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Abstract
This paper develops some new existence and uniqueness theorems of a fixed point
for a class of sum operator equations with parameter
λ1A(x, x) + λ2B(x, x) + λ3Cx + λ4Dx = x, where A, B are two mixed monotone operators,
C is an increasing operator, D is a decreasing operator. In the case of positive
parameters, the results obtained in this paper extend many existing conclusions in
the field of study. Furthermore, by using the properties of Green’s function and the
above fixed point theorems of sum operator, the unique positive solution a class of
fractional differential equations with integro-differential boundary value conditions is
given. Application of the results to the study of fractional differential equations is also
given in the article.
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1 Introduction
This paper discusses the existence and uniqueness of solution for a class of operator equa-
tion

λ1A(x, x) + λ2B(x, x) + λ3Cx + λ4Dx = x,

where A, B are two mixed monotone operators, C is an increasing operator, D is a decreas-
ing operator, λi > 0 (i = 1, 2, 3, 4) and satisfies the following conditions:

Situation 1:
1. A(λx,λ–1y) ≥ ϕ(λ)A(x, y), ϕ(λ) ∈ (λ, 1], ∀λ ∈ (0, 1), x, y ∈ P;
2. for any fixed y ∈ P, B(·, y) : P → P is concave; for any x ∈ P, B(x, ·) : P → P is convex;
3. C : P → P is increasing sub-homogeneous.
4. D(λ–1y) ≥ λDy, ∀λ ∈ (0, 1), y ∈ P.
Situation 2:
1. A(λx,λ–1y) ≥ λA(x, y), ∀λ ∈ (0, 1), x, y ∈ P;
2. for any fixed y ∈ P, B(·, y) : P → P is concave; for any x ∈ P, B(x, ·) : P → P is convex;
3. C(λx) ≥ ϕ(λ)Cx, ϕ(λ) ∈ (λ, 1], ∀λ ∈ (0, 1), x, y ∈ P;
4. D(λ–1y) ≥ λDy, ∀λ ∈ (0, 1), y ∈ P.
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In fact, the operator equation λ1A(x, x) + λ2B(x, x) + λ3Cx + λ4Dx = x generalizes and
improves many articles.

When the parameter λ3 = 1, λi = 0 (i = 1, 2, 4), situation 2 can be reduced to the case that
an increasing operator C meets C(tx) ≥ tα(t)Cx, α(t) ∈ (0, 1), ∀t ∈ (0, 1), x ∈ Ph. Obviously,
it is the result of the paper [1].

When the parameter λ1 = 1, λi = 0 (i = 2, 3, 4), there is A(λx,λ–1y) ≥ ϕ(λ)A(x, y), ϕ(λ) ∈
(λ, 1], ∀λ ∈ (0, 1), x, y ∈ P in situation 1. In [2], we can see that the mixed monotone oper-
ator A meets the same properties.

When the parameter λ1 = 1, λ2 = 0, λ3 = 1, λ4 = 0, we deduce from situation 1 that The-
orem 2.1 of [3] is established and from situation 2 that Theorem 2.4 of [3] holds.

When the parameter λ1 = 1, λ2 = 0, λ3 = 1, λ4 = 1, we derive Theorem 3.1 of [4] from
situation 1 and Theorem 3.8 of [4] from situation 1.

When the parameter λ1 = 1, λ2 = 1, λ3 = 1, λ4 = 0, the conditions of situation 1 are the
same as those of Theorem 3.1 in [5], thus they can get same conclusions.

The theory of nonlinear operators plays a significant role in modern mathematics and
there are many excellent results (see [1–7]). Inspired by the these paper, we want to make
some contributions to this field. As one of the applications of operator theory, fractional
differential equations have attracted much attention by many researchers as a result of a
myriad of their applications in many engineering and scientific disciplines, such as me-
chanics, biomedicine, physics, and so on, see [8–15] and the references therein. Besides,
there are some methods such as comparison theorem, the monotone iterative technique,
the method of lower and upper solutions, Leray-Schauder theory, Krasnoselskii’s fixed
point theorems, and some other fixed point theorems in cones. They play an irreplace-
able role in the existence, uniqueness, and multiplicity of positive solutions for fractional
differential equations [16–22]. In recent decades, more and more fractional differential
equations are solved based on the nonlinear operators theory [23–25]. In this paper, we
make use of the new operator equation theory to investigate a class of new fractional dif-
ferential equations.

The characteristic features of this paper are displayed as follows. Firstly, comparatively
speaking, we generalize the results of the above article. Secondly, there are seldom inves-
tigated operator equations with parameters. A class of new operator equations with four
operators λ1A(x, x) + λ2B(x, x) + λ3Cx + λ4Dx = x is studied, and the fixed point theorem
of this sum-type operator is obtained. We gain the existence and uniqueness solution of
the operator equation, and construct two iterative sequences to uniformly approximate
this solution in the fixed point theorem. Thirdly, by using the new results, we study a class
of new fractional differential equations and get some great conclusions. Fourthly, some
concrete examples are given to illustrate the main ideas.

The main body of this paper is organized as follows. In Sect. 2, we review the theory and
results of fractional calculus and some definitions, notations in Banach space. In Sect. 3,
a class of fixed point theorem is presented. In Sect. 4, by the theorem of Sect. 2, a kind of
fractional differential equation is studied and some examples to illustrative our work are
presented.

2 Preliminaries
In this section, since all the work is in the Banach space, a brief review about the Banach
space and relevant contents is given for the reader’s convenience; it includes some defini-
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tions, lemmas, and basic results. These will be used in the following proofs of our theorem.
For more details, we refer the reader to [8–12].

Let (E,‖ · ‖) be a real Banach space. A nonempty closed convex set P ⊂ E is called a cone
if the following hold:

(i) If x ∈ P, λ ≥ 0, then λx ∈ P;
(ii) If x ∈ P and –x ∈ P, then x = θ ,

where θ is the zero element of E.
There is partially ordered by a cone P ⊂ E, x ≤ y, x, y ∈ E ⇔ y – x ∈ P, in which, if x ≤ y

and x 
= y, we denote x < y or y > x.
If Ṗ = {x ∈ P|x is an interior point of P} is nonempty, cone P is said to be solid. Then, we

call P normal if there exists a constant N > 0 such that, for ∀x, y ∈ E, θ ≤ x ≤ y, there is
‖x‖ ≤ N‖y‖, where N is called the normality constant of P. For ∀x, y ∈ E, the denotation
x ∼ y means that there exist λ,μ > 0 such that λx ≤ y ≤ μx. Clearly, ∼ is an equivalence
relation. Given h > θ , and denoting the set Ph = {x ∈ E | x ∼ h}, there is Ph ⊂ P.

Definition 2.1 ([8]) A : P × P → P is called a mixed monotone operator if A(x, y) is
increasing in x and decreasing in y, i.e., ui, vi (i = 1, 2) ∈ P, u1 ≤ u2, v1 ≥ v2 implies
A(u1, v1) ≤ A(u2, v2). Element x ∈ P is called a fixed point of A if A(x, x) = x.

Definition 2.2 ([9, 10]) An operator A : E → E is said to be homogeneous if it satisfies

A(tx) = tAx, ∀t > 0, x ∈ E.

An operator A : P → P is said to be sub-homogeneous if it satisfies

A(tx) ≥ tAx, ∀t ∈ (0, 1), x ∈ P.

Definition 2.3 ([9, 10]) Let D = P or D = Ṗ and a real number α ∈ [0, 1). An operator
A : D → D is said to be α-concave if it satisfies

A(tx) ≥ tαAx, ∀t ∈ (0, 1), x ∈ D.

Definition 2.4 ([11]) Let D be a convex subset in E. An operator A : D → E is called a
convex operator if, for ∀x, y ∈ D with y ≤ x and every t ∈ [0, 1],

A
(
tx + (1 – t)y

) ≤ tAx + (1 – t)Ay,

A : D → E is called a concave operator if

A
(
tx + (1 – t)y

) ≥ tAx + (1 – t)Ay.

3 Main results
In this section, we use the definitions, notations of section Preliminaries to investi-
gate some new fixed point theorem. Furthermore, we can obtain the following sufficient
conditions of existence and uniqueness of positive solutions for the operator equation
λ1A(x, x) + λ2B(x, x) + λ3Cx + λ4Dx = x.
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Theorem 3.1 There are four operators A, B, C, D, where A, B : P × P → P are two mixed
monotone operators, C : P → P is an increasing sub-homogeneous operator, D : P → P is a
decreasing operator, and if the following conditions are satisfied:

(A1) There exists ϕ(λ) ∈ (λ, 1] such that

A
(
λx,λ–1y

) ≥ ϕ(λ)A(x, y), D
(
λ–1y

) ≥ λDy, ∀λ ∈ (0, 1), x, y ∈ P; (1)

(A2) For any fixed y ∈ P, B(·, y) : P → P is concave; for any x ∈ P, B(x, ·) : P → P is convex;
(A3) There exists 1

2 ≤ c̃ ≤ 1 such that B(θ , lh) ≥ c̃B(lh, θ ), l ≥ 1;
(A4) There exists h ∈ P with h 
= θ such that A(h, h), B(h, h), Ch, Dh ∈ Ph;
(A5) There exists δ > 0 such that [λ2B(x, y) + λ3Cx + λ4Dy] ≤ δλ1A(x, y), ∀x, y ∈ Ph.

Then the following conclusions hold:
(C1) A, B : Ph × Ph → Ph, C, D : Ph → Ph;
(C2) There exist u0, v0 ∈ Ph, r ∈ (0, 1) such that rv0 ≤ u0 < v0,

u0 ≤ λ1A(u0, v0) + λ2B(u0, v0) + λ3Cu0 + λ4Dv0

≤ λ1A(v0, u0) + λ2B(v0, u0) + λ3Cv0 + λ4Du0 ≤ v0;

(C3) The operator equation λ1A(x, x) + λ2B(x, x) + λ3Cx + λ4Dx = x has a unique solution
x∗ ∈ Ph;

(C4) Constructing the iterative sequences as follows:

xn = λ1A(xn–1, yn–1) + λ2B(xn–1, yn–1) + λ3Cxn–1 + λ4Dyn–1,

yn = λ1A(yn–1, xn–1) + λ2B(yn–1, xn–1) + λ3Cyn–1 + λ4Dxn–1, n = 1, 2, . . . ,

for any initial values x0, y0 ∈ Ph, we have

xn → x∗, yn → x∗, as n → ∞.

Proof Define the operator T = λ1A + λ2B + λ3C + λ4D by

T(x, y) = λ1A(x, y) + λ2B(x, y) + λ3Cx + λ4Dy, ∀x, y ∈ P.

Firstly, we show that T : Ph × Ph → Ph. The proof of A, B : Ph × Ph → Ph, C, D : Ph → Ph

is expanded. By A(λx,λ–1y) ≥ ϕ(λ)A(x, y) of (A1), we deduce

A
(
λ–1x,λy

) ≤ ϕ(λ)–1A(x, y). (2)

Furthermore, the condition A(h, h) ∈ Ph of (A4) shows that there exist positive constants
u1, v1 such that

u1h ≤ A(h, h) ≤ v1h. (3)

For ∀x, y ∈ Ph, we can find two sufficiently small numbers c1, c2 ∈ (0, 1) such that

c1h ≤ x ≤ c–1
1 h, c2h ≤ y ≤ c–1

2 h. (4)



Zhang et al. Journal of Inequalities and Applications         (2020) 2020:63 Page 5 of 25

Let c = min{c1, c2}, then by (1)–(4), we get

A(x, y) ≤ A
(
c–1

1 h, c2h
) ≤ A

(
c–1h, ch

) ≤ ϕ(c)–1A(h, h) ≤ ϕ(c)–1v1h,

A(x, y) ≥ A
(
c1h, c–1

2 h
) ≥ A

(
ch, c–1h

) ≥ ϕ(c)A(h, h) ≥ ϕ(c)u1h.

Thus, A : Ph × Ph → Ph is proved. Then, due to (A2), for any λ ∈ (0, 1), there is

B(x, y) = B
(
x,λλ–1y + (1 – λ)θ

) ≤ λB
(
x,λ–1y

)
+ (1 – λ)B(x, θ ),

thus, λB(x,λ–1y) ≥ B(x, y) – (1 – λ)B(x, θ ). Subsequently, we can find a sufficiently large l
such that x, y,λ–1y ≤ lh. Combining with Definition 2.4 and from the condition of (A2)–
(A3), we know that

B
(
λx,λ–1y

)
= B

(
λx + (1 – λ)θ ,λ–1y

)

≥ λB
(
x,λ–1y

)
+ (1 – λ)B

(
θ ,λ–1y

)

≥ B(x, y) – (1 – λ)B(x, θ ) + (1 – λ)B
(
θ ,λ–1y

)

≥ B(x, y) + (1 – λ)
(
B(θ , lh) – B(lh, θ )

)

≥ B(x, y) + (1 – λ)
[

B(θ , lh) –
1
c̃

B(θ , lh)
]

≥
[

1 + (1 – λ)
(

1 –
1
c̃

)]
B(x, y)

=
[(

2 –
1
c̃

)
+

(
1
c̃

– 1
)

λ

]
B(x, y)

≥ λB(x, y),

that is,

B
(
λx,λ–1y

) ≥ λB(x, y). (5)

Then we gain

B
(
λ–1x,λy

) ≤ λ–1B(x, y), λ ∈ (0, 1).

From the condition B(h, h) ∈ Ph, there exist two positive constants u2, v2 such that u2h ≤
B(h, h) ≤ v2h. For any x, y ∈ Ph,

B(x, y) ≤ B
(
c–1

1 h, c2h
) ≤ B

(
c–1h, ch

) ≤ c–1B(h, h) ≤ c–1v2h,

B(x, y) ≥ B
(
c1h, c–1

2 h
) ≥ B

(
ch, c–1h

) ≥ cB(h, h) ≥ cu2h.

Thus, B : Ph × Ph → Ph holds. Since Ch, Dh ∈ Ph,

u3h ≤ Ch ≤ v3h, u4h ≤ Dh ≤ v4h, (6)
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where ui, vi (i = 3, 4) are positive constants. By the properties of operators C, D, for any
λ ∈ (0, 1), x, y ∈ P, there is

C(tx) ≥ tCx, C
(
t–1x

) ≤ t–1Cx, D
(
t–1x

) ≥ tDx, D(tx) ≤ t–1Dx.

Using similar processes, we have

Cx ≤ C
(
c–1

1 h
) ≤ C

(
c–1h

) ≤ c–1Ch ≤ c–1v3h,

Cx ≥ C(c1h) ≥ C(ch) ≥ cCh ≥ cu3h,

Dy ≤ D(c2h) ≤ D(ch) ≤ c–1Dh ≤ c–1v4h,

Dy ≥ D
(
c–1

2 h
) ≥ D

(
c–1h

) ≥ cDh ≥ cu4h,

which shows that C, D : Ph → Ph. From the above deduction, we have

(
λ1ϕ(c)u1 + λ2cu2 + λ3cu3 + λ4cu4

)
h

≤ T(x, y) = λ1A(x, y) + λ2B(x, y) + λ3Cx + λ4Dy

≤ (
λ1ϕ(c)–1v1 + λ2c–1v2 + λ3c–1v3 + λ4c–1v4

)
h,

i.e., T : Ph × Ph → Ph, and then we can get T(h, h) ∈ Ph.
Secondly, we demonstrate that there exists η(t, x, y) ∈ (t, 1] such that

T
(
tx, t–1y

) ≥ η(t, x, y)T(x, y), ∀t ∈ (0, 1), x, y ∈ Ph.

Combining with (1), (5) and the properties of operator C, D, we have

T
(
tx, t–1y

)
= λ1A

(
tx, t–1y

)
+ λ2B

(
tx, t–1y

)
+ λ3C(tx) + λ4D

(
t–1y

)

≥ λ1ϕ(t)A(x, y) + λ2tB(x, y) + λ3tCx + λ4tDy

= ϕ(t)λ1A(x, y) + t
[
λ2B(x, y) + λ3Cx + λ4Dy

]
.

Owing to A, B : Ph × Ph → Ph, C, D : Ph → Ph, there is λ1A(x, y) ∼ λ2B(x, y) + λ3Cx + λ4Dy.
Define K{ x

y } = inf{k ∈ R|x ≤ ky}, and let

J(x, y) = K
(

λ2B(x, y) + λ3Cx + λ4Dy
λ1A(x, y)

)
,

we can easily get J(x, y) ≤ δ by (A5). Next, considering a function h(s) = ϕ(t)+J(x,y)t
(J(x,y)+1)s , it shows

that h is continuous and strictly decreasing about s. Due to ϕ(t) > t, there is

h
(

δt + ϕ(t)
δ + 1

)
=

ϕ(t) + J(x, y)t
(J(x, y) + 1) δt+ϕ(t)

δ+1

> 1, h
(
ϕ(t)

)
=

ϕ(t) + J(x, y)t
(J(x, y) + 1)ϕ(t)

< 1.

Because of the monotone decreasing of h, we can get that there exist η(t, x, y) ∈ ( δt+ϕ(t)
δ+1 ,

ϕ(t)) ⊂ (t, 1],

h
(
η(t, x, y)

)
=

ϕ(t) + J(x, y)t
(J(x, y) + 1)η(t, x, y)

= 1,
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thus, J(x, y) = ϕ(t)–η(t,x,y)
η(t,x,y)–t . By the expression of K , J , there is

λ2B(x, y) + λ3Cx + λ4Dy ≤ ϕ(t) – η(t, x, y)
η(t, x, y) – t

λ1A(x, y), ∀t ∈ (0, 1), x, y ∈ Ph.

Thus, we obtain

T
(
tx, t–1y

) ≥ ϕ(t)λ1A(x, y) + t
[
λ2B(x, y) + λ3Cx + λ4Dy

]

= η(t, x, y)λ1A(x, y) +
(
ϕ(t) – η(t, x, y)

)
λ1A(x, y)

+ t
[
λ2B(x, y) + λ3Cx + λ4Dy

]

≥ η(t, x, y)λ1A(x, y) +
(
ϕ(t) – η(t, x, y)

) η(t, x, y) – t
ϕ(t) – η(t, x, y)

× [
λ2B(x, y) + λ3Cx + λ4Dy

]

+ t
[
λ2B(x, y) + λ3Cx + λ4Dy

]

= η(t, x, y)
[
λ1A(x, y) + λ2B(x, y) + λ3Cx + λ4Dy

]

= η(t, x, y)T(x, y), ∀t ∈ (0, 1), x, y ∈ Ph.

Therefore, there exists η(t, x, y) ∈ (t, 1] such that

T
(
tx, t–1y

) ≥ η(t, x, y)T(x, y), ∀t ∈ (0, 1), x, y ∈ Ph. (7)

Thirdly, we prove conclusion (C2). Owing to T(h, h) ∈ Ph, we have t0h ≤ T(h, h) ≤ t–1
0 h,

where t0 ∈ (0, 1) is a small constant we choose. As a result of η(t, x, y) ∈ (t, 1], we have
1 < η(t0,x,y)

t0
≤ 1

t0
. By the Archimedes principle, we can take a positive integer k such that

( η(t0,x,y)
t0

)k ≥ 1
t0

. This inequality can be rewritten as

η(t0, x, y) ≥
(

1
t0

) 1
k · t0,

1
η(t0, x, y)

≤ 1
t0

· t
1
k
0 .

Set u0 = tk
0h, v0 = t–k

0 h. We can get u0, v0 ∈ Ph, u0 = t2k
0 v0 < v0. Consequently, there exists r ∈

(0, t2k] such that r ∈ (0, 1), u0 ≥ rv0. In addition, thanks to the mixed monotone properties
of A, B, the increasing properties of C, and the decreasing properties of D, T is a mixed
monotone operator, and then T(u0, v0) ≤ T(v0, u0). From (7), there is

T(u0, v0) = T
(
tk
0h, t–k

0 h
)

= T
(
t0 · tk–1

0 h, t–1
0 · t–k+1

0 h
)

≥ η
(
t0, tk–1

0 h, t–k+1
0 h

)
T

(
tk–1
0 h, t–k+1

0 h
)

= η
(
t0, tk–1

0 h, t–k+1
0 h

)
T

(
t0 · tk–2

0 h, t–1
0 · t–k+2

0 h
)

≥ η
(
t0, tk–1

0 h, t–k+1
0 h

) · η(
t0, tk–2

0 h, t–k+2
0 h

)
T

(
tk–2
0 h, t–k+2

0 h
) ≥ · · ·

≥
((

1
t0

) 1
k · t0

)k

T(h, h) ≥ 1
t0

· tk
0t0h = tk

0h = u0.



Zhang et al. Journal of Inequalities and Applications         (2020) 2020:63 Page 8 of 25

By (7), we get T(t–1x, ty) ≤ η(t, t–1x, ty)–1T(x, y), ∀t ∈ (0, 1), x, y ∈ Ph. Hence,

T(v0, u0) = T
(
t–k
0 h, tk

0h
)

= T
(
t–1
0 · t–k+1

0 h, t0 · tk–1
0 h

)

≤ η
(
t0, t–k

0 h, tk
0h

)–1T
(
t–k+1
0 h, tk–1

0 h
)

= η
(
t0, t–k

0 h, tk
0h

)–1T
(
t–1
0 · t–k+2

0 h, t0 · tk–2
0 h

)

≤ η
(
t0, t–k

0 h, tk
0h

)–1 · η(
t0, t–k+1

0 h, tk–1
0 h

)–1T
(
t–k+2
0 h, tk–2

0 h
) ≤ · · ·

≤
(

1
t0

· t
1
k
0

)k

T(h, h) ≤ 1
tk
0

· t0t–1
0 h =

1
tk
0

h = v0.

Therefore, there is u0 ≤ T(u0, v0) ≤ T(v0, u0) ≤ v0. That is (C2).
Fourthly, we show that the operator equation T(x, x) = x has a unique solution x∗ ∈ Ph.

For u0, v0, construct successively the sequences as follows:

un = T(un–1, vn–1), vn = T(vn–1, un–1), n = 1, 2, . . . , n.

Thus, by (C2), we have u1 ≤ v1. And then due to the mixed monotone properties of oper-
ator T , there are un ≤ vn, n = 1, 2, 3, . . . , and

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0. (8)

Considering x0 ≥ ry0 and (8), there is xn ≥ x0 ≥ ry0 ≥ ryn (n = 1, 2, 3, . . .). Put

tn = sup{t > 0|xn ≥ tyn}, n = 1, 2, 3, . . . .

It is clear that xn ≥ tnyn. Then from (8), there is xn+1 ≥ xn ≥ tnyn ≥ tnyn+1, n = 1, 2, 3, . . . .
Hence, tn+1 ≥ tn, i.e., {tn} is increasing about n, and {tn} ⊂ (0, 1]. Assume limn→∞ tn → t∗,
so t∗ = 1. Otherwise, t ∈ (0, 1). From (7) and tn ≤ t∗,

xn+1 = T(xn, yn) ≥ T
(
tnyn, t–1

n xn
)

= T
(

tn

t∗ t∗yn,
t∗

tn

1
t∗ xn

)

≥ tn

t∗ T
(

t∗yn,
1
t∗ xn

)
≥ tn

t∗ η
(
t∗, yn, xn

)
T(yn, xn) =

tn

t∗ η
(
t∗, yn, xn

)
yn+1,

combining with the definition of tn, there is tn+1 ≥ tn
t∗ η(t∗, yn, xn). Then η(t∗, yn, xn) ≤ t∗

tn
tn+1.

Owing to t∗ < δt∗+ϕ(t∗)
δ+1 < η(t∗, yn, xn) ≤ t∗

tn
tn+1, n = 1, 2, 3, . . . , and limn→∞ t∗

tn
tn+1 = t∗, we

know that

t∗ <
δt∗ + ϕ(t∗)

δ + 1
≤ t∗,

which is a contradiction. Thus, limn→∞ tn = 1. For any natural number p, there is

θ ≤ xn+p – xn ≤ yn – xn ≤ yn – tnyn = (1 – tn)vn ≤ (1 – tn)v0,

θ ≤ yn – yn+p ≤ yn – xn ≤ (1 – tn)v0.
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By the normality of cone P, there is

‖xn+p – xn‖ ≤ N(1 – tn)‖v0‖ → 0,

‖yn – yn+p‖ ≤ N(1 – tn)‖v0‖ → 0 (n, p = 1, 2, 3, . . .),

where N is the normality constant. This shows that {xn} and {yn} are Cauchy sequences.
Because of the complete continuity of A, there are xn → x∗, yn → y∗, when n → ∞. And
by (8), for ∀x∗, y∗ ∈ Ph, we obtain that xn ≤ x∗ ≤ y∗ ≤ yn, θ ≤ y∗ – x∗ ≤ yn – xn ≤ (1 – tn)v0.
Since cone P is normal, we have

∥∥y∗ – x∗∥∥ ≤ N(1 – tn)‖v0‖ → 0 (n → ∞),

hence, y∗ = x∗. Set z∗ := y∗ = x∗, there is

xn+1 = T(xn, yn) ≤ T
(
z∗, z∗) ≤ T(yn, xn) = yn+1,

when n → ∞, z∗ = T(z∗, z∗), i.e., z∗ is a fixed point of T in Ph.
Next, we show that z∗ is the unique fixed point of T . Assume that z is another fixed point

of T . Thanks to z∗, z ∈ Ph, there exist positive numbers a1, a2, b1, b2 such that

a1h ≤ z∗ ≤ a2h, b1h ≤ z ≤ b2h,

then z ≤ b2h = b2
a1

a1h ≤ b2
a1

z∗, z ≥ b1h = b1
a2

a2h ≥ b1
a2

z∗. We put

e1 = sup
{

t > 0, tz∗ ≤ z ≤ t–1z∗}.

Consequently, 0 < e1 ≤ 1, e1z∗ ≤ z ≤ e–1
1 z∗. Then e1 = 1. Otherwise, 0 < e1 < 1. There is

z = T(z, z) ≥ T
(
e1z∗, e–1

1 z∗) ≥ η
(
e1, z∗, z∗)T

(
z∗, z∗) = η

(
e1, z∗, z∗)z∗.

Hence, η(e1, z∗, z∗) ≥ e1, which contradicts the definition of e1. So, e1 = 1. Therefore, z∗ = z,
i.e., T has a unique fixed point x∗ in Ph.

Eventually, we show that conclusion (C4) holds. For any initial values x0, y0 ∈ Ph, we
construct the iterative sequences:

xn = T(xn–1, yn–1), yn = T(yn–1, xn–1), n = 1, 2, 3, . . . .

Due to x0, y0 ∈ Ph, we have e2h ≤ x0 ≤ e–1
2 h, e3h ≤ y0 ≤ e–1

3 h, where e2, e3 ∈ (0, 1) are two
small numbers. Put e∗ = min{e2, e3}, we deduce that e∗ ∈ (0, 1) and e∗h ≤ x0, y0 ≤ e–1∗ h.
Then, by e∗ < η(e∗, x, y) ≤ 1, there is 1 < η(e∗ ,x,y)

e∗ ≤ 1
e∗ . By the Archimedes principle, there

exists a sufficiently large positive integer m such that

η(e∗, x, y)
e∗

≥
(

1
e∗

) 1
m

.

Set u0 = em∗ h, v0 = 1
em∗ h. Obviously, u0, v0 ∈ Ph, and u0 < x0, y0 < v0. Put

un = T(un–1, vn–1), vn = T(vn–1, un–1), n = 1, 2, 3, . . . .
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Similarly, there exists y∗ ∈ Ph such that T(y∗, y∗) = y∗, limn→∞ un = limn→∞ vn = y∗. Be-
cause T has the unique fixed points in Ph, we get x∗ = y∗. And by induction, un ≤ xn, yn ≤
vn, n = 1, 2, 3, . . . . Thanks to cone P being normal, there is limn→∞ xn = limn→∞ yn = x∗, i.e.,
conclusion (C4). The proof is complete. �

Corollary 3.1 There are four operators A, B, C, D, where A, B : P × P → P are two mixed
monotone operators, C : P → P is an increasing homogeneous operator, and D : P → P is a
decreasing operator. Then, if (A2)–(A5) of Theorem 3.1 are satisfied and meet the following:

(A6) There exists γ ∈ (0, 1) such that

A
(
λx,λ–1y

) ≥ λγ A(x, y), D
(
λ–1y

) ≥ λDy, ∀λ ∈ (0, 1), x, y ∈ P;

then we can get conclusions (C1)–(C4) of Theorem 3.1.

Corollary 3.2 There are four operators A, B, C, D, where A, B : Ph × Ph → Ph are two
mixed monotone operators, C : Ph → Ph is an increasing sub-homogeneous operator, and
D : Ph → Ph is a decreasing operator. Then, if (A3), (A5) of Theorem 3.1 are satisfied and
have the following:

(A7) There exists ϕ(λ) ∈ (λ, 1] such that

A
(
λx,λ–1y

) ≥ ϕ(λ)A(x, y), D
(
λ–1y

) ≥ λDy, ∀x, y ∈ Ph;

(A8) For any fixed y ∈ Ph, B(·, y) : Ph → Ph is concave; for any x ∈ Ph, B(x, ·) : Ph → Ph is
convex; then we can get conclusions (C2)–(C4) of Theorem 3.1.

Corollary 3.3 There are four operators A, B, C, D, where A, B : Ph × Ph → Ph are two
mixed monotone operators, C : Ph → Ph is an increasing homogeneous operator, and D :
Ph → Ph is a decreasing operator. Then, if (A3), (A5), (A7), (A8) are satisfied, then we can
get conclusions (C2)–(C4) of Theorem 3.1.

Theorem 3.2 There are four operators A, B, C, D, where A, B : P × P → P are two mixed
monotone operators, C : P → P is an increasing operator, and D : P → P is a decreasing
operator. Then, if conditions (A2)–(A4) of Theorem 3.1 and the following conditions are
satisfied:

(A9) There exists ϕ(λ) ∈ (λ, 1] such that

A
(
λx,λ–1y

) ≥ λA(x, y), C(λx) ≥ ϕ(λ)Cx,

D
(
λ–1y

) ≥ λDy, ∀λ ∈ (0, 1), x, y ∈ P;
(9)

(A10) There exists δ > 0 such that λ1A(x, y) + λ2B(x, y) + λ4Dy ≤ δλ3Cx, ∀x, y ∈ Ph;
then we can get conclusions (C1)–(C4) of Theorem 3.1.

Proof Define the operator T = λ1A + λ2B + λ3C + λ4D by

T(x, y) = λ1A(x, y) + λ2B(x, y) + λ3Cx + λ4Dy, ∀x, y ∈ P.
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Firstly, we show that T : Ph ×Ph → Ph. According to Theorem 3.1, there is B : Ph ×Ph →
Ph, D : Ph → Ph. Thus, we only prove that A : Ph × Ph → Ph, C : Ph → Ph. Since (9), we
obtain

A
(
λ–1x,λy

) ≤ λ–1A(x, y), C
(
λ–1x

) ≤ ϕ(λ)–1Cx, ∀λ ∈ (0, 1), x, y ∈ P. (10)

By A(h, h), Ch ∈ Ph, (3)–(4), (6) hold. By deduction, for any x, y ∈ Ph, we can get

A(x, y) ≤ A
(
c–1

1 h, c2h
) ≤ A

(
c–1h, ch

) ≤ c–1A(h, h) ≤ c–1v1h,

A(x, y) ≥ A
(
c1h, c–1

2 h
) ≥ A

(
ch, c–1h

) ≥ cA(h, h) ≥ cu1h,

Cx ≤ C
(
c–1

1 h
) ≤ C

(
c–1h

) ≤ ϕ(c)–1Ch ≤ ϕ(λ)–1v3h,

Cx ≥ C(c1h) ≥ C(ch) ≥ ϕ(λ)Ch ≥ ϕ(λ)u3h,

where c = min{c1, c2}. It shows that A : Ph × Ph → Ph, C : Ph → Ph. With B : Ph × Ph → Ph,
D : Ph → Ph, T : Ph × Ph → Ph holds. Clearly, T(h, h) ∈ Ph.

Secondly, we prove that there exists η(t, x, y) ∈ (t, 1] such that

T
(
tx, t–1y

) ≥ η(t, x, y)T(x, y), ∀t ∈ (0, 1), x, y ∈ Ph. (11)

By A, B : Ph × Ph → Ph, C, D : Ph → Ph, we get λ1A(x, y) + λ2B(x, y) + λ4Dy ∼ λ3Cx. Set

J∗(x, y) = K
(

λ1A(x, y) + λ2B(x, y) + λ4Dy
λ3Cx

)
.

Since (A10), J∗(x, y) ≤ δ. Considering a similar function h∗(s) = ϕ(t)+J(x,y)t
(J∗(x,y)+1)s of Theorem 3.1,

J∗(x, y) = ϕ(t)–η(t,x,y)
η(t,x,y)–t holds by Theorem 3.1. Thus, there is

λ1A(x, y) + λ2B(x, y) + λ4Dy ≤ ϕ(t) – η(t, x, y)
η(t, x, y) – t

λ3Cx, ∀t ∈ (0, 1), x, y ∈ Ph.

Combining with (5) and (9), for ∀t ∈ (0, 1), x, y ∈ Ph, we obtain

T
(
tx, t–1y

)
= λ1A

(
tx, t–1y

)
+ λ2B

(
tx, t–1y

)
+ λ3C(tx) + λ4D

(
t–1y

)

≥ tλ1A(x, y) + tλ2B(x, y) + ϕ(t)λ3Cx + tλ4Dy

= η(t, x, y)λ3Cx +
(
ϕ(t) – η(t, x, y)

)
λ3Cx

+ t
[
λ1A(x, y) + λ2B(x, y) + λ4Dy

]

= η(t, x, y)
[
λ1A(x, y) + λ2B(x, y) + λ3Cx + λ4Dy

]

= η(t, x, y)T(x, y).

The next steps are the same as those of Theorem 3.1, then we can get conclusions (C1)–
(C4) of Theorem 3.1. �
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Corollary 3.4 There are four operators A, B, C, D, where A, B : P × P → P are two mixed
monotone operators, C : P → P is an increasing operator, and D : P → P is a decreasing op-
erator. Then, if conditions (A2)–(A4) and (A10) of Theorem 3.1 and the following conditions
are satisfied:

(A11) There exists γ ∈ (0, 1) such that

A
(
λx,λ–1y

) ≥ λA(x, y), C(λx) ≥ λγ Cx,

D
(
λ–1y

) ≥ λDy, ∀λ ∈ (0, 1), x, y ∈ P;

then we can get conclusions (C1)–(C4) of Theorem 3.1.

Corollary 3.5 There are four operators A, B, C, D, where A, B : Ph × Ph → Ph are two
mixed monotone operators, C : Ph → Ph is an increasing sub-homogeneous operator, and
D : Ph → Ph is a decreasing operator. Then, if conditions (A3), (A8), (A10) and the following
conditions are satisfied:

(A12) There exists γ ∈ (0, 1) such that

A
(
λx,λ–1y

) ≥ λA(x, y), C(λx) ≥ ϕ(λ)Cx,

D
(
λ–1y

) ≥ λDy, ∀x, y ∈ Ph;

then we can get conclusions (C2)–(C4) of Theorem 3.1.

4 Application
Nonlinear boundary value problems have attracted much attention for their applications
in a variety of different areas such as mathematics, physics, biology, and so on. There-
after there are a lot of interesting and important results, which include the uniqueness,
existence, and multiplicity of positive solutions for the differential equation with the two-
point, three-point, infinite-point boundary value problems or some integral boundary
problems, etc. In the following, we study a class of integro-differential boundary prob-
lems for fractional differential equations:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ x(t) + λ1f (t, x(t), x(t)) + λ2g(t, x(t), x(t)) + λ3φ(t, x(t)) + λ4ψ(t, x(t)) = 0,

x(i)(0) = 0, i = 0, 1, . . . , n – 2,

Dβ

0+ x(1) =
∫ η

0 x(s) ds,

(12)

where Dα
0+ , Dβ

0+ is Riemann–Liouville fractional derivative, 0 < β < n – 1 < α ≤ n (n > 1),
α – β – 1 > 0, t ∈ [0, 1], η ∈ (0, 1].

Definition 4.1 ([8]) Suppose that h ∈ C[0, 1], α > 0. Then the Riemann–Liouville frac-
tional derivative of α order is defined to be

Dα
0+ h(t) =

1
Γ (n – α)

dn

dtn

∫ t

0
(t – s)n–α–1h(s) ds.

The Riemann–Liouville fractional integral of α order is defined to be

Iα
0+ h(t) =

1
Γ (α)

∫ t

0
(t – s)α–1h(s) ds,
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where n = [α] + 1, [α] denotes the integer part of number [α], provided that the right-hand
side is pointwise defined on (0, 1).

Lemma 4.1 Let h ∈ C[0, 1], the function x is the solution of the following fractional differ-
ential equation:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ x(t) + h(t) = 0, n – 1 < α ≤ n,

x(i)(0) = 0, 0 ≤ i ≤ n – 2,

Dβ

0+ x(1) =
∫ η

0 x(s) ds,

(13)

if and only if x satisfies

x(t) =
∫ 1

0
G(t, s)h(s) ds,

where

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Γ (α+1)tα–1(1–s)α–β–1–A(t–s)α–1–Γ (α–β)tα–1(η–s)α
AΓ (α) , 0 ≤ s ≤ t ≤ 1, s ≤ η,

Γ (α+1)tα–1(1–s)α–β–1–A(t–s)α–1

AΓ (α) , 0 ≤ η ≤ s ≤ t ≤ 1,
Γ (α+1)tα–1(1–s)α–β–1–Γ (α–β)tα–1(η–s)α

AΓ (α) , 0 ≤ t ≤ s ≤ η ≤ 1,
Γ (α+1)tα–1(1–s)α–β–1

AΓ (α) , 0 ≤ t ≤ s ≤ 1,η ≤ s,

(14)

where A = Γ (α + 1) – Γ (α – β)ηα .

Proof Integrating on both sides of the first formula of (13), we can obtain

x(t) = –Iα
0+ h(t) + c1tα–1 + c2tα–2 + · · · + cntα–n

= –
∫ t

0

(t – s)α–1

Γ (α)
h(s) ds + c1tα–1 + c2tα–2 + · · · + cntα–n.

By the boundary condition x(i)(0) = 0 (2 ≤ i ≤ n – 2), we can easily get cn = cn–1 = · · · =
c2 = 0. Then we can get the solution of equation (13) of the following form:

x(t) = –Iα
0+ h(t) + c1tα–1 = –

∫ t

0

(t – s)α–1

Γ (α)
h(s) ds + c1tα–1. (15)

By the equality Dβ

0+ tα–1 = Γ (α)
Γ (α–β) tα–β–1, we get

Dβ

0+ x(t) = –Iα–β

0+ h(t) + Dβ

0+ c1tα–β–1 = –
∫ t

0

(t – s)α–β–1

Γ (α – β)
h(s) ds + c1

Γ (α)
Γ (α – β)

tα–β–1.

Then integrating formula (15) from 0 to η, there is

∫ η

0
x(s) ds = –

∫ η

0

∫ s

0

(s – τ )α–1

Γ (α)
h(τ ) dτ ds +

∫ η

0
c1sα–1 ds

= –
∫ η

0

(η – s)α

Γ (α + 1)
h(s) ds + c1

ηα

α
.



Zhang et al. Journal of Inequalities and Applications         (2020) 2020:63 Page 14 of 25

By the condition Dβ

0+ x(1) =
∫ η

0 x(s) ds, we have

c1 =
1
A

{∫ 1

0
α(1 – s)α–β–1h(s) ds –

∫ η

0

Γ (α – β)
Γ (α)

(η – s)αh(s) ds
}

, (16)

where A is Γ (α + 1) – Γ (α – β)ηα . Substituting (16) in (15), we conclude

x(t) = –
∫ t

0

(t – s)α–1

Γ (α)
h(s) ds + c1tα–1

= –
∫ t

0

(t – s)α–1

Γ (α)
h(s) ds +

αtα–1

A

∫ 1

0
(1 – s)α–β–1h(s) ds

–
tα–1Γ (α – β)

AΓ (α)

∫ η

0
(η – s)αh(s) ds

=
∫ 1

0
G(t, s)h(s) ds,

where G(t, s) is defined as in (14). �

Lemma 4.2 Let G(t, s) be as given in (14). If Γ (α +1) ≥ Γ (α –β)ηα , then for any t, s ∈ [0, 1],
we have

0 ≤ Γ (α – β)ηα[1 – (1 – s)β+1](1 – s)α–β–1tα–1

AΓ (α)
≤ G(t, s)

≤ Γ (α + 1)tα–1(1 – s)α–β–1

AΓ (α)
. (17)

Proof When 0 ≤ s ≤ t ≤ 1, s ≤ η, by s ≤ η, α ≥ 0, we observe that

(1 – s)α >
(

1 –
s
η

)α

.

By s ≤ t, α – β – 1 ≥ 0, we have

tα–1(1 – s)α–β–1 > (t – s)α–1. (18)

Thus,

G(t, s) =
Γ (α + 1)tα–1(1 – s)α–β–1 – A(t – s)α–1 – Γ (α – β)tα–1(η – s)α

AΓ (α)

=
Γ (α + 1)tα–1(1 – s)α–β–1 – Γ (α – β)tα–1ηα(1 – s

η
)α

[Γ (α + 1) – Γ (α – β)ηα]Γ (α)
–

(t – s)α–1

Γ (α)

≥ Γ (α + 1)tα–1(1 – s)α–β–1 – Γ (α – β)tα–1ηα(1 – s)α

[Γ (α + 1) – Γ (α – β)ηα]Γ (α)
–

(t – s)α–1

Γ (α)

=
[Γ (α + 1) – Γ (α – β)ηα(1 – s)β+1]tα–1(1 – s)α–β–1

[Γ (α + 1) – Γ (α – β)ηα]Γ (α)
–

(t – s)α–1

Γ (α)

=
tα–1(1 – s)α–β–1

Γ (α)
+

Γ (α – β)ηα[1 – (1 – s)β+1]tα–1(1 – s)α–β–1

[Γ (α + 1) – Γ (α – β)ηα]Γ (α)



Zhang et al. Journal of Inequalities and Applications         (2020) 2020:63 Page 15 of 25

–
(t – s)α–1

Γ (α)

=
tα–1(1 – s)α–β–1 – (t – s)α–1

Γ (α)
+

Γ (α – β)ηα[1 – (1 – s)β+1]tα–1(1 – s)α–β–1

[Γ (α + 1) – Γ (α – β)ηα]Γ (α)

=
tα–1(1 – s)α–β–1 – tα–1(1 – s

t )α–1

Γ (α)

+
Γ (α – β)ηα[1 – (1 – s)β+1]tα–1(1 – s)α–β–1

[Γ (α + 1) – Γ (α – β)ηα]Γ (α)

≥ Γ (α – β)ηα[1 – (1 – s)β+1]tα–1(1 – s)α–β–1

[Γ (α + 1) – Γ (α – β)ηα]Γ (α)

=
Γ (α – β)ηα[1 – (1 – s)β+1]tα–1(1 – s)α–β–1

AΓ (α)
≥ 0,

and

G(t, s) =
Γ (α + 1)tα–1(1 – s)α–β–1 – A(t – s)α–1 – Γ (α – β)tα–1(η – s)α

AΓ (α)

≤ Γ (α + 1)tα–1(1 – s)α–β–1

AΓ (α)
.

When 0 ≤ η ≤ s ≤ t ≤ 1, from (18), there is

G(t, s) =
Γ (α + 1)tα–1(1 – s)α–β–1 – A(t – s)α–1

AΓ (α)

=
Γ (α + 1)tα–1(1 – s)α–β–1

[Γ (α + 1) – Γ (α – β)ηα]Γ (α)
–

(t – s)α–1

Γ (α)

≥ [Γ (α + 1) – Γ (α – β)ηα(1 – s)β+1]tα–1(1 – s)α–β–1

[Γ (α + 1) – Γ (α – β)ηα]Γ (α)
–

(t – s)α–1

Γ (α)

=
tα–1(1 – s)α–β–1

Γ (α)
+

Γ (α – β)ηα[1 – (1 – s)β+1]tα–1(1 – s)α–β–1

[Γ (α + 1) – Γ (α – β)ηα]Γ (α)
–

(t – s)α–1

Γ (α)

=
tα–1(1 – s)α–β–1 – (t – s)α–1

Γ (α)
+

Γ (α – β)ηα[1 – (1 – s)β+1]tα–1(1 – s)α–β–1

[Γ (α + 1) – Γ (α – β)ηα]Γ (α)

≥ Γ (α – β)ηα[1 – (1 – s)β+1]tα–1(1 – s)α–β–1

[Γ (α + 1) – Γ (α – β)ηα]Γ (α)

=
Γ (α – β)ηα[1 – (1 – s)β+1]tα–1(1 – s)α–β–1

AΓ (α)
≥ 0,

and

G(t, s) =
Γ (α + 1)tα–1(1 – s)α–β–1 – A(t – s)α–1

AΓ (α)

≤ Γ (α + 1)tα–1(1 – s)α–β–1

AΓ (α)
.

When 0 ≤ t ≤ s ≤ η ≤ 1,

G(t, s) =
Γ (α + 1)tα–1(1 – s)α–β–1 – Γ (α – β)tα–1(η – s)α

AΓ (α)
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≥ Γ (α + 1)tα–1(1 – s)α–β–1 – Γ (α – β)tα–1ηα(1 – s)α

[Γ (α + 1) – Γ (α – β)ηα]Γ (α)

=
[Γ (α + 1) – Γ (α – β)ηα(1 – s)β+1]tα–1(1 – s)α–β–1

[Γ (α + 1) – Γ (α – β)ηα]Γ (α)

=
tα–1(1 – s)α–β–1

Γ (α)
+

Γ (α – β)ηα[1 – (1 – s)β+1]tα–1(1 – s)α–β–1

[Γ (α + 1) – Γ (α – β)ηα]Γ (α)

≥ Γ (α – β)ηα[1 – (1 – s)β+1]tα–1(1 – s)α–β–1

AΓ (α)
≥ 0,

and

G(t, s) =
Γ (α + 1)tα–1(1 – s)α–β–1 – Γ (α – β)tα–1(η – s)α

AΓ (α)

≤ Γ (α + 1)tα–1(1 – s)α–β–1

AΓ (α)
.

When 0 ≤ t ≤ s ≤ η ≤ 1,

G(t, s) =
Γ (α + 1)tα–1(1 – s)α–β–1

AΓ (α)

≥ [Γ (α + 1) – Γ (α – β)ηα(1 – s)β+1]tα–1(1 – s)α–β–1

[Γ (α + 1) – Γ (α – β)ηα]Γ (α)

≥ Γ (α – β)ηα[1 – (1 – s)β+1]tα–1(1 – s)α–β–1

AΓ (α)
≥ 0.

It is obvious that

G(t, s) ≤ Γ (α + 1)tα–1(1 – s)α–β–1

AΓ (α)
.

Then, for ∀t, s ∈ [0, 1], we obtain that G(t, s) meets (17). �

Theorem 4.1 Let f , g : [0, 1] × [0, +∞) × [0, +∞) → [0, +∞), φ,ψ : [0, 1] × [0, +∞) →
[0, +∞) be continuous with f (t, 0, 1), g(t, 0, 1),φ(t, 0),ψ(t, 1) 
≡ 0 and satisfy the following
conditions:

(N1) For any fixed t ∈ [0, 1], y ∈ [0, +∞), f (t, x, y), g(t, x, y), φ(t, x) are increasing in x ∈
[0, +∞); for any fixed t ∈ [0, 1], x ∈ [0, +∞), f (t, x, y), g(t, x, y), ψ(t, y) are decreasing
in y ∈ [0, +∞);

(N2) For ∀λ ∈ (0, 1), t ∈ [0, 1], x, y ∈ [0, +∞), there exists ϕ(λ) ∈ (λ, 1] such that

f
(
t,λx,λ–1y

) ≥ ϕ(λ)f (t, x, y), φ(t,λx) ≥ λφ(t, x),

ψ
(
t,λ–1y

) ≥ λψ(t, y);

and for fixed t ∈ [0, 1], y ∈ [0, +∞), g(t, ·, y) is concave; for fixed t ∈ [0, 1], x ∈ [0, +∞),
g(t, x, ·) is convex;

(N3) Let h(t) = tα–1, there exists c ≥ 0 such that g(s, θ , lh) ≥ cg(s, lh, θ ), l ≥ 1;
(N4) There exists a constant δ > 0 such that [λ2g(t, x, y) + λ3φ(t, x) + λ4ψ(t, y)] ≤

δλ1f (t, x, y), ∀t ∈ [0, 1], x, y ∈ [0, +∞).
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Then
(S1) There exist u0, v0 ∈ Ph, r ∈ (0, 1) such that rv0 ≤ u0 < v0,

u0 ≤ λ1

∫ 1

0
G(t, s)f

(
s, u0(s), v0(s)

)
ds + λ2

∫ 1

0
G(t, s)g

(
s, u0(s), v0(s)

)
ds

+ λ3

∫ 1

0
G(t, s)φ

(
s, u0(s)

)
ds + λ4

∫ 1

0
G(t, s)ψ

(
s, v0(s)

)
ds

≤ λ1

∫ 1

0
G(t, s)f

(
s, v0(s), u0(s)

)
ds + λ2

∫ 1

0
G(t, s)g

(
s, v0(s), u0(s)

)
ds

+ λ3

∫ 1

0
G(t, s)φ

(
s, v0(s)

)
ds + λ4

∫ 1

0
G(t, s)ψ

(
s, u0(s)

)
ds ≤ v0;

(S2) Equation (12) has a unique positive solution x∗ in Ph, which meets μ1tα–1 ≤ x∗ ≤
ν1tα–1, μ1, ν1 > 0 are two constants;

(S3) For any initial values x0, y0 ∈ Ph, we construct successively the iterative sequences

xn(t) = λ1

∫ 1

0
G(t, s)f

(
s, xn–1(s), yn–1(s)

)
ds + λ2

∫ 1

0
G(t, s)g

(
s, xn–1(s), yn–1(s)

)
ds

+ λ3

∫ 1

0
G(t, s)φ

(
s, xn–1(s)

)
ds

+ λ4

∫ 1

0
G(t, s)ψ

(
s, yn–1(s)

)
ds, n = 1, 2, . . . ,

yn(t) = λ1

∫ 1

0
G(t, s)f

(
s, yn–1(s), xn–1(s)

)
ds + λ2

∫ 1

0
G(t, s)g

(
s, yn–1(s), xn–1(s)

)
ds

+ λ1

∫ 1

0
G(t, s)φ

(
s, yn–1(s)

)
ds

+ λ4

∫ 1

0
G(t, s)φ

(
s, xn–1(s)

)
ds, n = 1, 2, . . . .

Here, xn → x∗, yn → x∗, when n → ∞.

Proof Let E = C[0, 1] and ‖x‖ = sup0≤t≤1 |x(t)|. It is obvious that (E,‖ · ‖) is a Banach space.
Set P = {x ∈ E|x(t) ≥ 0, t ∈ [0, 1]}.

By Lemma 4.1, the unique solution of problem (12) has an integral formulation:

x(t) =
∫ 1

0
G(t, s)

[
λ1f

(
s, x(s), x(s)

)
+ λ2g

(
s, x(s), x(s)

)
+ λ3φ

(
s, x(s)

)
+ λ4ψ

(
s, x(s)

)]
ds.

Define four operators A, B, C, D : P × P → E by

A(x, y)(t) =
∫ 1

0
G(t, s)f

(
s, x(s), y(s)

)
ds,

B(x, y)(t) =
∫ 1

0
G(t, s)g

(
s, x(s), y(s)

)
ds,

Cx(t) =
∫ 1

0
G(t, s)φ

(
s, x(s)

)
ds,
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Dy(t) =
∫ 1

0
G(t, s)ψ

(
s, y(s)

)
ds.

Therefore, x is the solution of equation (12) if and only if x is the solution of operator
equation x = λ1A(x, x) + λ2B(x, x) + λ3Cx + λ4Dx.

Firstly, for ∀x, y ∈ P, in view of the definition of f , g , φ, ψ and Lemma 4.2, it is easy to
obtain A(x, y) ≥ 0, B(x, y) ≥ 0, Cx ≥ 0, Dy ≥ 0, which shows that A, B : P × P → P, C, D :
P → P. In addition, due to (N1), A, B are two monotone operators, C is an increasing
operator, and D is a decreasing operator.

Secondly, we illustrate that C is a sub-homogeneous operator and A, D satisfy condition
(A1) of Theorem 3.1. From (N2), we see that, for any λ ∈ (0, 1), x ∈ P,

C(λx) =
∫ 1

0
G(t, s)φ

(
s,λx(s)

)
ds

≥
∫ 1

0
G(t, s)λφ

(
s, x(s)

)
ds

= λ

∫ 1

0
G(t, s)φ

(
s, x(s)

)
ds

= λCx,

which shows that C is a sub-homogeneous operator. Using (N2) again, ∀λ ∈ (0, 1), x, y ∈ P,
there exists ϕ(λ) ∈ (λ, 1] such that

A
(
λx,λ–1y

)
=

∫ 1

0
G(t, s)f

(
s,λx(s),λ–1y(s)

)
ds

≥
∫ 1

0
G(t, s)ϕ(λ)f

(
s, x(s), y(s)

)
ds

= ϕ(λ)
∫ 1

0
G(t, s)f

(
s, x(s), y(s)

)
ds

= ϕ(λ)A(x, y),

and for any λ ∈ (0, 1), y ∈ P,

D
(
λ–1y

)
=

∫ 1

0
G(t, s)ψ

(
s,λ–1y(s)

)
ds

≥
∫ 1

0
G(t, s)λψ

(
s, y(s)

)
ds

= λ

∫ 1

0
G(t, s)ψ

(
s, y(s)

)
ds

= λDy.

Thus, operator A, D satisfies (A1) of Theorem 3.1.
Thirdly, we verified condition (A2) of Theorem 3.1. From (N2), for fixed t ∈ (0, 1), y ∈ P,

B
(
τx1 + (1 – τ )x2, y

)
(t)

=
∫ 1

0
G(t, s)g

(
s, τx1(s) + (1 – τ )x2(s), y(s)

)
ds
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≥
∫ 1

0
G(t, s)

[
τg

(
s, x1(s), y(s)

)
+ (1 – τ )g

(
s, x2(s), y(s)

)]
ds

= τ

∫ 1

0
G(t, s)g

(
s, x1(s), y(s)

)
ds + (1 – τ )

∫ 1

0
G(t, s)g

(
s, x2(s), y(s)

)
ds

= τB(x1, y) + (1 – τ )B(x2, y), ∀τ ∈ (0, 1), x1, x2 ∈ P;

for fixed t ∈ (0, 1), x ∈ P,

B
(
x, τy1 + (1 – τ )y2

)
(t)

=
∫ 1

0
G(t, s)g

(
s, x(s), τy1(s) + (1 – τ )y2(s)

)
ds

≤
∫ 1

0
G(t, s)

[
τg

(
s, x(s), y1(s)

)
+ (1 – τ )g

(
s, x(s), y2(s)

)]
ds

= τ

∫ 1

0
G(t, s)g

(
s, x(s), y1(s)

)
ds + (1 – τ )

∫ 1

0
G(t, s)g

(
s, x(s), y2(s)

)
ds

= τB(x, y1) + (1 – τ )B(x, y2), ∀τ ∈ (0, 1), y1, y2 ∈ P,

which indicate that, for fixed y ∈ P, B(·, y) is concave; for fixed x ∈ P, B(x, ·) is convex. That
is condition (A2) of Theorem 3.1.

Fourthly, we check condition (A3) of Theorem 3.1. By (N3), there exists c̃ ≥ 0 such that

B(θ , lh)(t) =
∫ 1

0
G(t, s)g

(
s, θ , lh(s)

)
ds

≥ c̃
∫ 1

0
G(t, s)g

(
s, lh(s), θ

)
ds

= c̃B(lh, θ )(t).

In the next step, we prove that A(h, h), B(h, h), Ch, Dh ∈ Ph. By Lemma 4.2, we have

A(h, h)(t) =
∫ 1

0
G(t, s)f

(
s, sα–1, sα–1)ds

≥ Γ (α – β)ηα

AΓ (α)

∫ 1

0

[
1 – (1 – s)β+1](1 – s)α–β–1f

(
s, sα–1, sα–1)ds

≥
{

Γ (α – β)ηα

AΓ (α)

∫ 1

0

[
1 – (1 – s)β+1](1 – s)α–β–1f (s, 0, 1) ds

}
h(t),

and

A(h, h)(t) =
∫ 1

0
G(t, s)f

(
s, sα–1, sα–1)ds

≤ Γ (α + 1)tα–1

AΓ (α)

∫ 1

0
(1 – s)α–β–1f

(
s, sα–1, sα–1)ds

≤
{

Γ (α + 1)
AΓ (α)

∫ 1

0
(1 – s)α–β–1f (s, 1, 0) ds

}
h(t),
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where

c1 =
Γ (α – β)ηα

AΓ (α)

∫ 1

0

[
1 – (1 – s)β+1](1 – s)α–β–1f (s, 0, 1) ds,

c2 =
Γ (α + 1)
AΓ (α)

∫ 1

0
(1 – s)α–β–1f (s, 1, 0) ds.

Thus, we can get c1h(t) ≤ A(h, h)(t) ≤ c2h(t). Besides, due to f (s, 1, 0) ≥ f (s, 0, 1) ≥ 0 and
f (s, 0, 1) 
≡ 0, we derive that

∫ 1

0
f (s, 1, 0) ds ≥

∫ 1

0
f (s, 0, 1) ds > 0,

thus, A(h, h) ∈ Ph. Similarly, there are

{
Γ (α – β)ηα

AΓ (α)

∫ 1

0

[
1 – (1 – s)β+1](1 – s)α–β–1g(s, 0, 1) ds

}
h(t)

≤ B(h, h)(t) ≤
{

Γ (α + 1)
AΓ (α)

∫ 1

0
(1 – s)α–β–1g(s, 1, 0) ds

}
h(t),

{
Γ (α – β)ηα

AΓ (α)

∫ 1

0

[
1 – (1 – s)β+1](1 – s)α–β–1φ(s, 0) ds

}
h(t)

≤ Ch(t) ≤
{

Γ (α + 1)
AΓ (α)

∫ 1

0
(1 – s)α–β–1φ(s, 1) ds

}
h(t),

and

{
Γ (α – β)ηα

AΓ (α)

∫ 1

0

[
1 – (1 – s)β+1](1 – s)α–β–1ψ(s, 1) ds

}
h(t)

≤ Dh(t) ≤
{

Γ (α + 1)
AΓ (α)

∫ 1

0
(1 – s)α–β–1ψ(s, 0) ds

}
h(t).

Then, by g(s, 0, 1),φ(s, 0),ψ(s, 1) 
≡ 0, we can obtain B(h, h), Ch, Dh ∈ Ph.
Eventually, we test condition (A5) of Theorem 3.1. From (N5), for any t ∈ [0, 1], x, y ∈ P,

[
λ2B(x, y)(t) + λ3Cx(t) + λ4Dy(t)

]

=
∫ 1

0
G(t, s)

[
λ2g

(
s, x(s), y(s)

)
+ λ3φ

(
s, x(s)

)
+ λ4ψ

(
s, y(s)

)]
ds

≤ δ

∫ 1

0
G(t, s)λ1f

(
s, x(s), y(s)

)
ds

= δλ1A(x, y)(t), n = 1, 2, . . . .

From the above six steps, we verified all the conditions of Theorem 3.1, thus the conclu-
sions of Theorem 4.1 hold with Theorem 3.1. �

Theorem 4.2 Let f , g : [0, 1] × [0, +∞) × [0, +∞) → [0, +∞), φ : [0, 1] × [0, +∞) →
[0, +∞), and ψ : [0, 1] × [0, +∞) → [0, +∞) are continuous with f (t, 0, 1), g(t, 0, 1),φ(t, 0),
ψ(t, 1) 
≡ 0. Then, if conditions (N1), (N4) and the following conditions are satisfied:
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(N5) For ∀λ ∈ (0, 1), t ∈ [0, 1], x, y ∈ [0, +∞), there exists ϕ(λ) ∈ (λ, 1] such that

f
(
t,λx,λ–1y

) ≥ λf (t, x, y), φ(t,λx) ≥ ϕ(λ)φ(t, x),

ψ
(
t,λ–1y

) ≥ λ–1ψ(t, y);

and for fixed t ∈ [0, 1], y ∈ [0, +∞), g(t, ·, y) is concave; for fixed t ∈ [0, 1], x ∈ [0, +∞),
g(t, x, ·) is convex;

(N6) There exists a constant δ > 0 such that λ1f (t, x, y) + λ2g(t, x, y) + λ4ψ(t, y) ≤
δλ3φ(t, x), ∀t ∈ [0, 1], x, y ∈ [0, +∞);

then we can get conclusions (S1)–(S3) of Theorem 4.1.

Proof The proof process is similar to that of Theorem 4.1. �

Example 4.1 Consider the following problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D
13
2

0+ x(t) + 2(x + 3) 1
4 + 3(x + 2) 1

4 + 3(x + 4)– 1
6 + 4(x + 5)– 1

6

– 22
5 e–x + 4e–y + 4t + 2t2 + 3t3 + 4t4 + 6 = 0, 0 < t < 1,

xi(0) = 0, 0 ≤ i ≤ 4, D
5
3
0+ x(1) =

∫ 3
4

0 x(s) ds.

Here, α = 13
2 ∈ (5, 6), β = 5

3 ∈ (1, 2), α – β – 1 = 23
6 ≥ 0, η = 3

4 , λ1 = 1, λ2 = 2, λ3 = 3, λ4 = 4,
and

f (t, x, y) = 2(x + 3)
1
4 + 3(y + 4)– 1

6 + 6 + 4t,

g(t, x, y) = –
11
5

e–x + 2e–y + 3 + t2,

φ(t, x) = (x + 2)
1
4 + t3,

ψ(t, y) = (y + 5)– 1
6 + t4.

Thus, Γ (α + 1) –Γ (α –β)ηα = Γ ( 15
2 ) –Γ ( 29

6 ) 3
4

13
2 = 1.868×10–3, f (t, 0, 1) = 2 ·3 1

4 + 3 ·5– 1
5 +

6 + 4t 
≡ 0, g(t, 0, 1) = – 11
5 + 2e–1 + t2 
≡ 0, φ(t, 0) = 2 1

4 + t3 
≡ 0, ψ(t, 1) = 3 × 6– 1
6 + t4 
≡ 0.

For ∀λ ∈ (0, 1), t ∈ [0, 1], x, y ∈ [0, +∞), there exists γ = 1
4 ∈ (0, 1), we can get that

f
(
t,λx,λ–1y

)
= 2(λx + 3)

1
4 + 3

(
λ–1y + 4

)– 1
6 + 6 + 4t

≥ λ
1
4 2(x + 3)

1
4 + λ

1
6 3(y + 4)– 1

5 + 6 + 4t

≥ λ
1
4
(
2(x + 3)

1
4 + 3(y + 4)– 1

6 + 6 + 4t
)

= λ
1
4 f (t, x, y).

For ∀t ∈ [0, 1], x, y ∈ [0, +∞), there is

g ′′
xx(t, x, y) = –

11
5

e–x ≤ 0, g ′′
yy(t, x, y) = 2e–y ≥ 0,
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we obtain that, for fixed t ∈ [0, 1], y ∈ [0, +∞), g(t, ·, y) is concave; for fixed t ∈ [0, 1], x ∈
[0, +∞), g(t, x, ·) is convex. For ∀λ, t ∈ [0, 1], x, y ∈ [0, +∞), we have

φ(t,λx) = (λx + 2)
1
4 + t3 ≥ λ

1
4 (x + 2)

1
4 + t3

≥ λ
(
(λx + 2)

1
4 + t3) = λφ(t, x)

and

ψ
(
t,λ–1y

)
=

(
λ–1y + 5

)– 1
6 + t4 ≥ λ

(
(y + 5)– 1

6 + t4) = λψ(t, y).

Let l′ be a sufficiently large constant and x, y ≤ l′, c̃ = 1
25 , there is

g
(
t, θ , l′

)
= –

11
5

+ 2e–l′ + 3 + t2 ≥ 1
25

(
–

11
5

e–l′ + 2 + 3 + t2
)

= c̃g
(
t, l′, θ

)
.

Let δ = 2, by calculation, we have

λ2g(t, x, y) + λ3φ(t, x) + λ4ψ(t, y)

= 2
[

–
11
5

e–x + 2e–y + 3 + t2
]

+ 3
[
(x + 2)

1
4 + t3] + 4

[
(y + 5)– 1

6 + t4]

≤ 3(x + 2)
1
4 + 4(y + 5)– 1

6 + 6 –
22
5

e–x + 4e–y + 2t2 + 3t3 + 4t4

≤ 4(x + 3)
1
4 + 6(y + 4)– 1

6 + 12 + 8t

≤ 2
[
2(x + 2)

1
4 + 3(y + 4)– 1

6 + 6 + 4t
]

= δλ1f (t, x, y).

Therefore, all the assumptions of Theorem 4.1 are satisfied, then Example 4.1 has a
unique positive solution x∗ ∈ Ph, where h(t) = t 11

2 , t ∈ [0, 1]. Besides, the other condition
of Theorem 4.1 holds.

Example 4.2 Consider the following problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D
7
3
0+ x(t) + (x + 3) 1

4 + 2(x + 2) 1
4 + (y + 4)– 1

5 + 3(y + 5)– 1
6

– 11
5 e–x + 2e–y + 4t + t2 + t3 + t4 + 6 = 0, 0 < t < 1,

xi(0) = 0, 0 ≤ i ≤ 4, D
1
4
0+ x(1) =

∫ 3
4

0 x(s) ds.

Here, α = 7
3 ∈ (2, 3), β = 1

4 ∈ (0, 1), α – β – 1 = 13
12 ≥ 0, η = 1

2 , λ1 = 2, λ2 = 1, λ3 = 4, λ4 = 3,
and

f (t, x, y) = 2(x + 1)
1
2 +

1
1 + y

+ sin t,

g(t, x, y) = –
3
4

e–x +
12
5

e–y + 3 + cos t,

φ(t, x) = (x + 4)
1
2 + 2,
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ψ(t, y) =
1

1 + y
+ t2.

Therefore, Γ (α + 1) – Γ (α – β)ηα = Γ ( 10
3 ) – Γ ( 25

12 ) 1
2

7
3 = 2.5722, f (t, 0, 1) = 2 1

2 + 1
2 + sin t,

g(t, 0, 1) = – 3
4 + 12

5 e–1 + cos t, φ(t, 0) = 4 1
2 + 2, ψ(t, 1) = 1

2 + t2 
≡ 0.
For ∀λ ∈ (0, 1), t ∈ [0, 1], x, y ∈ [0, +∞), we can derive that

f
(
t,λx,λ–1y

)
= 2(λx + 1)

1
2 +

1
1 + y

+ sin t

≥ λ
1
2 2(x + 1)

1
2 + λ

1
1 + y

+ sin t

≥ λ

(
2(x + 1)

1
2 +

1
1 + y

+ sin t
)

= λf (t, x, y).

For expression of g , there is

g ′′
xx(t, x, y) = –

3
4

e–x ≤ 0, g ′′
yy(t, x, y) =

12
5

e–y ≥ 0,

i.e., g(t, ·, y) is concave, g(t, x, ·) is convex. Further, there exist γ = 1
2 ∈ (0, 1),

φ(t,λx) = (λx + 4)
1
2 + 2 ≥ λ

1
2
(
(x + 2)

1
4 + 2

)
= λ

1
2 φ(t, x),

and

ψ
(
t,λ–1y

)
=

1
1 + λ–1y

+ t2 ≥ λ

(
1

1 + y
+ t2

)
= λψ(t, y).

Let l′ be a sufficiently large constant with x, y ≤ l′. c = 1
9 , we can obtain

g
(
t, θ , l′

)
= –

3
4

+
12
5

e–l′ + 3 + cos t ≥ 1
9

(
–

3
4

e–l′ +
12
5

+ 3 + cos t
)

= cg
(
t, l′, θ

)
.

Let δ = 2.5, we get

λ1f (t, x, y) + λ2g(t, x, y) + λ4ψ(t, y)

= 2
[

2(x + 1)
1
2 +

1
1 + y

+ sin t
]

+
[

–
3
4

e–x +
12
5

e–y + 3 + cos t
]

+ 3
[

1
1 + y

+ t2
]

= 4(x + 1)
1
2 +

5
1 + y

+ 2 sin t –
3
4

e–x +
12
5

e–y + 3 + cos t + 3t2

≤ 4(x + 4)
1
2 + 17

≤ 2.5 × 4
[
(x + 4)

1
2 + 2

]
= δλ3φ(t, x).

Then Example 4.2 has a unique positive solution x∗ ∈ Ph, where h(t) = t 4
3 , t ∈ [0, 1].
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