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1 Preliminary
Let n> 1, x = (x1,%0,...,%,), [xll, = (] + -+ + ), and R? = {x = (x1,...,%,) 1 %1 > 0,
..o xy >0}

Define the function space

Ly (RY) = {f(x) >0 [[fllpote) = ( /R frRow dx)p < +oo}.

Definition 1 Let A, 11, and X, be constants, and let u(x), v(y) and K(u, v) satisfy: for all
r> 0, u(rx) = ru(x), v(ry) = rv(y), and

A A

M 22
K(ru,v) = r“lK(u, r R V), K(u,rv) = r“21((r My, v).

Then we call K(u(x), v(y)) a generalized homogeneous function with parameters (%, A1, 15).
Obviously, K(u(x), v(y)) is a homogeneous function of order AA; when A1 = A,.

If p>1and 1% + = =1, then we call the inequality

1
q

/R n fR K (), v0))f ()g0) ddy < MIfpascollgloncy (L1)
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the Hilbert-type multiple integral inequality with f € L”, R} andge LZﬁ (y)(Rf).
Define the integral operator T" with kernel K (u(x), v(y)) as follows:

TO0) = [ K, ) @ds, yeR:. (12

If there exists a constant M such that

” T(f)”p,wg(y) = M”f”p,wl(x)' f € Lil(x) (Rﬁ)’

then T is called a bounded operator from L, (R”) to L%, (R”). If T is a bounded operator
from L}, (R”) to itself, then we call 7' a bounded operator in L%, (R”). The operator norm
of T is defined as

1Ty

IT| = infM =
set, @y Wlpor

By (1.2) inequality (1.1) can be rewritten as

| 1610060 dy = M hpseiolglgur
RY
It is not hard to prove that this inequality is equivalent to

|| T(f) ||p,vﬂ(1—p)(y) = M”f”p,u“(x)- (13)

In this paper, we discuss a necessary and sufficient condition and the best constant factor
for the Hilbert-type multiple integral inequality with the integral kernel of the generalized
homogeneous function K (u(x), v(y)). Our research is of some theoretical and application
value for the research of Hllbert—type inequalities. Further, these results are used to study
the boundedness and norm of the operator. Related studies can be found in [1-16].

Lemma 1 Let p > 1, 1% + é =1, n>1,1>0, AAy >0, and let a nonnegative measurable
function K(u(x),v(y)) be a generalized homogeneous function with parameters (A, X1, Az).
Denote

W, = / [v@O] 7 K(1,v(0) de
R}
W, = /R [O] 7 K (o), 1) d

Then

G

01(%) = / VO] 7 K (), ) dy = [ue)] 15T P s,

atn _

a)z(y)=/l; [u(x)] (u(x) v(y)) dx = [v(y)] Aig-32 (%8 W,
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Proof Since K(u(x),v(y)) is a generalized homogeneous function with parameters
(A, A1,A2), we have

w1 (x) = / W (x) [v(y ] ‘1 K(l u_%(x)v(y)) dy

+

=fR V] K (L (7 (x)y)) dy

= M (x) 5 [ xz (x)v(t)] & 1((1 v(t)) ;\21 (x) dt

- [ B / VO] K(1,v(0)) dt

= [u(x)]Mr (ﬂfn wi.

+n

_*2
By the same method we can obtain w,(y) = [v(y)]“2 e Ws. O

Lemma 2 ([17]) Letp;>0,a;>0,a; >0 (i=1,2,...,n), and let ¥ (u) be measurable. Then

n o

E (ﬁ) )xfl_l...xﬁ”_ldxl...dxn
a;

=1

Pl...apnrp_l ...rp_n 1

a n

_4 W' T'(EL) (an)/ (t)t%“'*ﬁ_’fl It
0

oo (5 +---+§—Z)

where I is the gamma function.

2 Main results

Theorem 1 Let p > 1, 1% + clz =1,n>1,p>0,1>0, A1Ay > 0, let there exist positive con-
stants Cy and Cy, such that Ci|1x|l, < u(x) < Gollxll,, Cillyll, < v() < Gyl let a non-
negative measurable function K (u(x), v(y)) be a generalized homogeneous function with pa-
rameters (A, A1, A2), and let the convergent integrals Wy and W, be defined as in Lemma 1.
Then we have:

(i) There exists a constant M such that the Hilbert-type multiple integral inequality in
(1.1) holds if and only Lf)‘za%)‘l + k”s%’\z = AA1Ag.

11

(ii) The best constant factor in (1.1) is infM = W W,!.

Proof Let 2(a<b) ={x=(x1,...,%,) 1 a < ||x]l, < b}.

(i) Suppose there exists a constant M such that (1.1) holds. Denote [ = 22¢="A1 4 21f=m2 _

q
AA1Ag. First, we let A; > 0, 1 > 0. For [ > 0 and ¢ > 0 sufficiently small, we set

[u(x)] ool 0 < lx)l, < 1,
0, %o = 1.

0) = [v(y)]Bn2)la, 0 < y]l, <1,
0, llyll, = 1.

flx) =
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Thus we have

1

Wy o) = ( fg CC N dx)” ( /9 L bora ) 2.1)

In view of 41 > 0, 2 > 0, Cilxll, < u(x) < Callall,, Cillyll, < v0) < Gallyll,» the two

integrals in (2.1) are all convergent.
A

_M _* _M
Also, since —:\\—; <0and (Cyllxll,) 2 <u *2(x) <(Cillxll,) *2, we have

/ / K(u (x)g(y) dxdy
r: JR2

- / [1a()] o219 ( / K (), viy)) [v(y)] P2 dy) dx
£2(0<1) 2(0<1)

_ / [u(x)])\kﬁ(—a—m)qs)/p (/ K(l; V(u_% (x)y)) [V(y)](—ﬂ—mkzs)/q dy) dx
2(0<1) 2(0<1)

_ Ar+H(—a—n+hr1€)/p

- [Q(Od) [u(x)]

x ( / L K(Lv) [ ] P, 5 (x)dt) dx
2(0<u *2 (x)

= / ()] "1 ( / N <(1,v(t))[v(t)]—ﬁ+”;“€ dt) dx
£2(0<1) 2(0<u *2 (x))
”*Ale—ﬁ " K 1 +quA 26 4 ) "
Z/.;Z(Od)[ u@] (/;?(0<(C2||x||p) ) (Lv)[v®] t

1 Brn—roe
> / [u(x)]‘”*“s‘ﬁ dx / u K(Lve)[v@)] 7 de
2(0<1) 2(0<C, 2y
Combining this with (1.1) and (2.1), we get
e Btn—hoe
/ [u(x)]_"“\ls_lz dx/ . K(l,v(t))[v(t)] ST dt
2(0<1) 2(0<C, 2

n+xle }7 —n+Ape ‘li
SNI</5~2(0<1)[M( )] ) (/9(0<1)[V()/)] dy) . (2.2)

Since / > 0 and ¢ is sufficiently small, -n + A;¢ — % < —n, and additionally C; x|, <

L
u(x) < Cy|l%|, then fg(()d)[u(x)]_mhs_h dx = +00. So (2.2) is a contradiction to / > 0.

If [ < 0, let ¢ > 0 be sufficient small. Then we set

o) { ()] oo, ), > 1,

otherwise,

20} { V)P, Yy, > 1,

0 otherwise.

Page 4 of 13
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Similarly, we can get

at+ftrie

/ [v(y)]*“”*ﬁ dy / s K@, )[w®] 7 de
2(1<+00)

(¢ M <+00)

—n—)qsd )p( —n—kzsd )q' 3
S]\/I(—/.;2(1<+oo) [u(x)] * L(l<+oo) [V(y)] 4 (2 )

Since Ci|lxll, < u(x) < Gollxll,, Cillyll, < v(y) < Caollyllp, <0, A1 >0, Ay > 0, and £ >0

is sufficient small, the right-hand side of (2.3) converges; also, f9(1<+oo)[v(y)] n-hoe-gp dy
diverges, and thus (2.3) is a contradiction to / < 0.
In conclusion, when X; > 0, A5 > 0, then we have [ = 0, that is, ““}%M + M%“ =M.

Again, suppose 11 <0, A, < 0.If [ > 0, then taking ¢ > 0 sufficiently small, we set

f()_{wuna"“mm Il > 1,

otherwise,

0 otherwise.

M*wwwmwmm

We thus have

1 1

sl guic) = ( [ (km)[u(x)]'"*“sdx)” ( [ L) dy>q. )

A A 2
Meanwhile, using C1 ||x]|, < u(x) < C|lx]l,, (C2||x||p)_ﬁ < w2 < (G ||x||p)_%,we have
/ / K (u(x), v(9))f (x)g(y) dx dy
®r Jr

=/ [u(x)](awrha)/p(/ K(u v(y )[V()/] ﬁn+k28)/qdy) dx
2(1<+00) £2(1<+00)

_ / [u(x)])u)\lJr(fotfnJrA]S)/p
£2(1<+00)

%/ MM*WMMVWW@M
2(1<+00)

a+n-rie
:/ [u(x)])u)\lf_p 1
2(1<+00)
M Btn—hye  nrq
X (/ M (l,v(t)) [u*z (x)v(t)] g A2 (%) dt)
u7 22 (x)<+00)
B+n—Aoe
/ ”*“8‘ 7 ( / n KLve)[ve] T dt> dx
2( 1<+oo 2((C1lxlp) *2 <+o0)

+n—Aoée

/ ()] "1 f o KLO)o] T
£2(1<+00) Q(c, "2

1 ©<+o0)
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Combining this with (1.1) and (2.4), we obtain

Bn—hoe

/ [u(x)]-"“lf-%dx / un KLv@)v@] T de
2(1<+00) Q(c, "2

A
1 C <+00)

—-n+iie }7 —n+ige %
SM(/fzu«oo)[u(x)] dx) <~/.Q(1<+oo)[V(y)] dy) ' (2.5)

Since the two integrals of the right-hand side of (2.5) converge, but the integral

[ )
2(1<+00)

diverges, (2.5) is a contradiction to / > 0.
If / < 0 and ¢ > 0 is sufficiently small, then we set

Fl)- [u(x)] menhElr 0 < lxll, <1,
otherwise,

) - [v(y)]F=r=22la, 0 < |ly||, <1,
0 otherwise.

Similarly, we can get

at+f+rie

/ [v)] "7 dy / o K@, )[u@] 7 dt
£2(0<1) 2(0<C,

Al)

—n-A1€ %’ “n-hge q
SM( /Q (0<1>[”(x)] dx) ( fg (Od)[v(y)] dy) . (2.6)

We now easily get that both integrals on the right-hand side of (2.6) converge, but

[ ot
£2(0<1)

diverges, and thus (2.6) is a contradiction to / < 0.

To sum up, when A; <0, A, < 0, we also have [ = 0, that is, 222271 @ = Akl)»z

On the contrary, if ’\2“ nhy ’\15—”)‘2 = AAjAo, then let g = l;iq + plq, b= lfq + 2 By the

Holder inequality and Lemma 1 we have

/R” /R” x) V()’ (x)g(y) dxdy
/I;n /1;"|: Vb(y)][ ) Ziy))]l((u(x),v(y)) dxdy

<([ L bpéy)’ (u(x),v(y»dxdy)_

(L1,

(u(x) v(y)) dx dy) !
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1 1

:( /R n[u(x)] () a)l(x)dx>p( / [v(y)] gq(y)wz(y)dy>

1 1

=W Wy ( /R ) [u(x)]*"*Ml i fp(x)dx>p

( / [v)] 7 ”gq(wdy)q

— Wy W ( [ v dx)‘; ( [ F 0w dy) '

11
= WY W If lpue 1€l 4,08 -

1

11
Taking arbitrary M > W W, , inequality (1.1) holds.
101
(ii) Suppose inequality (1.1) holds. If inf M # W} W/, then there exists a constant M, <
11
WP W, such that

[ [ K, v0)r ) sty < Mol oy 27)

forallf e L ua(x (R”) and g e Lvﬁ(y (R?).
Let & > 0 and § > 0 be sufficient small. We take

| )Gl i), > 5,
o

otherwise,

£b) = i V)PP, ), > 1,

0 otherwise.

Then we have

lu’||p,ua<x>llgnq,vﬂm=(/Q ; )[()]”'“'8 )(fg , )[V(J’)]_n_'“"gdy)q. (2.8)

_22 _*2
Since A“"”‘%M + W%AZ =ArAg and v *1(y) < (Cillyll,) *1, we have

[ [ K@, w0 dxay
- / [v(y)] e ’q( / 1<(u(x),v(y))[u(x)](“"‘”"“'”/”dx) dy
£2(1<+00) £2(8<+00)
[ B ([ kR o )] T )
£2(1<+00) £2(8<+00)
3 )»Kz—ﬁﬂqt;hlg
- \/.;2(1<+oo)[V(y)]

5 a+nt|ryle  niy
x ( / i K(u(0), 1)[v7 Gu(e)]” 7 Vi () dt)
2(8v

M (y)<+00)

Page 7 of 13



Hong et al. Journal of Inequalities and Applications (2020) 2020:140

a+n+|iyle
:/ )] ™ hale / a K(u(®),1)[u@®)] 7 1 dt) dy
£2(1<+00) 26y M (y)<+00)

2 -/.
2(1<+00)

Z -/.
2(1<+00)

Combining this with (2.7) and (2.8), we obtain

n— M2‘5 _a+n+|)\1\s
2 K(u(@®),)[u@®)] 7 dt
Q(1<+OO) 2( 5C1

<+OO

—n—lhllsd )p( —n—lkzlsd )q'
= MO (/.;2(6<+oo) [u(x)] 8 /;2(1<+oo) [V(y)] Y

—n-|rzle _
®), 1) u(®) P
(‘/;3 ((Crliyllp) Al <+00) (u )[M ]
—n—|Aale u(t) 1 u(t) _‘“”;‘)‘ﬂg dt'
[ )t

<+00)

[v»)]
[v)]

Thus

a+n+|hyle

( / [V(y)]nmlgdy)p / n Koo
£2(1<+00) (zSC1 <+00)

—n—IAllad )p‘
= MO <«/.Q(6<+oo) [u(x)] *

We also take

Sf&) =

otherwise,

{ [u(o)]Cen-lele, g, > 1,
0

0 otherwise.

o)~ i VI FPalda, ), >,

Similarly, we can get

(/ [u(x)]*n—lmls dx) ‘ / " K(L®) [V(t)]iw &
2(1<+00) .Q((SCI pry

<+00)
1
q
<M, ( / [viy)] """ dy) :
2(8<+00)

By (2.9) and (2.10) we have

</ _Ll K(LV(t))[V(t)]_Wdt)ﬁ
26c,

2 c+00)
a+n+|ryle

x( J TR 0) dt)a
2ec, 1

<+00)

<M, (fg(&m)[u(x)]”lhls dx) b (fms«oo)["(y)]”“s dy);fq
=\ s @I di )\ oo VO 20 dy

a+n+|ryle

dt) dy

(2.9)

(2.10)
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=M, .
f9(1<+oo) [u(x)]—”—|)~1|8 dx f9(1<+oo) [V(y)]—n—\)q\s dy
Since Ci|lx]l, < u(x) < Ca|l%ll,, f9(5<1)[u(x)]‘” dxisausual integral, but f9(1<+oo)[u(x)]‘” dx
diverges, and thus
. ffz(5<1)[”(x)]_n_m‘s dx
lim =0.
e—0* f9(1<+oo) [u(x) ]~ *1le dx
In the same way, we have
. fg(ad)[v(y)]—n—\kz\a dy )
e—0" f9(1<+00) [V(y)]—n—lkzls dy '
Letting ¢ — 0* in (2.11), we get
_Bn r
( [ koo dt)
(¢, *2 <+00)
1
_atn q
X (/ L K(u@),1)[u@)]” dt) < M,.
(8¢ M <+00)
Letting § — 0%, we obtain
1
11 B \p
WP Wy - ( [ x@o)mor dt)
£2(0<+00)
1
_atn q
X (/ K(u(t), 1)[u(t)] » dt) < M,.
£2(0<+00)
101
This is a contradiction, and hence infM = W W'. O

Theorem 2 Letp > 1, }7 + é =1,n>1,A1>0,1A >0,y =(1 —p)B, and let there exist
constants Cy and Cy such that Cy||x||, < u(x) < Cy||x|l, and Ci|yll, < v(y) < Callyll,. Let
a nonnegative measurable function K(u(x), v(y)) be a generalized homogeneous function for
parameters (©, A1, Xy). Let the operator T be defined by (1.2), and let W, and W, defined
by Lemma 1 be also convergent. Then

(i) T is a bounded operator from LZ"‘(x) (R") to Lfy ) (R?) if and only if
P%[)»z(a +n) =y +n)] =nky + AriAs.

(i) If T is a bounded operator from Liw ®) (R") to L’:y ) (R"), then the operator norm of T
1 1

is | T = W{ Wy

Proof Since }7 + % =1,8= ﬁ, AZO;%”M + @ = AA1Ag leads to %[Az(a +n)—A(y +n)] =

niy + AA1Ag, and since equality (1.1) is equivalent to (1.3), Theorem 2 holds by Theo-

rem 1. 0



Hong et al. Journal of Inequalities and Applications (2020) 2020:140

3 Applications
Theorem 3 Letp > 1,}7+$ =1,n>1,0p>0,A>0,4;>0,12>0,a4;>0,b;, >0, <n(p-1),
B<nlg—1), ulx) =", ax)V, and v(y) = (31, biy?)V*. Then:

(i) There exists a constant M such that

1
/Rz /RZ mf(x)g(y) dxdy < MI|f llpue ) 181l 4,8 ) (3.1)

if and only zf”k;# + M = Mihy, where f € LV, w(R}) and g € Lzﬁ(y)(RZ)'
(ii) Ifinequality (3.1) holds, then its best constant factor is

. n_%%”_% F”(%) 1(n « L(n B
e (1) ((19°) i (G5 G -0)

=

Proof Set K(u(x),v(y)) = W Then K(u(x),v(y)) is a generalized homogeneous
function for parameters (A, =A1,=X2), and ’”\11’# + Z2mB o a0, s equivalent to
Chaleonh)  CIBHED) - j(<)y)(—ho). Further, we have & — A (% — &) = L(2 _ &) and

n

Z—g>0and§—1—7>0whena<n(p—1)and,3<n(q—1).ByLemma1wehave

Wy = f [v®)] &8 1((1 v(t)) dt
=/ 1 Xn:b-ﬂ o dt
ry [+ Q0L it )2le ) \ 4= o

o1 1 n T ar
=157 / x dx
o” |, s (Z )

:Hb”hm// - lxwx
r—+00 150,67+ +x,,<rf’ (1+r 2(2; 1( t)p) 2/P]

B+n

n AN
_Bn Xi _ _
Xr 4 (ll(—’)) e x  dy - dy
r
i=1

oL _M’ﬂnrn(%) 1 1 Btn n

=||b,” lim r 4 u e du
!:[ borsioo p”]—’(%) 0 (1+7‘)‘2M)‘2/'0))‘

LR a6 00 n
:l_[b./’ (p) / 1 ti(i"g)"ldt
C (O Jy ey

i=1

" bi%L%)nB(i@_é),x_i(E_é))
il et I0(E) \ha\p g Ma\p q

I

zo-1 r) 1/n B l1/n «
Tl ———~ p(=(Z2_FE (%)),
1_1[ kzp”-lf(f)F(/\)F<kz<p q))r(h(q p))

Page 10 0f 13
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In the same way, we get

W, = / [u@)]7 K(u(e),1) dt
®!

_”_% F"(%) 1/n « 1(n B
‘g“‘ Alp"—lmﬁ)r(x)F(E(%_2))F(E(E7))'

Thus

Tn i\7 ro
(nw) G

i-1 /\fxfpn-lr(x)r(g)
(G GG-0)
rMm\qg p M\p 4

Hence Theorem 3 holds by Theorem 1. O

5
=
1l
e
=
Q
ol
S
~——
<

1
Corollary 1 Letp>1, 1% + % =L,n>1p>0,1>0,A >0, A >0, ux) =}, x")7, and

v(y) = (X0, y0)7 . Then:
(i) The operator T defined by

T(f)(y) = / ! f(x)dx, yeR",

Ry (@1 (x) + v (y)*

is a bounded operator in LP(R") if and only zf”% + "T“ = Ariha.
(ii) When T is a bounded operator in LP(R"), the operator norm of T is

rm

e F(%)F(%)
P Ay royr(z) N AP

Proof The corollary follows from Theorems 2 and 3. d

Theorem 4 Letp > 1,}?+§= 1,n>1,p>0,1>0,A;>0,4,>0,a <n(p-1), B <n(g-1),
u(x) = O, VP, and v(y) = (31, y))VP. Then
(i) There exists M such that

1
/R’i /R’i (max{uh(x),vh(y)})%f(x)g(y) dxdy < Mfllpu ) 1€llg. ) (32)

if and only z'f"“p# + % = AA1Ag, where f € Lf,a(x)(Rﬁ) and g € LZﬁ(y)(RZ)'
(i) Ifinequality (3.2) holds, then its best constant factor is

n(l -1 -1
S (I R
Af)\g,o”‘lf( ) A\qg p AP 4

n
p

Page 11 0f 13
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_ ; . . _
Proof Set K(u(x),v(y)) = ErpSTEp ST Then K(u(x),v(y)) is a generalized homoge

neous function for parameters (A, —11,—A;). By Lemma 2 we get

Wi =/ K(l,v(t))[v(t)]_ﬂT dt
R

n
+

- / )] 7 de + / [v)] ™7 ar

v(H)<1 (t)>1
~ F"(;) 1/(n B\\" F"() 1/n a\\"
‘xzpnlmg)( (Z‘E)) "o 1r<)< (q p))
el (G-5) (G5 |

hop" LT (%) p 4 qa p '

Similarly, we obtain

W, = /R K (@, 1)[u®)] 7" at

) GG
_Klp”’lp(%) M\g p AP g '

Then we have
101 (L) 1 -1 1 -1
ebel- PR GD) (GE-2) )
)\f}é’pn—lr(%) q b P q
In summary, Theorem 4 holds by Theorem 1. O

Corollary 2 Letp>1, p% +1=1,n>1,p>0,4>0,41>0, 1y >0, u(x) = (Zf’=1xf’)%,and

q
v(y) = (X0, y)7 . Then
(i) The operator T defined by

1
T(f)(y) = /R » max{u (x), 2 (y)})*

f(x)dx,y € R,

is a bounded operator in LP(R") if and only lf T 2 3k
(i) When T is a bounded operator in LP(R’}), the opemtor norm of T is

5
—+— ).
n n

Proof The corollary follows from Theorems 2 and 4. g

r+1)
[ — -
Q4P p1p(n
Ay Ay p" F(p)
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