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Abstract
In this study, we introduce a new family of discrete multiple orthogonal polynomials,
namely ω-multiple Meixner polynomials of the first kind, where ω is a positive real
number. Some structural properties of this family, such as the raising operator,
Rodrigue’s type formula and an explicit representation are derived. The generating
function for ω-multiple Meixner polynomials of the first kind is obtained and by use
of this generating function we find several consequences for these polynomials. One
of them is a lowering operator which will be helpful for obtaining a difference
equation. We give the proof of the lowering operator by use of new technique which
is a more elementary proof than the proof of Lee in (J. Approx. Theory 150:132–152,
2008). By combining the lowering operator with the raising operator we obtain the
difference equation which has the ω-multiple Meixner polynomials of the first kind as
a solution. As a corollary we give a third order difference equation for the ω-multiple
Meixner polynomials of the first kind. Also it is shown that, for the special case ω = 1,
the obtained results coincide with the existing results for multiple Meixner
polynomials of the first kind. In the last section as an illustrative example we consider
the special case when ω = 1/2 and, for the 1/2-multiple Meixner polynomials of the
first kind, we state the corresponding result for the main theorems.
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1 Introduction
Discrete multiple orthogonal polynomials are useful extension of discrete orthogonal
polynomials, see [1–13]. The theory of discrete orthogonal polynomials on a linear lat-
tice were extended to such polynomials by Arvesu, Coussement and Van Assche in [2].
Multiple Meixner polynomials are discrete multiple orthogonal polynomials. There are
two kinds of multiple Meixner polynomials. In this paper, we concentrate on the multiple
Meixner polynomials of the first kind.

Multiple Meixner polynomials of the first kind M(β ,−→a )
−→n (x), of degree |−→n |, are orthogonal

polynomials for the negative binomial distributions when r > 1. That is,

∞∑

x=0

M(β ,−→a )
−→n (x)(–x)jwβ

i (x) = 0, j = 0, 1, . . . , ni – 1, i = 1, . . . , r, (1)
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where β > 0 is the fixed parameter and different values for the parameter−→a = (a1, . . . , ar),
(ai �=aj whenever i�=j), where 0 < a < 1 with multi-index −→n = (n1, . . . , nr) and (x)k = x(x +
1)(x + 2) · · · (x + k – 1) is the Pochhammer symbol with (x)0 = 1.

The functions

wβ

i (x) =

⎧
⎨

⎩

Γ (β+x)ak
i

Γ (β)Γ (x+1) if x ∈R/({–1, –2, . . .} ∪ {–β , –β – 1, . . .}),
0 if x ∈ {–1, –2, . . .},

are weight functions of the multiple Meixner polynomials of the first kind where Γ (x) is
the gamma function.

The orthogonality conditions give us a linear system of |−→n | = n1 + n2 + · · · + nr homo-
geneous equations for the |−→n | + 1 unknown coefficients of polynomials which always has
a nontrivial solution. If the given multi-index −→n is normal, then the corresponding poly-
nomials will be unique polynomials. For the uniqueness of the polynomials one can use a
system called an AT system which was introduced by Nikishin and Sorokin [11].

Definition 1.1 (cf. [11]) A set of continuous real functions w1, w2, . . . , wr defined on [a, b]
is called an AT system for the index n ∈ Z

r
+, n �= 0, if

w1(x), xw1(x), . . . , xn1–1w1(x), . . . , wr(x), xwr(x), . . . , xnr–1wr(x)

is a Chebyshev system of order |n| – 1 on [a, b].

In an AT system, all the multi-index −→n are normal. By using the following example it
will be easy to show that the weight functions for the multiple Meixner polynomials of the
first kind form an AT system.

Example 1.2 (cf. [2]) The functions w(x)ax
1, xw(x)ax

1, . . . , xn1–1w(x)ax
1, . . . , w(x)ax

r , xw(x)ax
r ,

. . . , xnr–1w(x)ax
r , with all the ai > 0, i = 1, . . . , r, different and w(x) a continuous function

which has no zeros on R
+, form a Cheybshev system on R

+ for every index −→n ∈N
r .

In [2], Arvesu, Coussement and Van Assche investigated the raising operator and the
Rodrigues formula for multiple Meixner polynomials of the first kind. Also, via the Ro-
drigues formula an explicit formula for these polynomials is obtained by these authors.
They investigated these properties for multiple orthogonal polynomials of discrete vari-
ables by extending the classical orthogonal polynomials of discrete variables.

Van Assche in [12] obtained a lowering operator for multiple Meixner polynomials of
the first kind for the case r = 2 and then by combining lowering and raising operators he
gave the third order difference equation for these polynomials. Later, Lee in [7] obtained
a lowering operator for the case r and then by combining lowering and raising operators
Lee gave the (r + 1)th order difference equation for these polynomials.

Ndayiragije and Van Assche in [4] gave generating functions and explicit expressions for
the coefficients in the nearest neighbor recurrence relation for multiple Meixner polyno-
mials of the first kind.

In this paper we introduce a new class for discrete multiple polynomials called ω-
multiple Meixner polynomials of the first kind. The aim is to obtain some structural prop-
erties for these newly introduced polynomials. Firstly we define the orthogonality for the
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ω-multiple Meixner polynomials of the first kind on the linear lattice by using two impor-
tant operators, namely the ω-forward and ω-backward difference operators, where

�ωf (x) = f (x + ω) – f (x)

is the ω-forward operator and

∇ωf (x) = f (x) – f (x – ω)

is the ω-backward operator.
In Sect. 2 we obtain some properties of the ω-multiple Meixner polynomials of the first

kind, such as the raising operator, Rodrigues’ formula and an explicit form. The generating
function for the ω-multiple Meixner polynomials of the first kind is given in Sect. 3 and we
obtain some results from the generating function such as connection and addition formu-
las. Section 4 includes the lowering operator and difference equation for the ω-multiple
Meixner polynomials of the first kind. We also show that when ω = 1, the results obtained
in Sects. 2, 3 and 4, coincide with the existing results for multiple Meixner polynomials of
the first kind. One of the main results of this paper is in Sect. 5 where we give some results
for the 1/2-multiple Meixner polynomials of the first kind.

2 Orthogonality for ω-multiple Meixner polynomials of the first kind
In this section, we first give the definition of the orthogonality of ω-multiple Meixner
polynomials of the first kind.

Definition 2.1 The monic discrete ω-multiple Meixner polynomial of the first kind,
corresponding to the multi-index −→n = (n1, . . . , nr), the fixed parameter β > 0 and the
parameter−→a = (a1, . . . , ar), (ai �=aj whenever i�=j), is the unique polynomial of degree |−→n |
which satisfies the orthogonality conditions

∞∑

x=0

M(ω;β ;−→a )
−→n (ωx)(–ωx)j,ωw(ω;β)

i (ωx) = 0, j = 0, 1, . . . , ni – 1, i = 1, 2, . . . , r, (2)

where (a)n,ω = a(a + ω)(a + 2ω) · · · (a + (n – 1)ω) is the ω-Pochhammer symbol for a ∈ C

and n ∈ N and ω > 0.
The weight functions for ω-multiple Meixner polynomials of the first kind are defined

as

w(ω;β)
i (x) =

⎧
⎨

⎩

Γω(β+x)ax
i

Γω(β)Γω(x+ω) if x ∈R/({–1, –2, . . .} ∪ {–β , –β – 1, . . .}),
0 if x ∈ {–1, –2, . . .},

where 0 < ai < 1, for i =, 1, 2, . . . , r, with all the ai different and Γω is the ω-gamma function
given by

Γω(x) =
∫ ∞

0
tx–1e– tω

ω dt = ω
x
ω –1Γ

(
x
ω

)
.
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By Example 1.2 it is easy to conclude that the weight functions form an AT system which
implies the uniqueness of such polynomials. When ω = 1, the given orthogonality condi-
tions coincide with the orthogonality conditions in (1).

In the rest of this paper the properties of multiple Meixner polynomials of the first kind
are extended to ω-multiple Meixner polynomials of the first kind.

Theorem 2.2 Let ω be a positive real number. The raising operator for ω-multiple Meixner
polynomials of the first kind is given as

∇ω

[
M(ω;β ;−→a )

−→n (x)w(ω;β)
i (x)

]
=

aω
i – 1

aω
i (β – ω)

M(ω;β–ω;−→a )
−→n +−→ei

(x)w(ω;β–ω)
i (x). (3)

Proof By using the product rule for the ω-backward operator
∇ω[f (x)g(x)] = f (x)∇ωg(x) + g(x – ω)∇ωf (x), we obtain

∇ω

[
M(ω;β ;−→a )

−→n (x)w(ω;β)
i (x)

]
=

aω
i – 1

aω
i (β – ω)

(x)w(ω;β–ω)
i (x)P(ω)

−→n +−→ei
.

Using the ω-summation by parts formula,

∞∑

k=0

�ω

[
f (ωk)

]
g(ωk) = –

∞∑

k=0

∇ω

[
g(ωk)

]
f (ωk) where g(–ω) = 0,

and the orthogonality conditions,

∞∑

k=0

P(ω)
−→n +−→ei

(ωx)(–ωx)j,ωw(ω;β–ω)
i (ωx) = 0,

we find the result with P(ω)
−→n +−→ei

= M(ω;β–ω;−→a )
−→n +−→ei

, which was guaranteed from the uniqueness of
the orthogonal polynomials. �

Theorem 2.3 Let ω be a positive real number. The Rodrigues formula for ω-multiple
Meixner polynomials of the first kind are introduced by

M(ω;β ;−→a )
−→n (x) = (β)|−→n |,ω

[ r∏

k=1

(
aω

k
aω

k – 1

)nk Γω(β)Γω(x + ω)
Γω(β + x)

]

×
r∏

i=1

1
ax

i
∇ni

ω

[
Γω(β + x + |−→n |ω)ax

i

Γω(x + ω)Γω(β + |−→n |ω)

]
. (4)

Proof Replacing −→n by −→n – −→ei and β by β + ω in the raising operator formula, we obtain

w(ω;β)
i (x)M(ω;β ;−→a )

−→n (x) =
βaω

i
aω

i – 1
∇ω

[
w(ω;β+ω)

i (x)M(ω;β+ω;−→a )
−→n –−→ei

(x)
]
.

Then for r = 2 the multi-index will be −→n = (n1, n2).
For i = 1 we have

w(ω;β)
1 (x)M(ω;β ;a1,a2)

n1,n2 (x) =
βaω

1
aω

1 – 1
∇ω

[
w(ω;β+ω)

1 (x)M(ω;β+ω;a1,a2)
n1–1,n2 (x)

]
,
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and iterating it n1 times we get

w((ω;β)
1 (x)M(ω;β ;a1,a2)

n1,n2 (x) = (β)n1,ω

(
aω

1
aω

1 – 1

)n1

× ∇n1
ω

[
w(ω;β+n1ω)

1 (x)M(ω;β+n1ω;a1,a2)
0,n2 (x)

]
.

For i = 2 we have

w(ω;β)
2 (x)M(ω;β ;a1,a2)

n1,n2 (x) =
βaω

2
aω

2 – 1
∇ω

[
w(ω;β+ω)

2 (x)M(ω;β+ω;a1,a2)
n1,n2–1 (x)

]
,

and iterating it n2 times we get

w(ω;β)
2 (x)M(ω;β ;a1,a2)

n1,n2 (x) = (β)n2,ω

(
aω

2
aω

2 – 1

)n2

× ∇n2
ω

[
w(ω;β+n2ω)

1 (x)M(ω;β+n2ω;a1,a2)
n1,0 (x)

]
.

By combining these two equations, we obtain the expression for M(ω;β ;a1,a2)
n1,n2 (x) and if we

continue the iteration for r, we derive the Rodrigues formula for ω-multiple Meixner poly-
nomials of the first kind. �

The explicit form can easily be obtained from the Rodrigues formula using the Leibniz
rule for the ω-backward operator,

∇n
ωf (x) =

n∑

i=1

(–1)i
(

n
i

)
f (x – iω).

Theorem 2.4 Let ω be a positive real number. The explicit form for ω-multiple Meixner
polynomials of the first kind is given by

M(ω;β ;−→a )
−→n (x) =

n1∑

k1=0

n2∑

k2=0

· · ·
nr∑

kr=0

(
n1

k1

)(
n2

k2

)
· · ·

(
nr

kr

)
(–x)|−→k |,ω

×
r∏

j=1

[ (aω
j )nj–kj

(aω
j – 1)nj

(β + x)|−→n |–|−→k |,ω

]
. (5)

Corollary 2.5 The special cases of Theorem 2.2, Theorem 2.3 and Theorem 2.4 when ω = 1
are easily reduced to results obtained in [2] and [4]. For instance, when ω = 1 in Theo-
rem 2.2, our result coincides with the raising operator for multiple Meixner polynomials of
the first kind,

∇[
M(β ,−→a )

−→n (x)wβ

i (x)
]

=
ai – 1

ai(β – 1)
M(β–1,−→a )

−→n +−→ei
(x)wβ–1

i (x),

which is exactly the same formula as in [2, equation (4.6), p. 33].
When ω = 1 in Theorem 2.3, we find the Rodrigues formula for multiple Meixner polyno-

mials of the first kind,

M(β ,−→a )
−→n (x) = (β)|−→n |

[ r∏

k=1

(
ak

ak – 1

)nk Γ (β)Γ (x + 1)
Γ (β + x)

]
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×
r∏

i=1

1
ax

i
∇ni

[
Γ (β + x + |−→n |)ax

i

Γ (x + 1)Γ (β + |−→n |)

]
,

which coincides with the formula in [2, equation (4.7), p. 33].
When ω = 1 in Theorem 2.4, we have an explicit form for multiple Meixner polynomials

of the first kind,

M(β ,−→a )
−→n (x) =

n1∑

k1=0

n2∑

k2=0

· · ·
nr∑

kr=0

(
n1

k1

)(
n2

k2

)
· · ·

(
nr

kr

)
(–x)|−→k |

×
r∏

j=1

[
(ak)nj–kj

(ak – 1)nj
(β + x)|−→n |–|−→k |

]
,

which coincides with the formula in [4, equation (3), p. 3]

3 Generating function for ω-multiple Meixner polynomials of the first kind
ω-Multiple Meixner polynomials of the first kind have a multivariate generating function
with r variables. The following lemma will be useful for the proof of the theorem for the
generating function.

The relation between Pochhammer symbol and ω-Pochhammer symbol is given as fol-
lows:

(a)n,ω = ωn
(

a
ω

)

n
. (6)

Lemma 3.1 (cf. [4, Lemma 1, p. 4]) The generating function for the multinomial coefficients
is given as follows:

∞∑

m1=0

· · ·
∞∑

mr=0

(–x)|−→m |
m1! · · ·mr !

tm1
1 · · · tmr

r = (1 – t1 · · · – tr)x.

This series converges absolutely and uniformly for |t1| + · · · + |tr| < 1 when x /∈ N and con-
tains a finite number of terms if x ∈N.

Theorem 3.2 Let ω be a positive real number. The generating function for the ω-multiple
Meixner polynomials of the first kind is

∞∑

n1=0

∞∑

n2=0

· · ·
∞∑

nr=0

M(ω;β ;−→a )
−→n (x)

tn1
1 · · · tnr

r
n1! · · ·nr !

=
(

1 –
ωt1

aω
1 – 1

– · · · –
ωtr

aω
r – 1

) x
ω

×
(

1 –
ωt1aω

1
aω

1 – 1
– · · · –

ωtraω
r

aω
r – 1

) –(β+x)
ω

. (7)

Proof Replacing M(ω;β ;−→a )
−→n (x) with the explicit form in left hand side of (7) we obtain

∞∑

n1=0

· · ·
∞∑

nr=0

n1∑

k1=0

· · ·
nr∑

kr=0

(
n1

k1

)(
n2

k2

)
· · ·

(
nr

kr

)
(–x)|−→k |,ω
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×
r∏

j=1

[
(aω

k )nj–kj

(aω
k – 1)nj

(β + x)|−→n |–|−→k |,ω

]
tn1
1 · · · tnr

r
n1! · · ·nr !

.

Changing the order of the summation gives

∞∑

k1=0

· · ·
∞∑

kr=0

∞∑

n1=k1

· · ·
∞∑

nr=kr

(–x)|−→k |,ω
k1!(n1 – k1)! · · ·kr !(nr – kr)!

aω(n1–k1)
1 · · ·aω(nr–kr)

r

(aω
1 – 1)n1 · · · (aω

r – 1)nr

× xtn1
1 · · · tnr

r (β + x)|−→n |–|−→k |,ω.

By setting mi = ni – ki and putting the factors in mi and ki together we obtain

∞∑

k1=0

· · ·
∞∑

kr=0

(–x)|−→k |,ω
k1! · · ·kr !

(
t1

aω
1 – 1

)k1

· · ·
(

tr

aω
r – 1

)kr

×
∞∑

m1=0

· · ·
∞∑

mr=0

(β + x)|−→m |,ω
m1! · · ·mr !

(
t1aω

1
aω

1 – 1

)m1

· · ·
(

traω
r

aω
r – 1

)mr

.

Using the relation between the Pochhammer symbol and the ω-Pochhammer symbol (6),
the above equation becomes

∞∑

k1=0

· · ·
∞∑

kr=0

( –x
ω

)|−→k |
k1! · · ·kr !

(
ωt1

aω
1 – 1

)k1

· · ·
(

ωtr

aω
r – 1

)kr

×
∞∑

m1=0

· · ·
∞∑

mr=0

( β+x
ω

)|−→m |
m1! · · ·mr !

(
ωt1aω

1
aω

1 – 1

)m1

· · ·
(

ωtraω
r

aω
r – 1

)mr

.

Now using Lemma 3.1, we obtain the generating function for ω-multiple Meixner poly-
nomials of the first kind, which is the desired result. �

Corollary 3.3 When ω = 1, the special case of Theorem 3.2 reduces to the result of [4]. For
instance, when ω = 1 in Theorem 3.2, we have a generating function for multiple Meixner
polynomials of the first kind,

∞∑

n1=0

∞∑

n2=0

· · ·
∞∑

nr=0

M(β ,−→a )
−→n (x)

tn1
1 · · · tnr

r
n1! · · ·nr !

=
(

1 –
t1

a1 – 1
– · · · –

tr

ar – 1

)x

×
(

1 –
t1a1

a1 – 1
– · · · –

trar

ar – 1

)–(β+x)

,

which coincides with the formula in [4, equation (7), p. 4].

The generating function will be used to establish the connection formula and the addi-
tion formula for ω-multiple Meixner polynomials of the first kind.
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Theorem 3.4 Let ω be a positive real number. ω-Multiple Meixner polynomials of the first
kind M(ω;β ;−→a )

−→n (x) and M(ω;β+γ ;−→a )
−→n –

−→
k

(x) satisfy the following connection formula:

M(ω;β ;−→a )
−→n (x) =

n1∑

k1=0

· · ·
nr∑

kr=0

(
n1

k1

)
· · ·

(
nr

kr

)
(–γ )|−→k |,ω

×
(

aω
1

aω–1
1

)k1

· · ·
(

aω
r

aω–1
r

)kr

M(ω;β+γ ;−→a )
−→n –

−→
k

(x). (8)

Proof Replacing β by β – γ + γ in the generating function (7) we obtain

∞∑

n1=0

· · ·
∞∑

nr=0

M(ω;β ;−→a )
−→n (x)

tn1
1 · · · tnr

r
n1! · · ·nr !

=
(

1 –
ωt1

aω
1 – 1

– · · · –
ωtr

aω
r – 1

) x
ω

×
(

1 –
ωt1aω

1
aω

1 – 1
– · · · –

ωtraω
r

aω
r – 1

) –(β+γ +x)
ω

×
(

1 –
ωt1aω

1
aω

1 – 1
– · · · –

ωtraω
r

aω
r – 1

) γ
ω

.

From the generating function (7) and Lemma 3.1, the above equation gets the following
form:

∞∑

n1=0

· · ·
∞∑

nr=0

M(ω;β ;−→a )
−→n (x)

tn1
1 · · · tnr

r
n1! · · ·nr !

=
∞∑

n1=0

· · ·
∞∑

nr=0

M(β+γ ,−→a )
−→n (x)

tn1
1 · · · tnr

r
n1! · · ·nr !

×
∞∑

k1=0

· · ·
∞∑

kr=0

( –γ

ω
)|−→k |

k1! · · ·kr !

(
ωaω

1
aω

1 – 1

)k1

· · ·
(

ωaω
r

aω
r – 1

)kr

× tk1
1 · · · tkr

r .

Changing the order of summations and using the relation between the Pochhammer sym-
bol and the ω-Pochhammer symbol (6) we get

∞∑

n1=0

· · ·
∞∑

nr=0

M(ω;β ;−→a )
−→n (x)

tn1
1 · · · tnr

r
n1! · · ·nr !

=
∞∑

n1=0

· · ·
∞∑

nr=0

n1∑

k1=0

· · ·
nr∑

kr=0

(
n1

k1

)
· · ·

(
nr

kr

)

× M(ω;β+γ ;−→a )
−→n –

−→
k

(x)(–γ )|−→k |,ω

(
aω

1

aω–1
1

)k1

· · ·

×
(

aω
r

aω–1
r

)kr tn1
1 · · · tnr

r
n1! · · ·nr !

.

Finally, comparing the coefficients of tn1
1 ···tnr

r
n1!···nr ! , appearing on both sides of the above equa-

tion, we obtain the desired result. �
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Theorem 3.5 Let ω be a positive real number. The addition formula for ω-multiple
Meixner polynomials of the first kind is given by

M(ω;β+γ ;−→a )
−→n (x + y) =

n1∑

k1=0

· · ·
nr∑

kr=0

(
n1

k1

)
· · ·

(
nr

kr

)
M(ω;β ;−→a )

−→n –
−→
k

(x)M(ω;γ ;−→a )
−→
k

(y). (9)

Proof Changing x with x + y and β with β + γ in the generating function (7), together with
changing the order of summations we obtain

∞∑

n1=0

· · ·
∞∑

nr=0

M(β+γ ,−→a )
−→n (x + y)

tn1
1 · · · tnr

r
n1! · · ·nr !

=
∞∑

n1=0

· · ·
∞∑

nr=0

n1∑

k1=0

· · ·
nr∑

kr=0

tk1
1 · · · tkr

r
k1! · · ·kr !

M(γ ,−→a )
−→
k

(y)

× tn1–k1
1 · · · tnr–kr

r
(n1 – k1)! · · · (nr – kr)!

M(β ,−→a )
−→n –

−→
k

(x).

Finally, comparing the coefficients of tn1
1 ···tnr

r
n1!···nr ! , appearing on both sides of the above equation

we get the result. �

Note that in the case when ω = 1, the connection and addition formula for multiple
Meixner polynomials are also new. So, here we have new relations for multiple Meixner
polynomials of the first kind, which are given below.

Corollary 3.6 Multiple Meixner polynomials of the first kind satisfy the following connec-
tion and addition formulas, respectively:

M(β ,−→a )
−→n (x) =

n1∑

k1=0

· · ·
nr∑

kr=0

(
n1

k1

)
· · ·

(
nr

kr

)
ak1

1 · · ·akr
r (–γ )|−→k |M

(β+γ ,−→a )
−→n –

−→
k

(x),

M(β+γ ,−→a )
−→n (x + y) =

n1∑

k1=0

· · ·
nr∑

kr=0

(
n1

k1

)
· · ·

(
nr

kr

)
M(β ,−→a )

−→n –
−→
k

(x)M(γ ,−→a )
−→
k

(y).

4 Difference equation for ω-multiple Meixner polynomials of the first kind
In this section, the aim is to introduce the difference equation for the ω-multiple Meixner
polynomials of the first kind by combining the lowering and raising operators.

Theorem 4.1 Let ω be a positive real number. The raising operator for ω-multiple Meixner
polynomials of the first kind is given as

L(β)
ai

[
M(ω;β ;−→a )

−→n
]

= –M(ω;β–ω;−→a )
−→n +ei

(10)

where L(β)
ai [·] is defined by

L(β)
ai

[y] =
x

1 – aω
i
∇ωy –

[
aω

i (β – ω)
1 – aω

i
– x

]
y.

Proof The proof follows directly from the Rodrigues formula (4) for the ω-multiple
Meixner polynomials of the first kind. �
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Theorem 4.2 Let ω be a positive real number. The lowering operator for ω-multiple
Meixner polynomials of the first kind is

�ωM(ω;β ;−→a )
−→n =

r∑

i=1

ωniM(ω;β+ω;−→a )
−→n –ei

. (11)

In particular, for r = 2

�ωM(ω;β ;a1,a2)
n1,n2 = ωn1M(ω;β+ω;a1,a2)

n1–1,n2 + ωn2M(ω;β+ω;a1,a2)
n1,n2–1 .

Proof Changing β for β – ω and applying the operator �ω to both sides of the generating
function (7) for the case r = 2 we obtain

∞∑

n1=0

∞∑

n2=0

�ωM(ω;β–ω;a1,a2)
n1,n2

tn1
1 tn2

2
n1!n2!

= (ωt1 + ωt2)
(

1 –
ωt1

aω
1 – 1

–
ωt2

aω
2 – 1

) x
ω

×
(

1 –
ωt1aω

1
aω

1 – 1
–

ωt2aω
2

aω
2 – 1

) –(β+x)
ω

.

By use of the generating function (7) the above equation gets the following form:

∞∑

n1=0

∞∑

n2=0

�ωM(ω;β–ω;a1,a2)
n1,n2

tn1
1 tn2

2
n1!n2!

= ω

∞∑

n1=0

∞∑

n2=0

M(β ,a1,a2)
n1,n2

tn1+1
1 tn2

2
n1!n2!

+ ω

∞∑

n1=0

∞∑

n2=0

M(β ,a1,a2)
n1,n2

tn1
1 tn2+1

2
n1!n2!

.

Changing β for β + ω and then replacing n1 with n1 – 1 and n2 with n2 – 1 in the right side
of equation we obtain

∞∑

n1=0

∞∑

n2=0

�ωM(ω;β ;a1,a2)
n1,n2

tn1
1 tn2

2
n1!n2!

=
∞∑

n1=0

∞∑

n2=0

[
ωn1M(ω;β+ω;a1,a2)

n1–1,n2 + ωn2M(ω;β+ω;a1,a2)
n1,n2–1

] tn1
1 tn2

2
n1!n2!

.

Finally, comparing the coefficients of tn1
1 tn2

2
n1!n2! , appearing on both sides of the above equation

the desired result is obtained for the case r = 2. �

Remark 4.1 In the case ω = 1, the lowering operator for the ω-multiple Meixner poly-
nomials of the first kind coincide with the lowering operator for the multiple Meixner
polynomials of the first kind which is given in [7]. For the proof of the ω type we consider
a different approach, where the generating function plays an important role and the proof
becomes simpler than the corresponding proof when ω = 1 [7, Theorem 2.4, p. 138].
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Theorem 4.3 Let ω be a positive real number. The difference equation for the ω-multiple

Meixner polynomials M(ω;β ;−→a )
−→n (x)

∞

|−→n |=0
is given by

L(β+2ω–rω)
a1 L(β+3ω–rω)

a2 · · ·L(β+ω)
ar �ωM(ω;β ;−→a )

−→n (x)

+
r∑

i=1

ωniL(β+2ω–rω)
a1 · · ·L(β+iω–rω)

ai–1
L(β+(i+1)ω–rω)

ai+1
· · ·

× L(β)
ar L(β+ω)

ai
M(ω;β ;−→a )

−→n (x) = 0. (12)

Proof Since L(n)
ak L(n+ω)

am = L(n)
am L(n+ω)

ak for n, ak , am ∈R, we obtain

L(β+2ω–rω)
a1 L(β+3ω–rω)

a2 · · ·L(β+ω)
ar = L(β+2ω–rω)

a1 · · ·L(β+iω–rω)
ai–1

× L(β+(i+1)ω–rω)
ai+1

· · ·L(β)
ar L(β+ω)

ai
,

for i = 1, . . . , r.
Now applying L(β+2ω–rω)

a1 L(β+3ω–rω)
a2 · · ·L(β+ω)

ar to the lowering operator (11) and using the
raising operator (10), we get the result. �

Theorem 4.4 Let ω be a positive real number. The third order difference equation for the

ω-multiple Meixner polynomials M(ω;β ;−→a )
−→n (x)

∞

n1+n2=0
of the first kind is given as

x(x – ω)∇2
ω�ωy + x

[
β
(
aω

1 + aω
2
)

+ (x – ω)
(
aω

1 + aω
2 – 2

)]∇ω�ωy

+
[
aω

1 β – x
(
1 – aω

1
)
(a2ωβ – xω

(
1 – aω

1
)(

1 – aω
2
)

– aω
1 aω

2 βω
]
�ωy

+
[
n1

(
1 – aω

1
)

+ n2
(
1 – aω

2
)]

ωx∇ωy

+ ω(β – ω)
[[

n1aω
2 + n2aω

1 – aω
1 aω

2 (n1 + n2)
]

–
(
1 – aω

1
)(

1 – aω
2
)
(n1 + n2)x

]
y = 0. (13)

Proof Considering the case for r = 2 in Theorem 4.3, we have

L(β)
a1 L(β+ω)

a2 �ωy + ωn1L(β)
a2 y + ωn2L(β)

a1 y = 0,

where y = M(ω;β ;a1,a2)
n1,n2 (x), which gives the proof. �

Corollary 4.5 The special cases of Theorem 4.1, Theorem 4.2 and Theorem 4.4, Theo-
rem 4.4 when ω = 1 can easily be reduced to the results obtained in [7]. For instance,

when ω = 1 in Theorem 4.1, we have the raising operator L(β)
ai [·] for any polynomial,

L(β)
ai

[y] =
x

1 – ai
∇y –

[
ai(β – 1)

1 – ai
– x

]
y,

which is exactly the same formula as in [7, equation (2.4), p. 138].
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When ω = 1 in Theorem 4.2 the lowering operator for multiple Meixner polynomials of
the first kind has the following form:

�M(β ,−→a )
−→n =

r∑

i=1

niM(β+1,−→a )
−→n –ei

,

which coincides with the formula in [7, equation (2.5), p. 138].
When ω = 1 in Theorem 4.4, the (n + 1)th order difference equation for multiple Meixner

polynomials of the first kind becomes

L(β+2–r
a1 L(β+3–r)

a2 · · ·L(β+1)
ar �M(β ,−→a )

−→n (x)

+
r∑

i=1

niL(β+2–r)
a1 · · ·L(β+i–r)

ai–1
L(β+(i+1)–r)

ai+1
· · ·L(β)

ar L(β+1)
ai

M(β ,−→a )
−→n (x) = 0,

which reduces to the formula in [7, Theorem 2.5, p. 139].
When ω = 1 in Theorem 4.4, the third order difference equation for multiple Meixner

polynomials of the first kind is obtained as

x(x – 1)∇2�y + x
[
β(a1 + a2) + (x – 1)(a1 + a2 – 2)

]∇�y

+
[(

a1β – x(1 – a1)
)
(a2β – x(1 – a1)(1 – a2) – a1a2β

]
�y

+
[
n1(1 – a1) + n2(1 – a2)

]
x∇y

+ (β – 1)
[[

n1a2 + n2a1 – a1a2(n1 + n2)
]

– (1 – a1)(1 – a2)(n1 + n2)x
]
y = 0,

which coincides with the formula in [7, Corollary 2.6, p. 139].

5 1/2-Multiple Meixner polynomials of the first kind
As we mentioned before for the case when ω = 1, ω-multiple Meixner polynomials of the
first kind reduce to the known multiple Meixner polynomials of the first kind. For the
other values of ω we have new classes for multiple Meixner polynomials of the first kind
where ω is positive real number. In this section we exhibit the case ω = 1/2 and state some
relations for 1/2-multiple Meixner polynomials of the first kind such as weight functions,
orthogonality conditions, the explicit form, the generating function and a third order dif-
ference equation.

1/2-Multiple Meixner polynomials of the first kind have the following weight functions:

w(1/2;β)
i (x) =

Γ1/2(β + x)ax
i

Γ1/2(β)Γ1/2(x + 1/2)
=

Γ (2(β + x))ax
i

Γ (2β)Γ (2(x + 1/2))
i = 1, 2, . . . , r.

By using these weight functions in (2), the orthogonality conditions for 1/2-multiple
Meixner polynomials of the first kind can be written as

∞∑

x=0

M(1/2;β ;−→a )
−→n

(
x
2

)
(–x)j

Γ (2β + x)ax/2
i

Γ (2β)Γ (x + 1)
= 0, j = 0, 1, . . . , ni – 1.
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The explicit form for 1/2-multiple Meixner polynomials can easily be obtained from (5)
as follows:

M(1/2;β ;−→a )
−→n (x) =

n1∑

k1=0

· · ·
nr∑

kr=0

(
n1

k1

)
· · ·

(
nr

kr

)

×
r∏

j=1

[ (a1/2
j )nj–kj

(2a1/2
j – 2)nj

(–2x)|−→k |(2β + 2x)|−→n |–|−→k |

]
.

1/2-Multiple Meixner polynomials of the first kind have the following generating func-
tion:

∞∑

n1=0

· · ·
∞∑

nr=0

M(1/2;β ;−→a )
−→n (x)

tn1
1 · · · tnr

r
n1! · · ·nr !

=
(

1 –
t1

2(a1/2
1 – 1)

– · · · –
tr

2(a1/2
r – 1)

)2x

×
(

1 –
t1a1/2

1

2(a1/2
1 – 1)

– · · · –
tra1/2

r
2(a1/2

r – 1)

)–2(β+x)

.

1/2-Multiple Meixner polynomials of the first kind satisfy the following third order dif-
ference equation:

x(x – 1/2)∇2
1/2�1/2y + x

[
β
(
a1/2

1 + a1/2
2

)
+ (x – 1/2)

(
a1/2

1 + a1/2
2 – 2

)]∇1/2�1/2y

+
[
a1/2

1 β – x
(
1 – a1/2

1
)
((a2β)/2 –

[
x
(
1 – a1/2

1
)(

1 – a1/2
2

)]
/2 –

[
a1/2

1 a1/2
1 β

]
/2

]
�1/2y

+
[
n1

(
1 – a1/2

1
)

+ n2
(
1 – a1/2

2
)]

x/2∇1/2y

+ (β – 1/2)/2
[[

n1a1/2
2 + n2a1/2

1 – a1/2
1 a1/2

2 (n1 + n2)
]

–
(
1 – a1/2

1
)(

1 – a1/2
2

)
(n1 + n2)x

]
y = 0,

where �1/2f (x) = f (x + 1/2) – f (x) and ∇1/2f (x) = f (x) – f (x – 1/2).
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