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Abstract
Let 1≤ p < 2 and 0 < α,β <∞ with 1/p = 1/α + 1/β . Let {Xn,n ≥ 1} be a sequence of
random variables satisfying a generalized Rosenthal type inequality and stochastically
dominated by a random variable X with E|X|β <∞. Let {ank , 1≤ k ≤ n,n≥ 1} be an
array of constants satisfying

∑n
k=1 |ank|α = O(n). Marcinkiewicz–Zygmund type strong

laws for weighted sums of the random variables are established. Our results generalize
or improve the corresponding ones of Wu (J. Inequal. Appl. 2010:383805, 2010),
Huang et al. (J. Math. Inequal. 8:465–473, 2014), and Wu et al. (Test 27:379–406, 2018).
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1 Introduction
Let {Xn, n ≥ 1} be a sequence of random variables, and let {ank , 1 ≤ k ≤ n, n ≥ 1} be an ar-
ray of constants. The limiting behavior of weighted sums

∑n
k=1 ankXk is useful in statistics

since many linear statistics such as least-squares estimators and nonparametric regression
function estimators are of the form of the weighted sums.

The classical Marcinkiewicz–Zygmund strong law of large numbers states that if
{Xn, n ≥ 1} is a sequence of independent and identically distributed (i.i.d.) random vari-
ables with EX1 = 0 and E|X1|p < ∞ for some 1 ≤ p < 2, then n–1/p ∑n

k=1 Xk → 0 a.s. Cuzick
[5] and Bai and Cheng [2] (p = 1 and 1 < p < 2, respectively) obtained a Marcinkiewicz–
Zygmund type strong law of large numbers for weighted sums of i.i.d. random variables,
i.e., they proved that

n–1/p
n∑

k=1

ankXk → 0 a.s. (1.1)
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when {Xn, n ≥ 1} is a sequence of i.i.d. random variables with EX1 = 0 and E|X1|β < ∞, and
{ank , 1 ≤ k ≤ n, n ≥ 1} is an array of constants satisfying

n∑

k=1

|ank|α = O(n), (1.2)

where α,β > 0 and 1/p = 1/α + 1/β . Note that if we set ank = 1 for all 1 ≤ k ≤ n and n ≥ 1,
then (1.1) reduces to the Marcinkiewicz–Zygmund strong law of large numbers. However,
the moment condition is strengthened to E|X1|β < ∞.

The Cuzick–Bai–Cheng result has been generalized and extended in several directions.
Chen and Gan [3] generalized it by considering the norming sequence as {n1/pl(n)}, where
l(x) > 0 is a slowly varying function. Wu [12] extended it to negatively orthant dependent
random variables {Xn, n ≥ 1} which are stochastically dominated by a random variable X
satisfying E|X|β < ∞, i.e.,

P
(|Xn| > x

) ≤ DP
(|X| > x

)
for all n ≥ 1 and x > 0,

where D > 0 is a constant. Huang et al. [6] extended it to ϕ-mixing random variables under
a mixing rate condition

∑∞
n=1 ϕ1/2(n) < ∞. Recently, Wu et al. [13] extended it to random

variables satisfying a Rosenthal type inequality

E
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∣
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(
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∣
∣
∣
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E
∣
∣fnk(Xk)

∣
∣s +

( n∑
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E
(
fnk(Xk)

)2
)s/2}

, ∀n ≥ 1, s ≥ 2, (1.3)

where Cs is a positive constant depending only on s, and {fnk(x), 1 ≤ k ≤ n, n ≥ 1} is an
array of nondecreasing functions. However, the moment condition of Wu et al. [13] is
strengthened to E|X|u < ∞ for some u > β . In this paper, we improve the result of Wu et
al. [13] by weakening the moment condition as E|X|β < ∞.

The following condition is a Rosenthal type inequality for the maximums of partial sums,
which is stronger than (1.3).

E max
1≤m≤n
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)2
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, ∀n ≥ 1, s ≥ 2. (1.4)

When {Xn, n ≥ 1} are independent random variables, (1.3) holds by the Rosenthal [7]
inequality, and (1.4) also holds by combining the Rosenthal [7] inequality with the Doob
inequality. It is also well known that (1.3) or (1.4) holds for some classes of dependent ran-
dom variables. If {Xn, n ≥ 1} are negatively orthant dependent random variables, then (1.3)
holds (see Asadian et al. [1]). If {Xn, n ≥ 1} are negatively associated or ρ∗-mixing random
variables, then (1.4) holds (see Shao [8] and Utev and Peligrad [9], respectively) and hence
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(1.3) holds. When {Xn, n ≥ 1} are ϕ-mixing random variables with
∑∞

n=1 ϕ1/2(n) < ∞, (1.4)
holds (see Wang et al. [11]).

Clearly, the following two inequalities are more general than (1.3) and (1.4), respectively:
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, ∀n ≥ 1, s ≥ 2, (1.5)

and

E max
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, ∀n ≥ 1, s ≥ 2, (1.6)

where g(x, y) is a positive function.
A sequence of random variables {Xn, n ≥ 1} is said to be widely upper orthant dependent

(WUOD) if, for each n ≥ 1, there exists a positive number gU (n) such that, for all real
numbers xi, 1 ≤ i ≤ n,

P(X1 > x1, . . . , Xn > xn) ≤ gU (n)
n∏

i=1

P(Xi > xi).

It is said to be widely lower orthant dependent (WLOD) if, for each n ≥ 1, there exists a
positive number gL(n) such that, for all real numbers xi, 1 ≤ i ≤ n,

P(X1 ≤ x1, . . . , Xn ≤ xn) ≤ gL(n)
n∏

i=1

P(Xi ≤ xi);

and it is said to be widely orthant dependent (WOD) if it is both WUOD and WLOD.
The sequences {gU (n), n ≥ 1} and {gL(n), n ≥ 1} are called dominating coefficients (see
Wang et al. [10]). If for all n ≥ 1, gU (n) = gL(n) = M for some positive constant M, then
{Xn, n ≥ 1} is said to be extended negatively dependent (END). In particular, if M = 1, then
{Xn, n ≥ 1} is said to be negatively orthant dependent (NOD) or negatively dependent.
Since the class of WOD random variables contains END random variables and NOD ran-
dom variables as special cases, it is interesting to study the limiting behavior of WOD
random variables.

If {Xn, n ≥ 1} is a sequence of WOD random variables with the dominating coefficients
gL(n) and gU (n) for n ≥ 1, then (1.5) holds with g(n, s) = Ds(gL(n) + gU (n)), where Ds is a
positive constant depending only on s (see Chen and Sung [4]).

In this paper, we extend the Cuzick–Bai–Cheng result to random variables satisfying
(1.5) or (1.6) with a suitable condition on g(x, y). In particular, under (1.6), we obtain the
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following strong law which is slightly stronger than (1.1):

n–1/p max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

ankXk

∣
∣
∣
∣
∣
→ 0 a.s. (1.7)

We also extend the Cuzick–Bai–Cheng result to WOD random variables.
The rest of this paper is organized as follows. In Sect. 2, we present the main results.

The proofs of the results in Sect. 2 are given in Sect. 3.
Throughout this paper, the symbol C denotes a positive constant which is not necessarily

the same one in each appearance. For an event A, I(A) denotes the indicator function of
the event A. For a real number x, x+ = max{x, 0} and x– = max{–x, 0}.

2 Main results
We first present strong laws for weighted sums of random variables satisfying (1.5) or (1.6).
It is necessary to limit the growth of g(x, y) in (1.5) and (1.6). From now on, we always
assume that there exists a constant τ ∈ [0,∞) such that g(x, y) = O(xτ ) as x → ∞ for any
fixed y > 0.

Theorem 2.1 Let 1 ≤ p < 2 and α,β > 0 with 1/p = 1/α + 1/β . Let {Xn, n ≥ 1} be a sequence
of mean zero random variables satisfying (1.5) for any nondecreasing functions {fnk(x)} and
stochastically dominated by a random variable X satisfying E|X|β < ∞. Let {ank , 1 ≤ k ≤
n, n ≥ 1} be an array of constants satisfying (1.2). Then (1.1) holds.

If condition (1.5) is replaced by a stronger condition (1.6), then we have a stronger result.

Theorem 2.2 Let 1 ≤ p < 2 and α,β > 0 with 1/p = 1/α + 1/β . Let {Xn, n ≥ 1} be a sequence
of mean zero random variables satisfying (1.6) for any nondecreasing functions {fnk(x)} and
stochastically dominated by a random variable X satisfying E|X|β < ∞. Let {ank , 1 ≤ k ≤
n, n ≥ 1} be an array of constants satisfying (1.2). Then (1.7) holds.

In Theorems 2.1 and 2.2, we have considered only the case 1 ≤ p < 2. If 0 < p < 1, then
(1.1) and (1.7) hold without any conditions imposed on the joint distributions of the ran-
dom variables.

Theorem 2.3 Let 0 < p < 1 and α,β > 0 with 1/p = 1/α + 1/β . Let {Xn, n ≥ 1} be a sequence
of random variables which are stochastically dominated by a random variable X satisfying
E|X|β < ∞. Let {ank , 1 ≤ k ≤ n, n ≥ 1} be an array of constants satisfying (1.2). Then

n–1/p
n∑

k=1

|ank||Xk| → 0 a.s.,

and hence (1.1) and (1.7) hold.

Remark 2.1 Wu et al. [13] proved Theorems 2.1 and 2.3 under stronger conditions. They
proved Theorem 2.3 under an additional condition (1.4). When p = 1, they proved The-
orem 2.1 under a stronger condition (1.4) than (1.5). When 1 < p < 2, they proved Theo-
rem 2.1 under a special condition (1.3) and a stronger moment condition E|X|u < ∞ for
some u > β .
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Remark 2.2 As mentioned in Introduction, (1.3) holds for negatively orthant dependent
random variables. Hence, Theorem 2.1 holds for negatively orthant dependent random
variables. On the other hand, Wu [12] already proved Theorem 2.1 for such random vari-
ables. Wu [12] also proved Theorem 2.3 under the stronger condition that {Xn, n ≥ 1} are
negatively orthant dependent random variables.

Remark 2.3 As mentioned in Introduction, (1.4) holds for ϕ-mixing random variables sat-
isfying a mixing rate condition

∑∞
n=1 ϕ1/2(n) < ∞. Hence, Theorem 2.2 holds for ϕ-mixing

random variables with
∑∞

n=1 ϕ1/2(n) < ∞. On the other hand, Huang et al. [6] already
proved Theorem 2.2 for such random variables. They also proved Theorem 2.3 under the
stronger condition that {Xn, n ≥ 1} are ϕ-mixing random variables with

∑∞
n=1 ϕ1/2(n) < ∞.

We next present a strong law for weighted sums of WOD random variables.

Theorem 2.4 Let 1 ≤ p < 2 and α,β > 0 with 1/p = 1/α + 1/β . Let {X, Xn, n ≥ 1} be a
sequence of identically distributed WOD random variables with dominating coefficients
gL(n) and gU (n) for n ≥ 1. Suppose that there exist a positive function g(x) for x ≥ 0 and
a nonnegative constant 0 ≤ τ < ∞ such that g(x) = O(xτ ) and max{gL(n), gU (n)} ≤ g(n) for
n ≥ 1. Let {ank , 1 ≤ k ≤ n, n ≥ 1} be an array of constants satisfying (1.2). Assume that
EX = 0 and E|X|β < ∞. Then (1.1) holds.

Corollary 2.1 Let 1 ≤ p < 2. Let {X, Xn, n ≥ 1} be a sequence of identically distributed
WOD random variables with dominating coefficients gL(n) and gU (n) for n ≥ 1. Suppose
that there exist a positive function g(x) for x ≥ 0 and a nonnegative constant 0 ≤ τ < ∞
such that g(x) = O(xτ ) and max{gL(n), gU (n)} ≤ g(n) for n ≥ 1. Assume that EX = 0 and
E|X|β < ∞ for some β > p. Then

n–1/p
n∑

k=1

Xk → 0 a.s.

3 Proofs
In this section, we present the proofs of the results in Sect. 2.

Proof of Theorem 2.1 We can rewrite (1.1) as

n–1/p
n∑

k=1

ankXk = n–1/p
n∑

k=1

a+
nkXk – n–1/p

n∑

k=1

a–
nkXk .

Hence, we may assume that ank ≥ 0 for all 1 ≤ k ≤ n and n ≥ 1. For 1 ≤ k ≤ n and n ≥ 1,
let

Ynk = XkI
(|Xk| ≤ n1/β)

+ n1/βI
(
Xk > n1/β)

– n1/β I
(
Xk < –n1/β)

,

Znk = Xk – Ynk .

Then

n–1/p
n∑

k=1

ankXk = n–1/p
n∑

k=1

ankZnk + n–1/p
n∑

k=1

ankEYnk + n–1/p
n∑

k=1

ank(Ynk – EYnk)
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:= I1 + I2 + I3.

We first note that |Znk| ≤ |Xk|I(|Xk| > n1/β ). Since
∑∞

n=1 P(|Xn| > n1/β ) ≤ D
∑∞

n=1 P(|X| >
n1/β ) ≤ DE|X|β < ∞, we have by the Borel–Cantelli lemma that

|I1| ≤ n–1/p max
1≤k≤n

|ank|
n∑

k=1

|Znk|

≤ Cn–1/pn1/α
n∑

k=1

|Xk|I
(|Xk| > n1/β)

≤ Cn–1/β
∞∑

k=1

|Xk|I
(|Xk| > k1/β)

→ 0 a.s.

On account of EXn = 0 for all n ≥ 1, we obtain that

|I2| = n–1/p

∣
∣
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n∑

k=1

ankEZnk

∣
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∣
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∣

≤ n–1/p
n∑

k=1

|ank|E|Znk|

≤ Dn–1/pE|X|I(|X| > n1/β) n∑

k=1

|ank|

≤ Cn1–1/pE|X|I(|X| > n1/β)

≤ Cn–1/αE|X|β I
(|X| > n1/β)

→ 0.

Finally, we prove that I3 → 0 a.s. By the Borel–Cantelli lemma, it suffices to show that

∞∑

n=1

P
(|I3| > ε

)
< ∞, ∀ε > 0. (3.1)

We prove (3.1) by using (1.5). To do this, let fnk(x) = ankhn(x), where hn(x) = xI(|x| ≤
n1/β ) + n1/β I(x > n1/β ) – n1/βI(x < –n1/β). Then fnk(x), 1 ≤ k ≤ n, n ≥ 1, are nondecreas-
ing functions, and fnk(Xk) = ankYnk . Taking s > (τ + 1) · max{α,β , 2p/(2 – p)}, we have by
the Markov inequality and (1.5) that

∞∑

n=1

P
(|I3| > ε

)

≤ ε–s
∞∑

n=1

n–s/pE

∣
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∣

n∑

k=1

ank(Ynk – EYnk)

∣
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s

≤ C
∞∑

n=1

n–s/p

{ n∑

k=1

as
nkE|Ynk|s + g(n, s)

( n∑

k=1

a2
nkEY 2

nk

)s/2}
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:= C{I4 + I5}.

Since s > α, we have that
∑n

k=1 as
nk = O(ns/α). By the stochastic domination condition, we

also have that E|Ynk|s = E|Xk|sI(|Xk| ≤ n1/β) + ns/βP(|Xk| > n1/β ) ≤ DE|X|sI(|X| ≤ n1/β ) +
2Dns/βP(|X| > n1/β ). It follows that

I4 ≤ C
∞∑

n=1

n–s/p
n∑

k=1

as
nk

{
DE|X|sI(|X| ≤ n1/β)

+ 2Dns/βP
(|X| > n1/β)}

≤ C
∞∑

n=1

n–s/pns/α{
DE|X|sI(|X| ≤ n1/β)

+ 2Dns/βP
(|X| > n1/β)}

= CD
∞∑

n=1

n–s/βE|X|sI(|X| ≤ n1/β)
+ 2CD

∞∑

n=1

P
(|X| > n1/β)

≤ CE|X|β < ∞.

We show that I5 < ∞ with two cases.
When β < 2, we have that α > 2 and E|Ynk|2 = E|Xk|2I(|Xk| ≤ n1/β ) + n2/βP(|Xk| > n1/β ) ≤

DE|X|2I(|X| ≤ n1/β ) + 2Dn2/βP(|X| > n1/β ) ≤ Dn(2–β)/βE|X|β I(|X| ≤ n1/β) +
2Dn(2–β)/βE|X|β I(|X| > n1/β ) ≤ 2Dn(2–β)/βE|X|β . It follows that

I5 ≤
∞∑

n=1

n–s/pg(n, s)

( n∑

k=1

a2
nk2Dn(2–β)/βE|X|β

)s/2

≤ C
∞∑

n=1

n–s/p+τ n(2–β)s/(2β)

( n∑

k=1

a2
nk

)s/2

≤ C
∞∑

n=1

n–s/p+τ n(2–β)s/(2β)ns/2

= C
∞∑

n=1

n–s/α+τ

< ∞,

since s > α(τ + 1).
When β ≥ 2, we have that E|Ynk|2 ≤ E|Xk|2 ≤ DE|X|2 < ∞. It follows that

I5 ≤ C
∞∑

n=1

n–s/pg(n, s)

( n∑

k=1

a2
nk

)s/2

≤
⎧
⎨

⎩

C
∑∞

n=1 n–s/p+τ ns/α if α ≤ 2,

C
∑∞

n=1 n–s/p+τ ns/2 if α > 2,

< ∞,

since s > β(τ + 1) and s > 2p(τ + 1)/(2 – p). The proof is completed. �

Proof of Theorem 2.2 The proof is similar to that of Theorem 2.1 and is omitted. �
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Proof of Theorem 2.3 When the random variables {Xn, n ≥ 1} are identically distributed,
the proof is proved by Chen and Gan [3]. For the non-identically distributed case, the
proof is the same as that of Chen and Gan [3], and thus it is omitted. �

Proof of Theorem 2.4 By Lemma 2.6 in Chen and Sung [4], all conditions of Theorem 2.1
are satisfied. Hence the result follows directly from Theorem 2.1. �

Proof of Corollary 2.1 Set ank = 1 for all n ≥ 1 and 1 ≤ k ≤ n. Then (1.2) holds for α =
pβ/(β – p), and hence the result follows directly from Theorem 2.4. �
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