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1 Introduction
Given x ∈ (–1, 1) and real numbers a, b, and c with c �= 0, –1, –2, . . . , the Gaussian hyper-
geometric function F(a, b; c; x) [1–18] is defined by

F(a, b; c; x) = 2F1(a, b; c; x) =
∞∑

n=0

(a, n)(b, n)
(c, n)

xn

n!
, (1.1)

where (a, 0) = 1 for a �= 0 and (a, n) = a(a + 1)(a + 2) · · · (a + n – 1) for n = 1, 2, . . . . F(a, b; c; x)
is said to be zero-balanced if c = a + b. If x → 1, then the following asymptotic formulas

⎧
⎪⎪⎨

⎪⎪⎩

F(a, b; c; 1) = Γ (c)Γ (c–a–b)
Γ (c–a)Γ (c–b) , a + b < c,

B(a, b)F(a, b; c; x) + log(1 – x) = R(a, b) + O((1 – x) log(1 – x)), a + b = c,

F(a, b; c; x) = (1 – x)c–a–bF(c – a, c – b; c; x), a + b > c,

(1.2)

can be found in the literature [19, Theorems 1.19 and 1.48], where Γ (x) =
∫ ∞

0 tx–1e–t dt
[20–26] and B(p, q) = [Γ (p)Γ (q)]/Γ (p + q) [27–30] are respectively the classical Euler
gamma and beta functions, and

R(a, b) = –ψ(a) – ψ(b) – 2γ , R
(

1
2

,
1
2

)
= log 16, ψ(x) =

Γ ′(x)
Γ (x)
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and

γ = lim
n→∞

( n∑

k=1

1
k

– log n

)
= 0.5772156649 · · ·

is the Euler–Mascheroni constant [31–33].
Ramanujan’s generalized modular equation with order (or degree) p > 0 is given by

F(a, b; c; 1 – s2)
F(a, b; c; s2)

= p
F(a, b; c; 1 – r2)

F(a, b; c; r2)
, 0 < r < 1. (1.3)

It is well known that equation (1.3) has a unique solution for s if a, b, c > 0 with a + b ≥ c
[34, Lemma 4.5].

The two-parameter generalized Grötzsch ring function is defined by

μa,b(r) =
B(a, b)

2
F(a, b; (a + b + 1)/2; 1 – r2)

F(a, b; (a + b + 1)/2; r2)
, r ∈ (0, 1) (1.4)

if a + b ≥ 1.
Our interest is to focus on c = (a + b + 1)/2, which makes the derivative formula of the

two-parameter generalized Grötzsch ring function defined by (1.4) simpler.
Let 0 < a, b < 1 with a + b ≥ 1 and r ∈ (0, 1). Then the two-parameter generalized elliptic

integrals of first and second kinds [34, (1.6)–(1.8)] are defined by

K = Ka,b = Ka,b(r) =
B(a, b)

2
F
(

a, b;
a + b + 1

2
; r2

)
, (1.5)

E = Ea,b = Ea,b(r) =
B(a, b)

2
F
(

a – 1, b;
a + b + 1

2
; r2

)
, (1.6)

K′ = K′
a,b = Ka,b

(
r′), E ′ = E ′

a,b = Ea,b
(
r′), (1.7)

where and in what follows r′ =
√

1 – r2. Moreover, it follows from (1.2) that

Ka,b
(
0+)

= Ea,b
(
0+)

=
B(a, b)

2
,

Ka,b
(
1–)

= ∞, Ea,b
(
1–)

=
B(a, b)B((a + b + 1)/2, (3 – a – b)/2)

2B((b – a + 3)/2, (a – b + 1)/2)
.

In this paper, we study the two-parameter generalized Grötzsch ring function μa,b(r) for
a, b ∈ (0, 1), as well as the related functions Ka,b, Ea,b, and

ma,b(r) =
2

B(a, b)
r′2Ka,bK′

a,b, r ∈ (0, 1). (1.8)

The so-called Legendre M-function introduced in [35] can be used to study the deriva-
tive of ma,b(r) and satisfies the formula

[
B(a, b)

2

]2

M
(
r2) =

a + b – 1
2

KK′ +
b – a + 1

2
(
KE ′ + K′E – KK′) (1.9)
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for r ∈ (0, 1). Furthermore, M(r) can be rewritten as

M(r) =
Γ ((a + b + 1)/2)2[r(1 – r)](1–a–b)/2

Γ (a)Γ (b)
, (1.10)

and M(r) becomes a constant if and only if a + b = 1, in which case M(r2) degenerates to
be the generalized Legendre relation.

In the case of a + b = 1, these functions coincide with the special functions μa(r), Ka(r),
Ea(r), and ma(r), respectively, which were studied in [36–49]. In particular, if a = b = 1/2,
then these functions reduce to the classical cases denoted by μ(r), K(r), E(r), and m(r),
which appeared frequently in the geometric function theory and number theory [50–69].

The main purpose of the article is to find the sub-regions of {(a, b) ∈ R
2|0 < a, b < 1, a +

b > 1} such that certain quotient functions involving μa,b(r), Ka,b(r), Ea,b(r), and ma,b(r) are
monotonic on their corresponding sub-regions. As a consequence, several new bounds
for μa,b(r) and ma,b(r) are discovered, which are the variants and extensions of the results
given in [42, Theorems 1.1 and 1.2] for the case of zero-balanced.

2 Notations, formulas, and lemmas
In order to prove our main results, we need several derivative formulas and lemmas, which
we present in this section.

2.1 Notations
Throughout the article, we denote B(a, b) by B if no risk for confusion. Let

D =
B( a+b+1

2 , a+b–1
2 )

2
,

E =
B(a, b)B( a+b+1

2 , 1–a–b
2 )

2B( a–b+1
2 , b–a+1

2 )
,

κ1(a, b) = a + b + 1 – 2ab(4 – a – b),

κ2(a, b) = 3 + 7(a + b) + 2(a – b)2 – 6(a + b)3 – 5(a + b)4 – (a + b)5

+ 8ab
[
(a + b)2 + (a + b)3 – (a + b) + 8ab

]
,

κ3(a, b) = 5 + 7(a + b) – 3(a + b)2 – 7(a + b)3 – 2(a + b)4

+ 4ab
[
3(a + b)2 + 4(a + b) – 3

]
,

κ4(a, b) = 9 + 5(a + b) – 9(a + b)2 – 5(a + b)3 + 16ab(a + b),

κ5(a, b) = (a + b + 1)2 – 12ab.

For the convenience of readers, we also introduce three sub-regions Ω1, Ω2, and Ω3 of
{(a, b) ∈R

2|0 < a, b < 1}, which are illustrated in Fig. 1.

Ω1 =
{

(a, b)|0 < a, b < 1, a + b > 1,κ1(a, b) ≥ 0
}

,

Ω2 =
{

(a, b)|0 < a, b < 1, a + b > 1,κ2(a, b) ≤ 0,κ3(a, b) ≤ 0
}

,

Ω3 =
{

(a, b)|0 < a, b < 1, a + b > 1,κ5(a, b) ≥ 0
}

.
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Figure 1 Visualized sub-regions Ω1, Ω2, and Ω3 of {(a,b) ∈ R
2|0 < a,b < 1}

2.2 Formulas
Let r ∈ (0, 1) and 0 < a, b < 1 with a + b > 1. Then the following derivative formulas

dK
dr

=
1

rr′2
[
2b

(
E – r′2K

)
+ (a + b – 1)(K – E)

]
, (2.1)

dE
dr

=
2(a – 1)

r
(K – E), (2.2)

d(K – E)
dr

=
1

rr′2
[
2br2K –

(
a + b – 1 + 2(1 – a)r2)(K – E)

]
, (2.3)

d(E – r′2K)
dr

=
1
r
[
2(1 – b)r2K + (a + b – 1)(K – E)

]
(2.4)

can be found in [34, Theorem 4.15].
Note that Theorem 1.19(9) of [19] gives the derivative formula

dμa,b(r)
dr

= –
(a + b – 1)B2D
4ra+br′a+b+1K2 (2.5)

for μa,b(r) if d = c = (a + b + 1)/2.
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From (1.7), (1.9), (1.10), and (2.1) we clearly see that

dma,b(r)
dr

=
4

Br

[(
(2b – 1)r2K – (b – a + 1)(K – E)

)
K′ –

(a + b – 1)BD
4(rr′)a+b–1

]
. (2.6)

2.3 Lemmas
Lemma 2.1 ([70, Theorem 2.1]) Suppose that the power series f (x) =

∑∞
n=0 anxn and g(x) =∑∞

n=0 bnxn have the radius of convergence r > 0 with bn > 0 for all n ∈ {0, 1, 2, . . .}. Let h(x) =
f (x)/g(x) and Hf ,g = (f ′/g ′)g – f . Then the following statements hold true:

(1) If the non-constant sequence {an/bn}∞n=0 is increasing (decreasing) for all n ≥ 0, then
h(x) is strictly increasing (decreasing) on (0, r);

(2) If there exists n0 > 0 such that the non-constant sequence {an/bn}∞n=0 is increasing
(decreasing) for 0 ≤ n ≤ n0 and decreasing (increasing) for n ≥ n0, then h(x) is strictly
increasing (decreasing) on (0, r) if and only if Hf ,g(r–) ≥ (≤)0. Moreover, if
Hf ,g(r–) < (>)0, then there exists x0 ∈ (0, r) such that h(x) is strictly increasing
(decreasing) on (0, x0) and strictly decreasing (increasing) on (x0, r).

Lemma 2.2 ([19, Theorem 1.25]) Suppose that –∞ < a < b < ∞, f , g : [a, b] → R are con-
tinuous on [a, b] and differentiable on (a, b), and g ′(x) �= 0 on (a, b). If f ′(x)/g ′(x) is increasing
(decreasing) on (a, b), then so are the functions

f (x) – f (a)
g(x) – g(a)

and
f (x) – f (b)
g(x) – g(b)

.

If f ′(x)/g ′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 2.3 Let 0 < a, b < 1 with a + b > 1. Then the following assertions are valid:
(i) The function (K – E)/(r2K) is strictly increasing from (0, 1) onto (2b/(a + b + 1), 1);

(ii) The function r′a+b–1K has positive Maclaurin coefficients and maps (0, 1) onto
(B/2, D);

(iii) The function r′pK is strictly decreasing from (0, 1) onto (0, B/2) if p ≥ 4ab/(a + b + 1).

Proof Items (i) and (ii) follow directly from [34, Lemma 4.22]. We only need to prove item
(iii).

It follows from (2.1) that

d(r′pK)
dr

=
r′p–2

r
[
(2b – p)r2K – (b – a + 1)(K – E)

]

= (b – a + 1)rr′p–2K
[

2b – p
b – a + 1

–
K – E
r2K

]
. (2.7)

Lemma 2.3(i) and (2.7) enable us to know that r′pK is strictly decreasing on (0, 1) if (2b –
p)/(b – a + 1) ≤ 2b/(a + b + 1), that is, p ≥ 4ab/(a + b + 1).

Note that

r′pK =
B(a, b)

2
r′p+1–a–bF

(
b – a + 1

2
,

a – b + 1
2

;
a + b + 1

2
; r2

)
. (2.8)

If p ≥ 4ab/(a + b + 1), then p + 1 – a – b ≥ (a – b + 1)(b – a + 1)/(a + b + 1) > 0. This in
conjunction with (1.2) and (2.8) gives limr→1– r′pK = 0. �
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In the following Lemma 2.4 we provide an asymptotic formula for K as r → 1 in the case
of a + b > 1, which is the analog for the zero-balanced hypergeometric function (1.2).

Lemma 2.4 Let 0 < a, b < 1 with a + b > 1. Then one has

K(
√

r) = D(1 – r)(1–a–b)/2 + E + o
(
(1 – r)

a+b–1
2 log(1 – r)

)

as r → 1.

Proof It follows from F(a, b; (a + b + 1)/2; r) is asymptotic to 2D(1 – r)(1–a–b)/2/B [19, The-
orem 1.19(5)] as r → 1 for a + b > 1 and the derivative formula

dF(a, b; c; r)
dr

=
ab
c

F(a + 1, b + 1; c + 1; r) (2.9)

given in [19, (1.16)] for the hypergeometric function together with (1.2), and L’Hôpital’s
rule that

lim
r→1–

K(
√

r) – D(1 – r)(1–a–b)/2 – E
(1 – r)(a+b–1)/2 log(1 – r)

= lim
r→1–

BF( b–a+1
2 , a–b+1

2 ; a+b+1
2 ; r) – 2D – 2E(1 – r)(a+b–1)/2

2(1 – r)a+b–1 log(1 – r)

= lim
r→1–

[(b – a)2 – 1]BF( b–a+3
2 , a–b+3

2 ; a+b+3
2 ; r) – 2[(a + b)2 – 1]E(1 – r)(a+b–3)/2

4(a + b + 1)(1 – r)a+b–2[(a + b – 1) log(1 – r) + 1]

= lim
r→1–

[(b – a)2 – 1]BF(a, b; a+b+3
2 ; r) – 2[(a + b)2 – 1]E

4(a + b + 1)(1 – r)(a+b–1)/2[(a + b – 1) log(1 – r) + 1]

= lim
r→1–

ab[1 – (b – a)2]B(1 – r)2–(a+b)F( b–a+3
2 , a–b+3

2 ; a+b+5
2 ; r)

(a + b + 3)[(a + b)2 – 1][(a + b – 1) log(1 – r) + 3]

= 0.

This completes the proof. �

Lemma 2.4 leads to Corollary 2.5 immediately.

Corollary 2.5 Let 0 < a, b < 1 and a + b > 1. Then

Dr1–a–b + E – μa,b(r) → 0 and Dr1–a–b + E – ma,b(r) → 0

as r → 0.

Proof By replacing r with 1 – r2 in Lemma 2.4, we clearly see that

K′ = Dr1–a–b + E + o
(
ra+b–1 log r2). (2.10)
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By definition, it is easy to know that (K – B/2)/r → 0 as r → 0. This in conjunction with
(2.10) and a + b < 2 yields

Dr1–a–b + E – μa,b(r)

=
B

2K
(
Dr1–a–b + E – K′) +

1
K (K – B/2)

(
Dr1–a–b + E

) → 0

as r → 0. The second asymptotic formula can be proved by similar arguments. �

Lemma 2.6 Let 0 < a, b < 1 with a + b > 1. Then the following assertions are valid:
(i) If κ1(a, b) ≥ 0, then κ5(a, b) > 0 and a + b < 3/2;

(ii) κ4(a, b) < κ3(a, b);
(iii) If κ5(a, b) ≥ 0 and a ≤ b, then 3 – 3a – b > 0.

Proof (i) We only need to prove that it is not possible for κ1(a, b) ≥ 0 and κ5(a, b) ≤ 0. By
calculations, the inequality κ1(a, b) ≥ 0 is equivalent to 0 < a ≤ 1/2 and 1–a < b < 1 or 1/2 <
a < 1 and 1 – a < b ≤ b1(a), where b1(a) = 1

4a [–1 + 8a – 2a2 –
√

1 – 24a + 60a2 – 32a3 + 4a4]
and κ5(a, b) ≤ 0 is equivalent to 1/2 < 2(2 –

√
3) < a < 1 and b2(a, b) ≤ b < 1, where b2(a) =

–1 + 5a – 2
√

3(2a2 – a).
It remains to show that b2(a) > b1(a) for 2(2 –

√
3) < a < 1. A simple calculation leads to

b2(a) – b1(a) =
1

4a
[
1 – 12a + 22a2 +

√
1 – 24a + 60a2 – 32a3 + 4a4

]

– 2
√

3a(2a – 1) > 0

if and only if

(
1 – 12a + 22a2 +

√
1 – 24a + 60a2 – 32a3 + 4a4

)2 –
(
8a

√
3a(2a – 1)

)2

= 2
[(

22a2 – 12a + 1
)√

1 – 24a + 60a2 – 32a3 + 4a4

+ 1 – 24a + 124a2 – 184a3 + 52a4] > 0,

which is also equivalent to

(
22a2 – 12a + 1

)2(1 – 24a + 60a2 – 32a3 + 4a4)

–
(
1 – 24a + 124a2 – 184a3 + 52a4)2

= 64a3(a + 1)(3 – 2a)(2a – 1)
(
3a2 – 3a + 1

)
> 0

for 1/2 < a < 1. On the other hand, as we know, κ1(a, b) can be thought of as a quadratic
function of b and the parabola opens up. It is easy to verify that κ1(a, 1 – a) = 2(1 – 3a +
3a2) > 0 and κ1(a, 1) = –(2 – a)(2a – 1) < 0 for 1/2 < a < 1. Combining this with κ1(a, 3/2 –
a) = –5(1 – a)(a – 1/2) < 0 for 1/2 < a < 1, we conclude that 3/2 – a < b < 1 makes κ1(a, b)
negative. This completes the first assertion.

(ii) Observe that κ4(a, b) – κ3(a, b) = 2(a + b + 1)(a + b – 1)Q(b), where

Q(b) = a2 + a – 2 – (4a – 1)b + b2 (2.11)
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is a quadratic function in terms of b. Since the parabola of Q(b) opens up, it follows from
Q(1 – a) = –6a(1 – a) < 0 and Q(1) = –a(3 – a) < 0 that Q(b) < 0 for 0 < a < 1 and 1 – a <
b < 1. This in conjunction with (2.11) yields κ4(a, b) < κ3(a, b).

(iii) If the conclusion is not true, that is, 3–3a–b ≤ 0, it follows that b ≥ max{a, 3(1–a)}.
As we know, κ5(a, b) = b2 – 2(5a – 1)b + (a + 1)2 is a quadratic function of b. We divide the
proof into two cases.

Case 1: a ≥ 3(1 – a). Then we clearly see that a ≤ b < 1 and 3/4 ≤ a < 1. Since the sym-
metric axis 5a – 1 > 1, κ5(a, b) is strictly decreasing for a < b < 1. This gives
κ5(a, b) ≤ κ5(a, a) = –[8(a – 3/4)2 + 8(a – 3/4) + 1/2] < 0, which is a contradic-
tion.

Case 2: a < 3(1 – a). In other words, 3(1 – a) < b < 1 and 2/3 < a < 3/4. Similarly, the
monotonicity of κ5(a, b) gives rise to κ5(a, b) ≤ κ5(a, 3(1 – a)) = 4(2a – 1)(5a –
4) < 0, which is also a contradiction. �

Lemma 2.7 Let 0 < a, b < 1 with a + b > 1 and a + b + 1 ≥ 4ab, and ϕ(r) be defined by

ϕ(r) =
1/r′a+b–1 – 1

B2/(4r′a+b+1K2) – 1
.

Then ϕ(r) is strictly decreasing from (0, 1) onto (0, (a+b–1)(a+b+1)
1+2a+2b+a2+b2–6ab ).

Proof Let ϕ1(r) = 1/r′a+b–1 – 1 and ϕ2(r) = B2/(4r′a+b+1K2) – 1. Then ϕ(r) = ϕ1(r)/ϕ2(r) and
ϕ1(0) = ϕ2(0) = 0. Combining this with Lemma 2.2, we clearly see that the monotonicity of
ϕ(r) depends on ϕ′

1(r)/ϕ′
2(r), that is,

ϕ′
1(r)

ϕ′
2(r)

=
4(a + b – 1)

B2 · (r′K
)2 · r2K

(a + 1 – 3b)r2K + 2(b – a + 1)(K – E)
. (2.12)

It follows from Lemma 2.3(i) that (a + 1 – 3b) + 2(b – a + 1)(K – E)/(r2K) is strictly
increasing from (0, 1) onto ( 1+2a+2b+a2+b2–6ab

a+b+1 , 3–a–b). Since a+b+1 ≥ 4ab, Lemma 2.3(iii)
leads to the conclusion that r′K is strictly decreasing from (0, 1) onto (0, B/2). This in
conjunction with (2.12) implies that ϕ′

1(r)/ϕ′
2(r) is strictly decreasing on (0, 1).

On the other hand, it follows from L’Hôpital’s rule and (2.12) that

ϕ
(
0+)

= lim
r→0+

ϕ′
1(r)

ϕ′
2(r)

=
(a + b – 1)(a + b + 1)

1 + 2a + 2b + a2 + b2 – 6ab
, ϕ

(
1–)

= 0. �

Lemma 2.8 Let (a, b) ∈ Ω1 and f (r) be defined by

f (r) =
(1 – 2b)r2K + (b – a + 1)(K – E)

B2

4r′a+b+1K2 – 1
.

Then f (r) is strictly decreasing from (0, 1) onto (0, (a+b+1–4ab)B
1+2a+2b+a2+b2–6ab ).

Proof Let f1(r) = (1 – 2b)r2K + (b – a + 1)(K – E) and f2(r) = B2/(4r′a+b+1K2) – 1. Then we
clearly see that f (r) = f1(r)/f2(r) and f1(0) = f2(0) = 0.

By calculations, one has

f ′
1(r)

f ′
2(r)

=
4

B2 · [r′(a+b+1)/3K
]3 · f̂ (r), (2.13)
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where

f̂ (r) =
[σ1(a, b) + σ2(a, b)r2]r2K – [σ3(a, b) + σ4(a, b)r2](K – E)

(a + 1 – 3b)r2K + 2(b – a + 1)(K – E)
� f̂1(r)

f̂2(r)
(2.14)

and

σ1(a, b) = 2
(
1 – b – ab + b2), σ2(a, b) = 2(1 – b)(2b – 1),

σ3(a, b) = (a + b – 1)(b – a + 1), σ4(a, b) = (b – a + 1)(3 – 2a – 2b).

Let

f̂11(r) = σ1(a, b) – σ3(a, b)
K – E
r2K , f̂12(r) = –r2

[
σ4(a, b)

K – E
r2K – σ2(a, b)

]
.

Then f̂1(r)/(r2K) = f̂11(r) + f̂12(r).
It follows from Lemma 2.3(i) and σ3(a, b) > 0 that f̂11(r) is strictly decreasing on (0, 1). For

(a, b) ∈ Ω1, namely 0 < a, b < 1, a + b > 1 and κ1(a, b) ≥ 0, we clearly see from Lemma 2.6(i)
that κ5(a, b) = (a + b + 1)2 – 12ab > 0, a + b < 3/2, and then σ4(a, b) > 0. This in conjunction
with Lemma 2.3(i), (iii) implies that r′(a+b+1)/3K is strictly decreasing on (0, 1) and

σ4(a, b)
K – E
r2K – σ2(a, b) > σ4(a, b) · 2b

a + b + 1
– σ2(a, b) =

2κ1(a, b)
a + b + 1

≥ 0. (2.15)

Lemma 2.3(i) and (2.15) enable us to know that f̂12(r) is strictly decreasing on (0, 1).
This gives the monotonicity of f̂1(r)/(r2K). So f̂1(r)/(r2K) > σ1(a, b) + σ2(a, b) – σ3(a, b) –
σ4(a, b) = (2 – a – b)(a + b – 1) > 0. Moreover, it is easy to verify from Lemma 2.3(i) that
f̂2(r)/(r2K) is strictly increasing from (0, 1) onto ( 1+2a+2b+a2+b2–6ab

a+b+1 , 3 – a – b). Combining
with (2.14), the monotonicity of f̂1(r)/(r2K) and f̂2(r)/(r2K) leads to the conclusion that
f̂ (r) is strictly decreasing on (0, 1).

Therefore, the monotonicity of f (r) follows from Lemma 2.2 and (2.13) together with
the monotonicity of r′(a+b+1)/3K and f̂ (r).

To this end, by L’Hôpital’s rule and (2.13), (2.14),

f
(
0+)

= lim
r→0+

f ′
1(r)

f ′
2(r)

=
(a + b + 1 – 4ab)B

1 + 2a + 2b + a2 + b2 – 6ab
, f

(
1–)

= 0. �

Lemma 2.9 Let (a, b) ∈ Ω2 and g(r) be defined by

g(r) =
B2/(4r′a+b+1K2) – 1

[2br2K + (a – b – 1)(K – E)]/r′2 .

Then g(r) is strictly decreasing from (0, 1) onto (0, 1+2a+2b+a2+b2–6ab
4abB ).

Proof Let g1(r) = B2/(4r′a+b+1K2) – 1 and g2(r) = [2br2K + (a – b – 1)(K – E)]/r′2. Then
g(r) = g1(r)/g2(r) and g1(0) = g2(0) = 0.

By calculations, one has

g ′
1(r)

g ′
2(r)

=
B2

4[r′a+b–1K]2 · ĝ1(r)
ĝ2(r)

, (2.16)
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where

ĝ1(r) =
r′a+b–1[(a – 3b + 1)r2K + 2(b – a + 1)(K – E)]

r2K , (2.17)

ĝ2(r) =
[λ1(a, b) + λ2(a, b)r2]r2K + [λ3(a, b) + λ4(a, b)r2](K – E)

r2 (2.18)

and

λ1(a, b) = 2b(a – b + 1), λ2(a, b) = 4b2,

λ3(a, b) = (b – a + 1)(a + b – 1), λ4(a, b) = –2(a + b)(b – a + 1).

By (2.2) and (2.9), we clearly see that

K – E
r2 =

B(a, b)
4(a – 1)r

dF(a – 1, b; (a + b + 1)/2; r2)
dr

=
bB(a, b)
a + b + 1

F
(
a, b + 1; (a + b + 3)/2; r2). (2.19)

It follows from (1.2), (1.5), and (2.19) that

r′a+b–1K =
B(a, b)

2
F
(

b – a + 1
2

,
a – b + 1

2
;

a + b + 1
2

; r2
)

, (2.20)

r′a+b–1 K – E
r2 =

B(a, b)b
a + b + 1

F
(

b – a + 3
2

,
a – b + 1

2
;

a + b + 3
2

; r2
)

. (2.21)

Combining with (2.17), (2.18), (2.20), and (2.21), we rewrite ĝ1(r) and ĝ2(r) in terms of
power series:

ĝ1(r) =

∑∞
n=0

( a–b+1
2 ,n)( b–a+1

2 ,n)
( a+b+1

2 ,n)n!
ξa,b(n)r2n

∑∞
n=0

(a,n)(b,n)
( a+b+1

2 ,n)n!
r2n

, (2.22)

ĝ2(r) =
B(a, b)

2

∞∑

n=0

(a, n – 1)(b, n – 1)
( a+b+1

2 , n + 1)n!
ζa,b(n)r2n, (2.23)

where

ξa,b(n) =
1 + 2a + 2b + a2 + b2 – 6ab + 2(a + b + 1)n

1 + a + b + 2n
,

ζa,b(n) =
[
(a + b)2 – 1

]
n3 + 2(a + b – 1)(a + b + 2ab – 1)n2

+
[
4ab(a + b + ab – 1) – 3(a + b)2 + 4(a + b) – 1

]
n

+ 4ab(1 – a)(1 – b).

We now claim that ĝ1(r) is strictly decreasing on (0, 1) and ĝ2(r) is strictly increasing on
(0, 1); furthermore, ĝ2(r) has positive Maclaurin coefficients.
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• Lemma 2.1 and (2.22) enable us to know that the monotonicity of ĝ1(r) depends on
the monotonicity of the following sequence:

{αn}n≥0 =
{ ( a–b+1

2 , n)( b–a+1
2 , n)

(a, n)(b, n)
ξa,b(n)

}

n≥0
.

A simple calculation yields

αn+1

αn
=

(1 + b – a + 2n)(1 + a – b + 2n)ξa,b(n + 1)
4(b + n)(a + n)ξa,b(n)

≤ 1

if and only if


a,b(n) = (1 + b – a + 2n)(1 + a – b + 2n)ξa,b(n + 1)

– 4(a + n)(b + n)ξa,b(n)

=

̂a,b(n)

(1 + a + b + 2n)(3 + a + b + 2n)
≤ 0, (2.24)

where


̂a,b(n) = κ2(a, b) + 4κ3(a, b)n + 4κ4(a, b)n2 – 16
[
(a + b)2 – 1

]
n3. (2.25)

For (a, b) ∈ Ω2, namely 0 < a, b < 1, a + b > 1, κ2(a, b) ≤ 0, κ3(a, b) ≤ 0, and then
κ4(a, b) ≤ 0 by Lemma 2.6(ii). This in conjunction with (2.24) and (2.25) implies that
the sequence {αn}n≥0 is decreasing. So the first assertion is valid.

• We mention that the Pochhammer symbol (a, –1)(b, –1) = 1
(a–1)(b–1) > 0 for 0 < a, b < 1.

It only needs to prove ζa,b(n) > 0 for n ≥ 0 with 0 < a, b < 1 and a + b > 1.
Clearly, ζa,b(0) = 4ab(1 – a)(1 – b) > 0 and ζa,b(1) = 4ab(a + b + 2ab – 1) > 0.

Moreover, ζ ′
a,b(n) is strictly increasing for n ≥ 0. This gives ζ ′

a,b(n) ≥ ζ ′
a,b(1) = 4q(b) for

n ≥ 1, where q(b) = (a2 + 3a + 1)b2 + (3a2 – a – 1)b + a(a – 1) is regarded as a
quadratic function in terms of b and its parabola opens up.

Observe that

–
3a2 – a – 1

2(a2 + 3a + 1)
– (1 – a) = –

a(1 – a)(2a + 3) + 1
2(a2 + 3a + 1)

< 0,

that is to say, the symmetric axis of q(b) lies on the left side of the interval [1 – a, 1].
This in conjunction with q(1 – a) = a2(a – 1)2 > 0 implies that q(b) > 0 for 1 – a < b < 1.
So ζa,b(n) is strictly increasing for n ≥ 1 and ζa,b(n) ≥ ζa,b(1) > 0 for n ≥ 1. This
completes the second assertion.

Therefore, ĝ1(r)/̂g2(r) is strictly decreasing on (0, 1) follows from the above assertions
together with ĝ1(r) > 0 and ĝ2(r) > 0. Combining this with (2.16), Lemma 2.2 and
Lemma 2.3(ii), we conclude that g(r) is strictly decreasing on (0, 1).

It remains to compute two end values of g(r). By L’Hôpital’s rule and (2.16) together with
Lemma 2.3(i), (ii),

g
(
0+)

= lim
r→0+

g ′
1(r)

g ′
2(r)

=
1 + 2a + 2b + a2 + b2 – 6ab

4abB
, g

(
1–)

= 0. �
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Lemma 2.10 Let 0 < a ≤ b < 1 with a + b > 1 and κ5(a, b) ≥ 0, and h(r) be defined by

h(r) =
2br2K – [2(a + b – 1) + (3 – 3a – b)r2](K – E)

(a – 3b + 1)r2K + 2(b – a + 1)(K – E)
.

Then h(r) is strictly decreasing from (0, 1) onto ( a+b–1
3–a–b , 2b(3–a–b)

1+2a+2b+a2+b2–6ab ).

Proof We denote by h1(r) = 2b – [2(a + b – 1) + (3 – 3a – b)r2](K – E)/(r2K) and h2(r) =
(a – 3b + 1) + 2(b – a + 1)(K – E)/(r2K).

If 0 < a ≤ b < 1, a+b > 1, and κ5(a, b) ≥ 0, then 3–3a–b > 0 follows from Lemma 2.6(iii).
Combining this with Lemma 2.3(i), we conclude that h1(r) is strictly decreasing from (0, 1)
onto (a+b–1, 2b(3–a–b)

a+b+1 ) and h2(r) is strictly increasing from (0, 1) onto ( 1+2a+2b+a2+b2–6ab
a+b+1 , 3–

a – b). This gives the monotonicity of h(r) = h1(r)/h2(r) together with two limiting values
h(0+) and h(1–). �

3 Main results
Theorem 3.1 Let (a, b) ∈ Ω1 and F(r) be defined on (0, 1) by

F(r) =
Dr1–a–b + E – ma,b(r)
Dr1–a–b + E – μa,b(r)

.

Then F(r) is strictly decreasing from (0, 1) onto (1, L0), where

L0 =
(a + b + 1)[(a + b – 1)2 + 4] – 16ab

(a + b – 1)(1 + 2a + 2b + a2 + b2 – 6ab)
.

In particular, the double inequality

ma,b(r) < μa,b(r) <
1
L0

ma,b(r) +
(

1 –
1
L0

)(
Dr1–a–b + E

)

holds for r ∈ (0, 1).

Proof Let F1(r) = Dr1–a–b + E – ma,b(r) and F2(r) = Dr1–a–b + E – μa,b(r). Clearly, F(r) =
F1(r)/F2(r) and F1(0+) = F2(0+) = 0 follow from Corollary 2.5.

By calculations, one has

F ′
1(r)

F ′
2(r)

=
( 1

r′a+b–1 – 1) + 4ra+b–1K′
(a+b–1)BD [(1 – 2b)r2K + (b – a + 1)(K – E)]

B2

4r′a+b+1K2 – 1

= ϕ(r) +
4

(a + b – 1)BD
· ra+b–1K′ · f (r), (3.1)

where ϕ(r) and f (r) are defined as in Lemma 2.7 and Lemma 2.8, respectively.
Since ra+b–1K′ can be regarded as the composition of x′a+b–1K(x) and x = r′ =

√
1 – r2,

Lemma 2.3(ii) enables us to know that ra+b–1K′ is strictly decreasing from (0, 1) onto
(B/2, D). This in conjunction with (3.1) together with Lemma 2.2, Lemma 2.7, and
Lemma 2.8 gives rise to the monotonicity of F(r) and also, by L’Hôpital’s rule
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and (3.1),

F
(
0+)

= lim
r→0+

F ′
1(r)

F ′
2(r)

= ϕ
(
0+)

+
4

(a + b – 1)BD
· D · f

(
0+)

= L0,

and F(1–) = 1 follows directly from ma,b(1–) = μa,b(1–) = 0. �

Corollary 3.2 Let (a, b) ∈ Ω1 and F̂(r) be defined on (0, 1) by

F̂(r) =
ma,b(r) – D(r1–a–b – 1)
μa,b(r) – D(r1–a–b – 1)

.

Then F̂(r) is strictly decreasing from (0, 1) onto (0, 1).

Proof Let F̂1(r) = ma,b(r) – D(r1–a–b – 1) and F̂2(r) = μa,b(r) – D(r1–a–b – 1). Then F̂(r) =
F̂1(r)/̂F2(r) and F̂1(1–) = F̂2(1–) = 0.

Since F̂ ′
1(r)/̂F ′

2(r) = F ′
1(r)/F ′

2(r), Lemma 2.2 enables us to know the monotonicity of F̂(r)
depends on that of F ′

1(r)/F ′
2(r), which follows from Theorem 3.1. It only remains to com-

pute two limiting values F̂(0+) and F̂(1–).
By Corollary 2.5, it is easy to see that F̂(0+) = (D + E)/(D + E) = 1. By L’Hôpital’s rule and

(3.1) together with Lemma 2.7, Lemma 2.8,

F̂
(
1–)

= lim
r→1–

F̂ ′
1(r)

F̂ ′
2(r)

= ϕ
(
1–)

+
4

(a + b – 1)BD
· B

2
· f

(
1–)

= 0. �

Theorem 3.3 Let (a, b) ∈ Ω2 and G(r) be defined on (0, 1) by

G(r) =
Dr1–a–b + E – μa,b(r)

K – B/2
.

Then G(r) is strictly decreasing from (0, 1) onto (0,∞).

Proof We denote G1(r) = Dr1–a–b + E – μa,b(r) and G2(r) = K – B/2. Then we clearly see
that G(r) = G1(r)/G2(r) and G1(0+) = G2(0+) = 0.

By taking the derivative of G1(r) and G2(r), one has

G′
1(r)

G′
2(r)

=
(a + b – 1)D

ra+b–1 · B2/(4r′a+b+1K2) – 1
[2br2K + (a – b – 1)(K – E)]/r′2

=
(a + b – 1)D

ra+b–1 · g(r), (3.2)

where g(r) is defined as in Lemma 2.9.
Therefore, the monotonicity of G(r) follows from Lemma 2.9 and that of 1/ra+b–1.
To this end, by L’Hôpital’s rule and (3.2),

G
(
0+)

= lim
r→0+

G′
1(r)

G′
2(r)

= lim
r→0+

(a + b – 1)D
ra+b–1 · g

(
0+)

= ∞, G
(
1–)

= 0. �

Theorem 3.4 Let (a, b) ∈ Ω3 and H(r) be defined on (0, 1) by

H(r) =
r1–a–b(B/2 – E)

Dr1–a–b + E – μa,b(r)
.
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Then H(r) is strictly decreasing from (0, 1) onto (L1, L2), where

L1 =
2b(1 – a)(3 – a – b)B

(a + b – 1)(1 + 2a + 2b + a2 + b2 – 6ab)D
,

L2 =
(b – a + 1)B + 2(a + b – 1)E

2(b – a + 1)(D + E)
.

As a consequence, the double inequality

r1–a–b
(

D –
B

2L1
+ E

)
+ E < μa,b(r) < r1–a–b

(
D –

B
2L2

+ E
)

+ E

holds for r ∈ (0, 1).

Proof Since H(r) is symmetric with respect to a, b, we may assume that 0 < a ≤ b < 1.
Let H1(r) = r1–a–b(B/2 – E) and H2(r) = Dr1–a–b + E – μa,b(r). Then we clearly see from
Corollary 2.5 and a + b < 2 that H1(r) = H1(r)/H2(r) and H1(0+) = H2(0+) = 0.

Moreover,

H ′
1(r)

H ′
2(r)

=
r–(a+b)[(1 – a – b)B/2 + (3a + b – 3)E + 2(1 – a)K]

(a + b – 1)Dr–(a+b)( B2

4r′a+b+1K2 – 1)

=
1

(a + b – 1)D
· (1 – a – b)B/2 + (3a + b – 3)E + 2(1 – a)K

( B2

4r′a+b+1K2 – 1)

� H11(r)
H22(r)

,

H11
(
0+)

= H22
(
0+)

= 0,

(3.3)

and

H ′
11(r)

H ′
22(r)

=
8(1 – a)

(a + b – 1)B2D
· (r′ a+b+1

3 K
)3 · h(r), (3.4)

where h(r) is defined as in Lemma 2.10.
If (a, b) ∈ Ω3, in other words, 0 < a ≤ b < 1, a+b > 1, and κ5(a, b) = (a+b+1)2 –12ab ≥ 0,

then it follows from Lemma 2.3(iii) and Lemma 2.10 that r′ a+b+1
3 K is strictly decreasing

on (0, 1) and h(r) is strictly decreasing on (0, 1). This in conjunction with (3.3), (3.4), and
Lemma 2.2 implies that H(r) is strictly decreasing on (0, 1). By L’Hôpital’s rule together
with Lemma 2.10 and (3.3), (3.4),

H
(
0+)

= lim
r→0+

H(r) = lim
r→0+

H ′
1(r)

H ′
2(r)

= lim
r→0+

H ′
11(r)

H ′
22(r)

=
8(1 – a)

(a + b – 1)B2D
·
(

B
2

)3

· h
(
0+)

= L1,

and H(1–) = L2 follows easily from μa,b(1–) = 0. �

Open Problem What is the sub-region of {(a, b) ∈ R
2|0 < a, b < 1} such that the function

Ĝ(r) =
Dr1–a–b + E – μa,b(r)

r1–a–b(K – B/2)
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is strictly decreasing from (0, 1) onto (0, L3), where

L3 =
(a + b – 1)(1 + 2a + 2b + a2 + b2 – 6ab)D

2ab(3 – a – b)B
.

4 Consequences and discussion
In the article, we study the monotonicity of the functions F(r), G(r), and H(r) related to
generalized Grötzsch ring function and generalized elliptic integrals, where F(r), G(r), and
H(r) are explicitly given by

F(r) =
Dr1–a–b + E – ma,b(r)
Dr1–a–b + E – μa,b(r)

, G(r) =
Dr1–a–b + E – μa,b(r)

K – B/2
,

and

H(r) =
r1–a–b(B/2 – E)

Dr1–a–b + E – μa,b(r)
.

5 Conclusion
In the article, we have found the sub-regions of {(a, b) ∈ R

2|0 < a, b < 1, a + b > 1} such
that several quotient functions involving μa,b(r), Ka,b(r), Ea,b(r), and ma,b(r) are mono-
tonic on their corresponding sub-regions, and established several inequalities for μa,b(r)
and ma,b(r). Our results are the variants and extensions of the previous results of [42, The-
orems 1.1 and 1.2] in the case of zero-balanced.
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