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1 Introduction

Approximation theory basically deals with approximation of functions by simpler func-
tions or more easily calculated functions. Broadly it is divided into theoretical and con-
structive approximation. In 1912 Bernstein [5] was the first to construct a sequence of
positive linear operators as follows:

Bulfiu) =Y ’Z uk(l—u)mkf<%), (1.1)
k=0

where u € [0, 1], f is bounded on [0, 1].

A constructive proof of the well-known Weierstrass approximation theorem using a
probabilistic approach was provided. Here C[0, 1] denotes the set of all continuous func-
tions on [0, 1] which is equipped with the sup-norm || - ||. He showed that if f € C[0, 1],
then B,,(f; u) converges to f(u) uniformly on [0, 1]. One can find a detailed monograph
about the Bernstein polynomials in [12, 13].

Before proceeding, let us recall some basic definitions and notations of quantum calcu-
lus [9]. For any fixed real number g > 0 satisfying the conditions 0 < g < 1, the g-integer
[k]g, for k € N is defined as

(-4
g 971

[K]q:=
! k, g=1
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and the g-factorial by

[k] lo— [k]q[k—l]q[l]q, kZ 1’
L k=0.

The g-binomial expansion is
)=+ )+ qy)(u+q’y) - (u+q"y),

and the g-binomial coefficients are as follows:

m| [m],!
k q" (K]g!lm — k]!

From the above
)y =u"™ (1.2)

and

O =@ (@) - (@) =q = ¥

Gauss-formula is defined as
(u+y) = Z|: i| gV 2y,
j=0

After development of g-calculus, Lupas [14] in 1987 introduced the g-Lupas operator

(rational) as follows:

k k(k=1) -
[]q)( ) q 7 uk(l_u)m k

[m]q
Frall 3102 Z M0 -wrgiw )

and studied its approximation properties.
Similarly, Phillips [23] in 1996 constructed another g-analog of Bernstein operators

(polynomials) as follows:

m m—k-1 k
Bm,q(f?u Z |: j| uk (l—qsx)f(%), X € [0,1], (14')

k=0 s=0

where B, ;: C[0,1] — CJ[0, 1] defined for any m € N and any function f € C[0, 1].

Bases of these operators have been used in computer aided geometric design (CAGD)
to study curves and surfaces. From then onward it became an active area of research in
approximation theory as well as CAGD. In the recent past, g-analogs of various operators
were investigated by several researchers (see [6, 15, 19, 22, 24]). Also see [1, 2,4, 10,11, 16—
18, 21, 25] for other modifications.
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In 1968 Stancu [26] showed that the Bernstein—Stancu polynomials
-’ k+y
P8 - k(1 = )k ( ) 1.5
(P @) ;(k) (L uy"tf (L5)

converge to continuous function f(x) uniformly in [0, 1] for each real y, § such that 0 <
y <6.
In 2010, a new construction of Bernstein—Stancu type polynomials with shifted knots

)k(m+y2 )Wlk
—-Uu
m+ 8y

was introduced by Gadjiev and Gorhanalizadeh [8]:

m+8,\" e (m %
seostion= (") S (1) (-2
k=0 2

Xf<k+)/1

m+ 8

(1.6)

where -2 <y < 12
n+68y — n+dy

y2 <81 < 8,. It is clear that, for y, = 8, = 0, the polynomials (1.6) turn into the Bernstein—

and ¥, &k (k = 1,2) are positive real numbers provided 0 < y; <

Stancu polynomials (1.5) and if y; = y, = §; = §; = 0 then these polynomials turn into the
classical Bernstein polynomials.

Khalid et al. studied Bezier curves and surfaces using basis of shifted Bernstein poly-
nomial in [11]. Recently, Mursaleen et al. [20] introduced and studied Lupas Bernstein
shifted operators based on g-integers as follows:

RIS S w;b([m]qw_ )'""
Snji/,q(f’u)_([m]q )m2|:j:|qq 7[m]q+5 u

[m]q+5 q j=0

a Y.l
x ( [m]q+b) f([m]q) (1.7)

- i3] () e Y ()
Sm,q (fs) = (m]q )mZ|:]:|q [m]; +38 . ¢ [m]y +8 qf [mlq ,

[mlg+87q j=0

or

- lmlgr

[m] +6 — 7 — [m]g+s

y=58=0, the above operators (1.7) reduce to Lupas g-Bernstein operators [14].

where

¥ and y, § are positive real numbers provided 0 < y < §. In case

Motivated by the above work, in the next section we present a Stancu type modification
of Lupas g-Bernstein shifted operators and will study its approximation properties.

2 Construction of Lupas g-Bernstein-Stancu shifted operators
Let y,8 € Ny (the set of all non-negative integers) be such that 0 <y <§and 0 <a < b,
then we have

sabp L x~m| o men oy
V (fu) (ﬂmZ[k:Lq (M [m]q+5)

[m]g+8 )q k=0

mlg+y " (Kl;+a
x ([m]q+8 —u) f([m]q+b> 1)

Page 3 of 14
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or
S%’;’”’b) (f;u)
i e, () (B ) )
([’"]qz‘s 7o LK q [mlg +8 ), \ mlq +8 [m]y +b
where Tmlg+s ] 5 =u= [[ ]]Z:; and y, § are positive real numbers provided 0 < y <. In the

case a = b = 0, the above operators (2.1) reduces to (1.7).

3 Definitions and auxiliary results

Lemma 3.1 Let S,; y $.0,b) (f; u) be given by (2.1). Then the following properties hold:
1) SE 1= 1,
@) Sia (60 = [

Y a
75 4~ Grlges) + Tl b7
Y 2
yaub) 2. q [m gy, [mlg+s Gl ges) [mlg+s
B0 SE3 50 = () =+ (e 0~ )
_a
(Imlg+b)?’
6 Y 3
(rdab) 3.\ _ (lmlg+s 4’ Im-1lqlm=2]g(u- 0 =5)
(4) Sm,q (t ,M) = ([m]qub (Ol +b)2{[m]q+y—u+ - Tmlg+y Y ~ (2+3ﬂ+
[m]g+8 9 [mlg+é [mlg+é q-\u= m]q+6
2
q [m lq [m]q+5 (- [m]q+8) 2 [m]g+8 _ a3
i3 0 ){[[:Z]]% =) + (1 3a0) (g, ) ) Tlg+b? *

3a2 ([m]q+8)
(mlg+b)3 ’
S,a,b) (4. g2 m-1]4lm=24(m=31y , [mlg+8 1
) U2t u) = § ) X
]
(”_m)4 m=1]4[m=-2]y , [mlg+5
[mlg [ [ ([ ]q )
[mlg+y [m] +y b
(o v mM MM s -+ = ) Tl dP g
(q +2q +3q +4aq )( L3
mlg+y y [mlg+y S y + (q4 + ng + qu + 6(12q2) [Ef:] dl-b 3 ( {Z]Z:i)
(Tlers g s Al s [m]q+5 g (= ) g
- Gl5) [y +8 4 6a2([m]y+5)
+ (1 +4a® 4 - L) =t .
L —— ( ) g epm) % = Goigzs) + Gl ro® oy rby?

Proof (1) By using definition of g-binomial coefficients and Gauss-formula, we have

S (1)

1 m m @ % k [Wl]q+)/ m—k_
(g mz[qu (”_[m]q+5) ([m]q+a_”> - (31

([rn]q+5 q k=0

(2) For f(t) = t, we have
(v,8,a.b) (¢.
S ™ (&)

1~ |m| wen( oy k([m]qw_)mk([k]qm)
(s >q§[ Lq (” [m]q+3) il +s ) \lml,+b

[m]g+68

m-1

_ Z m-—1 (k2+1) (u_ y )k+l<[m]q +y _u)m—k—l
([}’I’l] + b)([m] +5 q k=0 q [m]q +4 [m]q +4
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m k m—k
a m Kew (- 14 [ml, +y _ >
" g+ )y kXO: [qu (u [m]q+8) <[m]q+8 *

[m]g+8

m—1 k
1 m-—1 k-1 [ qY a
[l mz{ k } 1 (%) WY
([m] +8q k=0 q a
1)
= [l + Y + 4 whereu:[m]q+y—u,Y:u— 14 )
[ml, +b [m];+b [m]y+6 [m], +6

_ [Wl]q"'fS Y a
N ([m]q+b)<u_ [m]q+5> i (ml, +b

(3) For f(t) = t2, we have

S(y,B,a,b) (tz; M)

%
S e ()
:“mb+h;(&ﬁ%Z“gé[z};f%ﬁ(”‘[m£+s)k
X(z%igﬂowqmﬂﬂy
K +b;(¢$%aZ’gé[zﬂqqﬂ%g<”‘[nﬂ:+a>k(E2221g'-u)nlﬂkhz
i S e (B
s i ki é [Vz]qqk(k{h (v s a)k
XGﬂ;K—OWWL

=A+B+C (say),
after calculating the values of A, B and C we get

Sijl’y’;’“'b) (£ u)

(ot o) (= 5 3)
([m]+b),)? ], + 9

+<fm—uﬂ<wbw> (= s a
[ml, +b [mly+b) (bmarr qlu - ([Wl] +b)g)?’

[m]g+68 [m] 5)}

which is the required result.
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(4) For f(¢) = t3, we have

S(”“b)(t ,u)

:
e sl G )
" (im) + b)q;([mia)q ki; [ﬂqq@ (u - [m]1;+ a)k
" ([[Z]ﬁig ‘“)mk([k]qm)s
e S ) (B
" b)b)g( )y é mqq() (“‘ [mJ:w)k([[Z]]Z:g ‘”)m_k
e )

[m]q +y m—k )
X ([m]q+8 —u) [k]q
3a? " |\ m S y )k
([m] + b)q)s([r[nm%s 7 ; |:kj|qq (14 [mlg +8
[m]q +y m—k
X ( [, + 5 - u) [klq

=D+E+F+G (say).

After calculating the values of D, E, F and G, we get

p [m], + 6
s e = (e

q°[m —1]g[m — 2]y (u - ﬁ)g

(mlg+y lmlg+y
([m]q + b)Z{ [m]zﬂg —u+ q(” - [m]};ﬂg)}{ [m]zﬂs —u+ 512(14 - [m]l;ﬂg)}

+(2+Sa+q)(q2[m_1]q>([m]qu‘s){ (M_[WI]J;M)Z

A ]
2 [m]y +38 14
+(1+3a )(um]q +b)3)<”‘ i, +5)
a’ 3a*([m], +9)

Tl by T (4 bP
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(5) For f(t) = t*, we have

SEZ,’; a.b) (t4 ; u)
_ 1 i m qk(kzn(u_ y >k<[m]q+y _u>’"—k< [k]q+a>4
([[T]qa):;l —~ k . [m]y +6 [m]y +6 (ml, +b
m]g+ =
1 | m| ke r \
Rl )
([m]q+b)‘*([r[n];f’“S “ kZ=0:|:ki|q [m]; +6
[m], + ek
(s ) e
— 1 i m k(/<2—l) u Y k [W’]q"'y u m_k[k]4
B b)*(La_ym k 1 [m]y; +6 [m],; +8 1
([m]q+ ) ([Wl]q+5 q k=0 q q q
N at Xm: _m_ qk(kil) <u y )k([m]q +y u)m—k
(Il + D)y i LK, [mlg+8) \[mlg+3
6612 m _m_ k(k—1)< % >k([m]q+ % )mk )
n g 7 (u- —u [k]
([, + bYX( ;Z;;]:I-é i ; | K| ] [m], +8 [m], +8 q
da " m|  wen y k [ml, +y m-k 3
" q ? (M ) ( u [k]
([Wl]q + b)X( y[n] 135 m ; _k_q [m], +6 [m], +6 q
4q® " _m_ k(k=1) y k [mly +y m—k
k
" (il + (s 3 K| 10 <u [m]q+8> ([m]q+8 ”) Kl
q [mlg+8’q k=0 L dgq
=H+I+]J]+K+L (say).
After calculating the values of H, I, J, K and L, we obtain
Sfj;"; a.b) (t4 ; u)
_ q“[m—l]q[m—2]q[m—3]q([m]q+8> 1
(blq +b)° [l + b) (05— gl = pitp))
__ 7y 4
y (u [m]q+a)
(s =1+ €00 = G Nty = e = o))
s [m —1]4[m - 2], ([m]y + 8
([m], + b)? [ml; +b
. (¢ +2q" +3q° +4aq2)(u— +5)3
(s =+l — )Ny =+ 2 (u = )
I RY)
+ (a* +3¢% + 3¢% + 6a°¢%) [~ 114 ([m]q + 5) e )
R e ]

3 [m]y +6 y at 6a*([m], +9)
+(1+4a )(([m]q+b)4) (u— ol +8> + ([m], + b)* + (Imly +b)*
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Lemma 3.2 By using the linearity of operators SﬁZ,';‘“’b) (f;u) and by Lemma 3.1, for all u €
Yy [mlg+y
[[m]q+5’ [m]q +8

y 8,a,b) Loy ImlgHs y
(1) Sm ((t - u)’ I/l) - [m]q+b (M - m]q+5) + [m]‘;+b -

1, we can acquire the central moments as

(u— Y )2 5
2 S(y&ab £ 2. _q 2(m- g\, mlg+8 [m)q+é 1 ) [m]g+ _
( ) m,q (( M) ) ( [mlg+b )([m]q+b){[[};nn]]zg—u+q(u—[m]2+5)} +([m]q+b ”)([m]q+b)(”
Y 1 2
Ty 5+ ([mﬁ+b)([m]q+b —2u) +u’,
a*lm-1]glm-2]q(u- )
3) S V&ab((t u) ,u):({Z}q:l‘i) - q g\ an +
9 mlq +b)2{ [m]q o —u+q(u- [m]q+5)}{m_u+q2(u_m)}
2
2+3a+q 2 m-1lq\ , [mlg+é (= [MJq+5) 143¢>2  _ _3u 2
(ot — 31 gy )([m1q+b){[[mJ]q++g gl s ) (Gonlgra? ~ Tlges + 347 X
[m]g+8 y a [m]g+8 3u2q 2 mlg+8 y
([m]q+b)( - [m]q+a) t Tl T 3a® (7 ([lq+D) 3) - Tmlgo2 * 3 ([m]q+h)( - [m]q+8) +
3a> 3
2Ly
([mlq+b) ’
.4, 2(m-1]4[m=2]4lm=3]y , [mlg+3 1
4) SYBab) (p _ )4y o LI lglm=2gm=S8lg  lmlq x
() S5 ) = S ) e e
(= s (m-1]4lm=2], , [mly+s
{[m]q+ 2( )}{q[m]q+ ( y 0! [m]q+b ( m]Z‘*'b)
[mlg+3 —urgtu— q+5 mlg+3 —urg\= mlg+3
8+3 5+2 6+4a
(W#&uq ) _W)g (q4+3q3+3q2+6a2q2 _ 8uq?+4uq> +12auq? _
{[[m]]?1+6 gl [m1yq+a)}{[[inn]1?;a g (u= [m]2+6)} (Im]g+b)? [m]q+b
Y 2
2 2 [m=1]q  [m]g+3 ~Tilges) 1+4a®  _ 4ur124%u 20> 4.3
2u )[m]q+b [m]q+b) {’K—uw( - [mlg+b)3 ~ (mlg+b)2 T Tmlg+h 4u”) x
[m]g+d Y [m]g+8 a 4Py
([m]q+b)( [m]q+5) ([m] 5 — 1247 ”)(([m] 53 7)+ g o)~ TP
dau® dau’ 4
+u*.

(Imlg+b)? [mlq+b
We can easily see that S, y 3.0,b) (f u) are positive linear operators.

4 Main results
Firstly, we prove some theorems on the convergence of S;;, y S.,b) (f su) to f(u).

Theorem 4.1 Let f € C[0,1] and the sequence q,, satisfying 0 < q,, < 1 such that q,, — 1
as m — 00. Then

lim max
m— 00 y < (Mg +v
[mlg, +6 =u= [m]gy, +6

SUab () — f(u)| = 0

Proof From Lemma 3.1, it follows that

Swabl(¢hy) —u'| =0, i=0,1,2. (4.1)

lim max i

m—00 [mlg, +y
Yy gmTr
[mlgp, +8 su= Mgy, +8

Consider the sequence of operators

(y.8,ab) . y [mlg,+y .
St (Fu) = Smam > E G -5 su= [m]q,?+]s’
my? . Mg, +Y
f(w), ifue [O’W]U[[m]{;m+a'l]'
Then obviously
ISof=fl= xS ) =) (4.2)
Y m

Tl #8 =4=Tm ]qm +a
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and using (4.1) we obtain

lim S5 ¢

t' =t o =0 i=0,1,2.

Now, by applying the Korovkin theorem [12] (see also [3]) to the sequence of positive linear
operators S, we obtain
=0

Tim |85, 0f30) = @) o

for every continuous function f. Therefore (4.2) gives

lim max
m— 00 y (Mg +y
[mlgp, +8 sus Mgy, +6

S (fu) - f(w)] =0

and the proof is completed. g

Theorem 4.2 Iff be a continuous function on [0,1] and taking 0 < q < 1, then

|Sy24Pf —f|| < 2p(00),

where

\/Syﬁab Zu))

Proof For any u,y € [a, b], it is well known that

2
10)-st] arion(1+ 230,
Therefore, we get
|SUA4D (5 u) — f )| < S (|F(2) — f () |5 )
< CUf(U)(l + %Sg]f'“@((t —u)?; u))

Choosing o = 0,, = \/S 2B (£ — 1)2; 1)), we have

|SSa?f =1 < 20(0m).
Thus, we obtain the desired result. O

Theorem 4.3 (Voronovskaja type theorem) Let f” € C[0,1] and (q,,) C(0,1) be a se-

meN =
quence such that q,, — 1 as m — oo and q'"* — 0 as m — oo. Then

hm [m]qm( ,;’;nfh (fsu) —f(u)) =Bu—-y)f (u)+ %(u— (Suz)f”(u),

[Wl]qm +V]
[ml gy, +87°

uniformly on [m’
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Proof By the Taylor formula we may write

F@&) =f () +f )t —u) + %f”(u)(t —u)? + r(t,u)(t - u), 4.3)

where r(t, u) is the remainder term and lim;_,, r(¢, u) = 0. Applying SW’,/ 3,: b) (f;u) to (4.3),

we obtain

[mlg,, (ST2P)(F; ) - f (1)) = [mlg,, SEoe (¢ - u); u)f (w)

+ [m] S(V"S’“'b)((t —u)?; u)w

qm = m,qm 2
+ [m]quﬁr’,’,’;j'h) (rt, u)(t - u)% u).
By the Cauchy—Schwartz inequality, we have
SUBD (r(t, ) ¢ — )% ) = /ST (1208, whs10) x ST (¢ - ) 00). (4.4)

Observe that r2(u, u) = 0 and 72(-, u) € C[0, 1], then it follows from Theorem 4.2 that

lim Sﬁny';’“’b) (rz(t, u); u) =r*(u,u) =0 (4.5)
m—oco0 < Am
uniformly with respect to u € [[L [m]"’”W] From (4.4) and (4.5), we get

Mg, +67 [mlg,, +6

hm [m] SR (r(t, u)(t — u)*; q; u) = 0.

qm = m,qm

Now we compute the following:
; (v.8,a,b o) =
im [y, S0 (¢~ w)s ) = 6u vy,

Y mlgm+y
[mlgy,+67 [mlgy,,+6 1

Finally using the above two equalities, we have

uniformly in [

W}lm [m]g,, (S, ,L/;jh (fsu) - f(w) = l1m [””] am ,Z[fm”b( ) u)f'(u)
+ lim [mlg,, S5oa? (e - u)’; u)@

+ Tim [mlg,, Spo? (r(t,u)(t — u)*; u)
=(6u—y)f (u)+ %(u - 8u2)f”(u).

This completes the proof of the theorem. O

5 Local approximation
If o >0and W2 = {s € C[0,1];5,s" € C[0, 1]}, then the K-functional is defined as

Ky(f,0) = inf{|[f —s|| + o ||s"||}. (5.1)

Page 10 of 14
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By [7], p. 177, Theorem 2.4, there exists an absolute constant C > 0 such that

Ky(f,0) < Can(f, /o), (5.2)

where the second order modulus of smoothness for f € C[0, 1] is defined as

wo(f, /o) = sup  sup |f(u+2h) = 2f (u+ h) +f (). (5.3)

0<h<./ouu+2he(0,1]

The usual modulus of continuity for f € C[0, 1] is defined as

o(f,o0)= sup sup [f(u+h)—f(u)|.

0<h<.\/ouu+hel0,1]
Our next main result is the following local approximation theorem.

Theorem 5.1 Let f be a continuous function on [0,1] with 0 < g < 1. Then, for every u €

[ )4 [mlg+y

g+’ Tmly Tmlers 1> we have

Su—vy
+b

|SU 39D ;1) — f(w)] < Can(f, 0m(w) +a)( )

where
a,i(m:(“’z[m‘”q)([ ml, +5) - (4~ Gigss)”
(ml, +b [ml, +b { qV_u+q(u_[m]yw)}
1 ) [m]g+6 y
+<[m1q+b' ”)([m1q+b>(”‘[m]q+a>
a 1 9 9
+<[m1q+b><[m]q+b‘ ”>+”
(o (e s) )
[m], [m]y +38 ’

Proof We define
)
Strsad Sdab)(f, Mgty 54
(fsu) = S, (fru) + f (u) f([m]q+b u ol 7)) (5.4)

From Lemma 3.1, we find

Sy el (1) = ST (Lu) = 1 (5.5)
and

_ 8 y

S5 (6) = SEPP (t0) + - I . 56

ma " (B1) = Sy G+ u il + 6 )\" " Tl +0) " (56)

Let s € W2, By using Taylor’s formula we have

s(t) = s(u) + (t — u)s'(u)(t —v)s"(v) dv,
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we get
S(y 3,a,b) (S, M)

=s(u) +s (u)S Aeb) (¢ — u);u) + 353,’:;’”'&’) (ft(t —v)s"(v)dv; u)

t
=s(u) + S(,;’,';’“’b) (/ t-v)s"(v)dy; u>

[m]g+8 Y
Tty # Tl ) [ [m]g + &

_/qu [145[[ lg + (u— : )"V]S”(V)d%
g [m]; +b [m]g +38

which implies that

|SV8”I’ (s; 1) —s(u)|

t
(v,8,a,b)
=Sy
u

f (t-v)s"(v)dv
[m]g+8
/ Tt O Gles)
+
u

)
s (+es) ]
(ml, +b [m], +6

|s”(v)| dv

IA

From Lemma 3.2(1), we have
| S\ () = s (us)|
- ((qz[m—l]q>([m] +5) (U=~ frs)”
B [m]q+b [I’I’l] {[m]qﬂ/ _M+q(bt—
+( >< )( 4 )
[Wl]q +b Wl]q +b [Wl]q +3
4 1 2 1
+<[M]q+b><[m]q+b ”)”‘)Hs I
[Wl]q+5 14 ? "
(o (e ) ) 1
- {(qz[m—l]q><[m]q+5> (U~ s
BN R AN A A o
() (o ss) (- 7s)
[m), +b (m], +6
1 2
<m]q+b><[m]q+b 2u)+u)
[Wl]q+3 14 2 ”
(e (e s ) i

2]

Y
[m]g+8 )}

Y
[m]q+8)}

a. 1 [m] + 8 2 a
SS:,’;’ 'b)((t— u)z;u) ||s || + |:[WI]Z "y (u - [m]: N 5) - u] ||S ||

(5.7)
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On the other hand, we have

ST A0 ;)| < BIIf- (5.8)
Now, for f € C[0,1] and s € W2, by using (5.7) and (5.8), we get

SO0 (F; 1) — f (u)|

5ub +4 14

< |Saabif —su)| + }SEZ,’;’“’Z’) (s;) = s(u)|

([mlg +8)u —
+ [s(u) = f(u)| + P(im[zn;q +ub y) —f(u)

8 —
o)
q

Taking the infimum on the right hand side over all s € W?2, we obtain

|S)/8ab(fu) f(u|<4K2(fcr u) +w< }w_ub

[ml, + b
= 4K, (f, 02 (1)) +a)<f, ‘[‘::]%D
q

Now using (5.3), we have

|Sy8ab (f; u) _f(u)| < Ca)z(f,am(”)) +a)( ’

du—vy
ml,+b|)

This completes the proof. O

6 Conclusion

It can be concluded that the parameters y, §, g, a and b will provide more modeling flex-
ibility for approximation of functions and bases of these operators can be used to draw
curves and surfaces in CAGD. Also the approximation results derived for shifted inter-
vals will be very helpful when it comes to implementation using computers for simulation
purposes.
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