
∣.

Thus

ρθ (x) ≤ ϕ(x) ≤ θ (x) = ψ(x), ‖x‖ ≤ Mγ (x),

where M = 1.
Let

J1 =
∫ 1

0

(
G1(0, s) + G2(1, s)

)
ϕq

(∫ 1

0
H(s, τ ) dτ

)

ds,

J2 =
1

Γ (α – β)

∫ 1

0
(1 – s)α–β–1ϕq

(∫ 1

0
H(s, τ ) dτ

)

ds,

and

J3 =
∫ 1

0

(
G1(0, s) + G2(1, s)

)
ϕq

(∫ η

0
H(s, τ ) dτ

)

ds.

Theorem 3.1 Suppose (L0) hold, and there exist constants A, B, D ≥ ω(1) with A < B <
ρD min{ J3

J1
, J3

J2
} and C = B

ρ
, such that
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(L1) f (t, x, y) ≤ min{ϕp( D–ω(1)
J1

),ϕp( D
J2

)}, (t, x, y) ∈ [0, 1] × [0, D] × [0, D];
(L2) f (t, x, y) > ϕp( B–ρω(1)

ρJ3
), (t, x, y) ∈ [0,η] × [B, B

ρ
] × [0, D];

(L3) f (t, x, y) < ϕp( A–ω(1)
J1

), (t, x, y) ∈ [0, 1] × [0, A] × [0, D].
Then BVP (1) has at least three positive solutions x1, x2, x3, satisfying

‖xi‖ ≤ D (i = 1, 2, 3), (18)

min
t∈[0,η]

∣
∣x1(t)

∣
∣ > B, A < min

t∈[0,η]

∣
∣x2(t)

∣
∣, max

t∈[0,1]

∣
∣x2(t)

∣
∣ < B, max

t∈[0,1]

∣
∣x3(t)

∣
∣ < A. (19)

Proof Obviously, the function x is a positive solution of BVP (1) if and only if x is a fixed
point of the operator T in P.

For x ∈ P(γ ; D), we get

max
t∈[0,1]

∣
∣x(t)

∣
∣ ≤ D, max

t∈[0,1]

∣
∣Dβ

0+x(t)
∣
∣ ≤ D,

this implies

0 ≤ x(t), Dβ
0+x(t) ≤ D.

From (L1), we get

max
t∈[0,1]

∣
∣Tx(t)

∣
∣ ≤

∫ 1

0

(
G1(0, s) + G2(1, s)

)
ϕq

(∫ 1

0
H(s, τ )f

(
τ , x(τ ), Dβ

0+x(τ )
)

dτ

)

ds + ω(1)

≤
∫ 1

0

(
G1(0, s) + G2(1, s)

)
ϕq

(

ϕp

(
D – ω(1)

J1

)∫ 1

0
H(s, τ ) dτ

)

ds + ω(1)

=
D – ω(1)

J1

∫ 1

0

(
G1(0, s) + G2(1, s)

)
ϕq

(∫ 1

0
H(s, τ ) dτ

)

ds + ω(1)

= D

and

max
t∈[0,1]

∣
∣Dβ

0+Tx(t)
∣
∣

= max
t∈[0,1]

∣
∣
∣
∣

1
Γ (α – β)

∫ t

0
(t – s)α–β–1ϕq

(∫ 1

0
H(s, τ )f

(
τ , x(τ ), Dβ

0+x(τ )
)

dτ

)

ds
∣
∣
∣
∣

≤ 1
Γ (α – β)

∫ 1

0
(1 – s)α–β–1ϕq

(

ϕp

(
D
J2

)∫ 1

0
H(s, τ ) dτ

)

ds

=
D
J2

1
Γ (α – β)

∫ 1

0
(1 – s)α–β–1ϕq

(∫ 1

0
H(s, τ ) dτ

)

ds

= D,

so that

γ (Tx) = ‖Tx‖ = max
{

max
t∈[0,1]

∣
∣Tx(t)

∣
∣, max

t∈[0,1]

∣
∣Dβ

0+Tx(t)
∣
∣
}

≤ D.

Therefore T : P(γ ; D) → P(γ ; D).
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From B
ρ

∈ P(γ , θ ,ϕ; B, C, D) and ϕ( B
ρ

) > B, we have

{
x ∈ P(γ , θ ,ϕ; B, C, D) : ϕ(x) > B

} 	= Ø.

For x ∈ P(γ , θ ,ϕ; B, C, D), we know that B ≤ x(t) ≤ C = B
ρ

for t ∈ [0,η] and 0 ≤
Dβ

0+x(t) ≤ D.
By (L2),

ϕ(Tx) = min
t∈[0,η]

∣
∣Tx(t)

∣
∣

≥
∫ 1

0
ρ
(
G1(0, s) + G2(1, s)

)
ϕq

(∫ η

0
H(s, τ )ϕp

(
B – ρω(1)

ρJ3

)

dτ

)

ds + ρω(1)

= ρ
B – ρω(1)

ρJ3

∫ 1

0

(
G1(0, s) + G2(1, s)

)
ϕq

(∫ η

0
H(s, τ ) dτ

)

ds + ρω(1)

= B.

So ϕ(Tx) > B for all x ∈ P(γ , θ ,ϕ; B, C, D). Hence, the condition (H1) of Lemma 2.8 is sat-
isfied.

For all x ∈ P(γ ,ϕ; B, D) with θ (Tx) > C = B
ρ

, we have

ϕ(Tx) ≥ ρθ (Tx) > ρC = ρ
B
ρ

= B.

Thus, the condition (H2) of Lemma 2.8 holds.
Because of ψ(0) = 0 < A, then 0 /∈ P(γ ,ψ ; A, D). For x ∈ P(γ ,ψ ; A, D) with ψ(x) = A, we

know γ (x) ≤ D. It means that maxt∈[0,1] x(t) = A and 0 ≤ Dβ
0+x(t) ≤ D.

From (L3), we can obtain

ψ(Tx) = max
t∈[0,1]

∣
∣Tx(t)

∣
∣

≤ max
t∈[0,1]

∫ 1

0
G(t, s)ϕq

(∫ 1

0
H(s, τ )f

(
τ , x(τ ), Dβ

0+x(τ )
)

dτ

)

ds + ω(1)

<
∫ 1

0

(
G1(0, s) + G2(1, s)

)
ϕq

(∫ 1

0
H(s, τ )ϕp

(
A – ω(1)

J1

)

dτ

)

ds + ω(1)

=
A – ω(1)

J1

∫ 1

0

(
G1(0, s) + G2(1, s)

)
ϕq

(∫ 1

0
H(s, τ ) dτ

)

ds + ω(1)

= A.

Therefore, the condition (H3) of Lemma 2.8 holds.
To sum up, the conditions of Lemma 2.8 are all verified and we notice that xi(t) ≥

ω(0) > 0. Hence, BVP (1) has at least three positive solutions x1, x2, x3 satisfying (18) and
(19). �
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4 Example
Consider the following boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

D
7
3
0+ϕ 3

2
(D

11
3

0+ x(t)) = f (t, x(t), D
7
3
0+x(t)), t ∈ (0, 1),

(ϕ 3
2

(D
11
3

0+ x(0)))′ = ϕ 3
2

(D
11
3

0+ x(1)) = 0,
x(0) + x′(0) =

∫ 1
0 sx(s) ds + 5

3 ,
x(1) + x′(1) =

∫ 1
0 (s2 + s)x(s) ds + 7

3 ,
x′′(0) = x(3) = 0,

(20)

where α = 11
3 , β = 7

3 , p = 3
2 , g0(t) = t, g1(t) = t2 + t, and

f (t, x, y) =

{
tan( t

100 ) + 2x/10x2 + cos(y), 0 ≤ x ≤ 65,
tan( t

100 ) + cos(y) + 160
√

5, 65 < x ≤ 10,000.

Choose A = 3, B = 65, D = 25,000, η = 1
4 . By simple computation, we have

ρ = 0.0384615, M = 1, ω(1) = 2.83721,

M1 =
1
2

, M2 =
1
3

, N1 =
5
6

, N2 =
7

12
, δ =

72
43

,

J1 = 0.147109, J2 = 0.0722385, J3 = 0.0310138.

We can check that the nonlinear term f (t, x, y) satisfies
(L1) max f (t, x, y) ≈ 383.413 ≤ min{ϕp( D–ω(1)

J1
),ϕp( D

J2
)} ≈ 412.216, (t, x, y) ∈ [0, 1] ×

[0, 25,000] × [0, 25,000];
(L2) min f (t, x, y) ≈ 381.413 > ϕp( B–ρω(1)

ρJ3
) ≈ 228.283, (t, x, y) ∈ [0, 1

3 ] × [65, B
ρ

] ×
[0, 25,000];

(L3) max f (t, x, y) ≈ 1.02108 < ϕp( A–ω(1)
J1

) ≈ 1.05195, (t, x, y) ∈ [0, 1] × [0, 3] × [0, 25,000].
Thus, from Theorem 3.1, we know that BVP (20) has at least three positive solutions x1,
x2, x3, satisfying

‖xi‖ ≤ 25,000 (i = 1, 2, 3),

min
t∈[0,η]

|x1| > 65, 3 < min
t∈[0,η]

|x2|, max
t∈[0,1]

|x2| < 65, max
t∈[0,1]

|x3| < 3.
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