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Abstract
In this paper, we propose some new type of weak cyclic multivalued contraction
mappings by generalizing the cyclic contraction using the δ-distance function.
Several novel fixed point results are deduced for such class of weak cyclic multivalued
mappings in the framework of metric spaces. Also, we construct some examples to
validate the usability of the results. Various existing results of the literature are
generalized.
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1 Introduction
In 2003, Kirk et al. [19] introduced the cyclic contraction and established some interesting
results for such contractions in the setting of metric spaces. Thereafter many researchers
worked in this arena and obtained astounding results, which have a lot of applications
in various fields. Some well-known references consisting of similar type of work may be
noted (see [7, 9–11, 22, 29]). Cyclic contractions are contractions useful to obtain fixed
point and optimality results for non-self-mappings. Some coupling over the study of fixed
points can be obtained through cyclic contractions; for details see [13]. The other utility
of cyclic contractions is related to optimality problems; for details see [14].

Alber et al. [3] proposed weak contractions in Hilbert spaces and subsequently Rhoades
[25] extended it. Several references to the literature are available with generalized weak
contractions in metric and allied spaces with partially ordered metric spaces through [2–
6, 8, 15, 16, 20, 21, 23, 26–28, 30]. An important contribution towards a generalized weak
contraction was established by Choudhury et al. [12].

In this paper, we define multivalued CS-contractions and C�-contractions mappings by
generalizing cyclic contraction using δ-distance functions. Using the concept of Kirk et
al. [19] with a blending of Geraghty contractions, we obtain some new fixed point results
for such a class of weak cyclic mappings in the setting of metric spaces. Also, we provide
some examples to show the usability of the results.
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2 Main results
Throughout the paper, we suppose that (�,℘) is a metric space and CB(�) denotes the
family of nonempty closed and bounded subsets of �. Acar and Altun [1] define D(σ ,A)
and δ(A,B), for A,B ∈ CB(�), and σ ∈ �, by

D(σ ,A) := inf
{
℘(σ , ã)

}
; for all ã ∈A

and

δ(A,B) := sup
{
℘(ã, b̃) : ã ∈A, b̃ ∈B

}
.

Following Rakotch [24], Geraghty [17] introduced the following class of function:
Suppose that S is the class of functions � : R+ → [0, 1) with
(i) R+ = {t ∈ R : t > 0},

(ii) �(tβ ) → 1 implies tβ → 0.

Definition 1 ([18]) An element σ ∈ � is said to be a fixed point of a multi-valued mapping
O : � → CB(�), such that σ ∈O(σ ).

Now, we derive a fixed point theorem by applying Geraghty’s contraction to O to show
that

⋂k
i=1 CB(Ai) is nonempty.

Simply put, if j > k define Aj = Ai where i ≡ j( mod k) and 1 ≤ i ≤ k.

Definition 2 Suppose that {Ai}k
i=1 are nonempty closed subsets of a metric space (�,℘)

and O :
⋃k

i=1 Ai → ⋃k
i=1 CB(Ai) such that O(Ai) ⊆Ai+1 for 1 ≤ i ≤ k (where Ak+1 = A1). A

mapping O is called CS-contraction if for all σ ∈Ai, 	 ∈Ai+1, 1 ≤ i ≤ k, and a � ∈ S , we
have

δ(Oσ ,O	 ) ≤ �
(
℘(σ ,	 )

)
M (σ ,	 ), (2.1)

where

M (σ ,	 ) = max

{
℘(σ ,	 ),

1
2
[
D(σ ,Oσ ) + D(	 ,O	 )

]
,

1
2
[
D(σ ,O	 ) + D(	 ,Oσ )

]}
.

Theorem 1 Every CS-contraction mapping on a complete metric space (�,℘) has at least
a fixed point in

⋂k
i=1 CB(Ai).

Proof We present the proof of this theorem in the following steps.
First Step: Assume σ0 ∈A1 and σβ ∈Oβσ0, β = 1, 2, . . . , such that σ1 ∈Oσ0,σ2 ∈Oσ1, . . . .

If possible, for some β ∈N, let ℘(σβ ,σβ+1) > ℘(σβ–1,σβ ). Consider

℘(σβ ,σβ+1) ≤ δ
(
O

βσ0,Oβ+1σ0
)

= δ(Oσβ–1,Oσβ )

≤ �
(
℘(σβ–1,σβ )

)
M (σβ–1,σβ )

= �
(
℘(σβ–1,σβ )

)
max

{
℘(σβ–1,σβ ),

1
2
[
D(σβ–1,Oσβ–1) + D(σβ ,Oσβ)

]
,
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1
2
[
D(σβ–1,Oσβ) + D(σβ ,Oσβ–1)

]}

≤ �
(
℘(σβ–1,σβ )

)
max

{
℘(σβ–1,σβ ),

1
2
[
℘(σβ–1,σβ ) + ℘(σβ ,σβ+1)

]
,

1
2
[
℘(σβ–1,σβ+1) + ℘(σβ ,σβ )

]}

≤ �
(
℘(σβ–1,σβ )

)
max

{
℘(σβ–1, (σβ ),

1
2
[
℘(σβ–1σβ ) + ℘(σβ ,σβ+1)

]
,

1
2
[
℘((σβ–1,σβ ) + ℘(σβ ,σβ+1)

]}
[using the triangular inequality]

≤ �
(
℘(σβ–1,σβ )

)
max

{
℘(σβ–1,σβ ),

1
2
[
℘(σβ–1,σβ ) + ℘(σβ ,σβ+1)

]}

≤ �
(
℘(σβ–1,σβ )

)
max

{
℘(σβ–1,σβ ),

1
2
[
℘(σβ ,σβ+1) + ℘(σβ ,σβ+1)

]}

≤ �
(
℘(σβ–1,σβ )

)
max

{
℘(σβ–1,σβ ),℘(σβ ,σβ+1)

}

≤ �
(
℘(σβ–1,σβ )

)
℘(σβ ,σβ+1).

It implies that �(℘(σβ–1,σβ )) ≥ 1, which is a contradiction since � ∈ S . Therefore, for all
β ≥ 1, ℘(σβ ,σβ+1) ≤ ℘(σβ–1,σβ ). Hence {(℘(σβ ,σβ+1))} is a decreasing sequence.

Furthermore, using (2.1), we have

℘(σβ+1,σβ+2) ≤ δ(Oσβ ,Oσβ+1)

≤ �
(
℘(σβ ,σβ+1)

)
M (σβ ,σβ+1)

= �
(
℘(σβ ,σβ+1)

)
max

{
℘(σβ ,σβ+1),

1
2
[
D(σβ ,Oσβ) + D(σβ+1,Oσβ+1)

]
,

1
2
[
D(σβ ,Oσβ+1) + D(σβ+1,Oσβ)

]}

≤ �
(
℘(σβ ,σβ+1)

)
max

{
℘(σβ ,σβ+1),

1
2
[
℘(σβ ,σβ+1) + ℘(σβ+1,σβ+2)

]
,

1
2
[
℘(σβ ,σβ+2) + ℘(σβ+1,σβ+1)

]}

≤ �
(
℘(σβ ,σβ+1)

)
max

{
℘(σβ ,σβ+1),

1
2
[
℘(σβ ,σβ+1) + ℘(σβ+1,σβ+2)

]
,

1
2
[
℘(σβ ,σβ+1) + ℘(σβ+1,σβ+2)

]}

≤ �
(
℘(σβ ,σβ+1)

)
max

{
℘(σβ ,σβ+1),

1
2
[
℘(σβ ,σβ+1) + ℘(σβ+1,σβ+2)

]}

≤ �
(
℘(σβ ,σβ+1)

)
max

{
℘(σβ ,σβ+1),

1
2
[
℘(σβ ,σβ+1) + ℘(σβ ,σβ+1)

]}

≤ �
(
℘(σβ ,σβ+1)

)
max

{
℘(σβ ,σβ+1),℘(σβ ,σβ+1)

}

= �
(
℘(σβ–1,σβ )

)
℘(σβ ,σβ+1).
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It implies that ℘(σβ+1,σβ+2)
℘(σβ ,σβ+1) ≤ �(℘(σβ ,σβ+1)) < 1, for β = 1, 2, 3, . . . . Now, take β → +∞, and

we get �(℘(σβ ,σβ+1)) → 1, and since � ∈ S , we have ℘(σβ ,σβ+1) → 0.
Second Step: Suppose that there is ρ > 0 such that, for any β1 ∈N, there exists β > α ≥ β1

with β – α ≡ 1( mod k) such that ℘(σβ ,σα) ≥ ρ > 0. Utilizing the triangle inequality, we
get

℘(σβ ,σα) ≤ ℘(σβ ,σβ+1) + ℘(σβ+1,σα+1) + ℘(σα+1,σα)

and

M (σβ–1,σβ ) = max

{
℘(σβ–1,σβ ),

1
2
[
D(σβ–1,Oσβ–1) + D(σβ ,Oσβ)

]
,

1
2
[
D(σβ–1,Oσβ ) + D(σβ ,Oσβ–1)

]}

= max

{
℘(σβ–1,σβ ),

1
2
[
℘(σβ–1,σβ ) + ℘(σβ ,σβ+1)

]
,

1
2
[
℘(σβ–1,σβ+1) + ℘(σβ ,σβ )

]}

≤ max

{
℘(σβ–1,σβ ),

1
2
[
℘(σβ–1,σβ ) + ℘(σβ ,σβ+1)

]
,

1
2
[
℘(σβ–1,Oσβ ) + ℘(σβ ,σβ+1)

]}

= max

{
℘(σβ–1,σβ ),

1
2
[
℘(σβ–1,σβ ) + ℘(σβ ,σβ+1)

]}

= max
{
℘(σβ–1,σβ ),℘(σβ–1,σβ )

}

= ℘(σβ–1,σβ ),

which implies –℘(σβ–1,σβ ) ≤ –M (σβ–1,σβ ).
Since β – α ≡ 1( mod k), σα and σβ lie in different but consecutive sets Ai and Ai+1 for

some 1 ≤ i ≤ k, by the contractive condition we get

[
1 – �

(
℘(σβ ,σα)

)]
ρ ≤ [

1 – �
(
℘(σβ ,σα)

)]
℘(σβ ,σα)

= ℘(σβ ,σα) – �
(
℘(σβ ,σα)

)
℘(σβ ,σα)

≤ ℘(σβ ,σα) – �
(
℘(σβ ,σα)

)
M (σβ ,σα)

≤ ℘(σβ ,σα) – δ(Oσβ ,Oσα)

≤ ℘(σβ ,σα) – ℘(σβ+1,σα+1)

≤ ℘(σβ ,σβ+1) + ℘(σβ+1,σα+1) + ℘(σα+1,σα) – ℘(σβ+1,σα+1)

= ℘(σβ ,σβ+1) + ℘(σα+1,σα).

Taking β ,α → +∞ with β – α ≡ 1( mod k), we have �(℘(σβ ,σα)) → 1. But, since � ∈ S ,
we have ℘(σβ ,σα) → 0, which leads to a contradiction. Therefore, for given any ε > 0 there
exists β1 ∈ N such that, for β ,α ≥ β1 and β – α ≡ 1( mod k), we have ℘(σβ ,σα) < ε/ρ .
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By the first step, we choose β2 ∈ N so that ℘(σβ ,σα) < ε/ρ if β ≥ β2. Considering β ,α ≥
max{β1,β2} with β > α. Then there exists p ∈ {1, 2, 3, . . . , k} such that β – α ≡ p( mod k).
Thus β – α + j ≡ 1( mod k), where j = k – p + 1 and hence

℘(σβ ,σα) ≤ ℘(σα ,σβ+j) + ℘(σβ+j,σβ+j–1) + · · · + ℘(σβ+1,σβ ) < ρ · ε/ρ = ε,

that is, ℘(σβ ,σα) < ε. This proves that {σβ} is a Cauchy sequence, and consequently that
⋂k

i=1 CB(Ai) 	= ∅.
Third Step: Next we prove that there is a point z ∈Oz which will be the fixed point of O.

On the contrary assume that z /∈ Oz. Then there exist n0 ∈ N and a subsequence {σβd } of
{σβ} such that D(σβd+1,Oz) > 0 for all βd ≥ β0 else, there exists β1 ∈ N such that σβ ∈ Oz
for all β ≥ β1, which implies that z ∈ Oz, a contradiction to our assumption that z /∈ Oz.
Since D(σβd+1,Oz) > 0, for all βd ≥ β0, we have

D(σβd+1,Oz) ≤ δ(Oσβd ,Oz)

≤ �
(
℘(σβd , z)

)
M (σβd , z)

≤ M (σβd , z)

= max

{
℘(σβd , z),

1
2
[
D(σβd ,Oσβd ) + D(z,Oz)

]
,

1
2
[
D(σβd ,Oz) + D(z,Oσβd )

]}

≤ max

{
d(σβd , z),

1
2
[
℘(σβd ,Oσβk+1 ) + D(z,Oz)

]
,

1
2
[
D(σβd ,Oz) + d(z,Oσβk+1 )

]}
.

Taking the limit d → +∞, we get D(z,Oz) ≤ 1
2D(z,Oz), which is a contradiction. Thus,

we get z ∈Oz = Oz. Hence the result. �

By putting M (σ ,	 ) = ℘(σ ,	 ) in Theorem 1, we have the following result.

Corollary 1 Let {Ai}k
i=1 be nonempty closed subsets of a complete metric space (�,℘). Sup-

pose that O :
⋃k

i=1 Ai → ⋃k
i=1 CB(Ai) satisfies the following conditions:

(i) O(Ai) ⊆Ai+1 for 1 ≤ i ≤ k, (where Ak+1 = A1);
(ii) δ(Oσ ,O	 ) ≤ �(℘(σ ,	 ))℘(σ ,	 ) for all σ ∈Ai, 	 ∈Ai+1 for 1 ≤ i ≤ k, � ∈ S .
Then O has at least a fixed point in ∩iCB(Ai).

The next corollary follows by imposing M (σ ,	 ) = ℘(σ ,	 ) and δ(σ ,	 ) = ℘(σ ,	 ) in
Theorem 1.

Corollary 2 Assume that {Ai}k
i=1 is a nonempty closed subsets of a complete metric space

(�,℘). Suppose that O :
⋃k

i=1 Ai → ⋃k
i=1 CB(Ai) satisfies the conditions as follows:

(i) O(Ai) ⊆Ai+1 for 1 ≤ i ≤ k, (where Ak+1 = A1);
(ii) ℘(Oσ ,O	 ) ≤ �(℘(σ ,	 ))℘(σ ,	 ) for all σ ∈Ai, 	 ∈Ai+1 for 1 ≤ i ≤ k, � ∈ S .
Then O has at least a fixed point in ∩iCB(Ai).
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By treating multivalued mapping O as a singleton set, we have the following result.

Corollary 3 Assume that {Ai}k
i=1 is a nonempty closed subset of a complete metric space

(�,℘). Suppose that O :
⋃k

i=1 Ai → ⋃k
i=1 Ai satisfies the conditions as follows:

(i) O(Ai) ⊆Ai+1 for 1 ≤ i ≤ k, (where Ak+1 = A1);
(ii) ℘(Oσ ,O	 ) ≤ �(℘(σ ,	 ))℘(σ ,	 ) for all σ ∈Ai, 	 ∈Ai+1 for 1 ≤ i ≤ k, � ∈ S .
Then O has a fixed point in ∩iAi.

Example 1 Let � = [0, 1] with usual metric, A1 = [0, 1], A2 = [0, 1] such that � = ∪2
i=1Ai.

Assume that Ox = ln(1 + x
6 ). Here OA1 ⊆ A2 and OA2 ⊆ A1. Consider �(t) = 1

1+t , when
t ∈ (0, +∞) and �(t) = 1, when t = 0, so it satisfies the Geraghty condition. Here all the
hypotheses of Corollary 3 are satisfied and 0 is a fixed point.

We denote by � the collection of all functions 
 : R+ → [0, +∞) satisfying the following
conditions:

(a) 
 is upper semi-continuous from the right;
(b) 0 ≤ 
(t) < t for t > 0.

Definition 3 Suppose that {Ai}k
i=1 are nonempty closed subsets of a metric space (�,℘)

and O :
⋃k

i=1 Ai → ⋃k
i=1 CB(Ai) such that O(Ai) ⊆Ai+1 for 1 ≤ i ≤ k (where Ap+1 = A1). A

mapping O is called a C�-contraction if there exists 
 ∈ � and, for all σ ∈ Ai, 	 ∈ Ai+1,
1 ≤ i ≤ k, we have

δ(Oσ ,O	 ) ≤ 

(
M (σ ,	 )

)
, (2.2)

where M(σ ,	 ) = max{℘(σ ,	 ), 1
2 [D(σ ,Oσ ) + D(	 ,O	 )], 1

2 [D(σ ,O	 ) + D(	 ,Ox)]}.

Theorem 2 Every C�-contraction mapping on a complete metric space (�,℘) has at least
a fixed point in

⋂k
i=1 CB(Ai).

Proof Let σ0 ∈ A1 and σβ ∈Oβσ0, β = 1, 2, . . . , such that σ1 ∈Oσ0, . . . .
First Step:
If possible, for some β , let ℘(σβ ,σβ+1) > ℘(σβ–1,σβ ). Now, utilizing the triangular prop-

erty, we have

℘(σβ ,σβ+1) ≤ δ
(
O

βσ0, Tβ+1σ0
)

= δ(Oσβ–1,Oσβ )

≤ 

(
M (σβ–1,σβ )

)

< M (σβ–1,σβ )

= max

{
℘(σβ–1,σβ ),

1
2
[
D(σβ–1,Oσβ–1) + D(σβ ,Oσβ )

]
,

1
2
[
D(σβ–1,Oσβ) + D(σβ ,Oσβ–1)

]}

≤ max

{
℘(σβ–1,σβ ),

1
2
[
℘(σβ–1,σβ ) + ℘(σβ ,σβ+1)

]
,
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1
2
[
℘(σβ–1,σβ+1) + ℘(σβ ,σβ )

]}

≤ max

{
℘(σβ–1,σβ ),

1
2
[
℘(σβ–1,σβ ) + ℘(σβ ,σβ+1)

]
,

1
2
[
℘(σβ–1,σβ ) + ℘(σβ ,σβ+1)

]}

≤ max

{
℘(σβ–1,σβ ),

1
2
[
℘(σβ–1,σβ ) + ℘(σβ ,σβ+1)

]}

≤ max

{
℘(σβ–1,σβ ),

1
2
[
℘(σβ ,σβ+1) + ℘(σβ ,σβ+1)

]}

≤ max
{
℘(σβ–1,σβ ),℘(σβ ,σβ+1)

}

≤ ℘(σβ ,σβ+1),

which implies ℘(σβ ,σβ+1) < ℘(σβ ,σβ+1), which leads to a contradiction. Therefore, for all
β ≥ 1, ℘(σβ ,σβ+1) ≤ ℘(σβ–1,σβ ). Hence {(℘(σβ ,σβ+1))} is a decreasing sequence.

Again assume that limβ→+∞ ℘(σβ ,σβ+1) = γ ≥ 0. Say γ > 0. Using (2.2), we have

℘(σβ+1,σβ+2) ≤ δ(Oσβ ,Oσβ+1)

≤ 

(
M (σβ ,σβ+1)

)

= 


(
max

{
℘(σβ ,σβ+1),

1
2
[
D(σβ ,Oσβ ) + D(σβ+1,Oσβ+1)

]
,

1
2
[
D(σβ ,Oσβ+1) + D(σβ+1,Oσβ)

]})

≤ 


(
max

{
℘(σβ ,σβ+1),

1
2
[
℘(σβ ,σβ+1) + ℘(σβ+1,σβ+2)

]
,

1
2
[
℘(σβ ,σβ+2) + ℘(σβ+1,σβ+1)

]})

≤ 


(
max

{
℘(σβ ,σβ+1),

1
2
[
℘(σβ ,σβ+1) + ℘(σβ+1,σβ+2)

]})
.

Taking β → +∞, we see that γ ≤ 
(γ ) which is possible only when γ = 0.
Therefore, limβ→+∞ ℘(σβ ,σβ+1) = 0.
Second Step: In this step we prove that the sequence {σβ} is a Cauchy sequence. If pos-

sible let there exists ε > 0 such that, for any d ∈ N, there exist αd > βd ≥ d such that
℘(σαd ,σβd ) ≥ ε. Again, we say that, for each d, αd is chosen to be the smallest number
greater that βd then the above is true. So,

lim
d→+∞

℘(σαd ,σαd–1) = 0.

Furthermore, we have

ε ≤ ℘(σαd ,σβd ) ≤ ℘(σαd ,σαd–1 ) + ℘(σαd–1 ,σβd ) ≤ ℘(σαd ,σαd–1 ) + ε.
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Therefore,

lim
d→+∞

℘(σαd ,σβd ) = ε.

Also

℘(σαd ,σβd ) – ℘(σαd+1,σαd ) ≤ ℘(σαd+1,σβd ) ≤ ℘(σαd+1,σαd ) + ℘(σαd ,σβd ).

Therefore, we get

lim
d→+∞

℘(σαd+1 ,σβd ) = ε.

So, there is j, with 0 ≤ j ≤ k – 1, such that αd – βd + j ≡ 1( mod k) for infinitely many d.
If j = 0, then, for some d, we have

℘(σαd ,σβd ) ≤ ℘(σαd ,σαd+1 ) + ℘(σαd+1 ,σβd+1 ) + ℘(σβd+1 ,σβd )

≤ ℘(σαd ,σαd+1 ) + 

(
M (σαd ,σβd )

)
+ ℘(σβd+1 ,σβd )

< ℘(σαd ,σαd+1 ) + M (σαd ,σβd ) + ℘(σβd+1 ,σβd )

= ℘(σαd ,σαd+1 ) + max

{
℘(σαd ,σβd ),

1
2
[
D(σαd ,Oσαd ) + D(σβd ,Oσβd )

]
,

1
2
[
D(σαd ,Oσβd ) + D(σβd ,Oσαd )

]}
+ ℘(σβd+1 ,σβd )

≤ ℘(σαd ,σαd+1 ) + max

{
℘(σαd ,σβd ),

1
2
[
℘(σαd ,σαd+1 ) + ℘(σβd ,σβd+1 )

]
,

1
2
[
℘(σαd ,σβd+1 ) + ℘(σβd ,σαd+1 )

]}
+ ℘(σβd+1 ,σβd )

≤ ℘(σαd ,σαd+1 ) + max

{
℘(σαd ,σβd ),

1
2
[
℘(σαd ,σαd+1 ) + ℘(σβd ,σβd+1 )

]
,

1
2
[
℘(σαd ,σβd ) + ℘(σβd ,σβd+1 ) + ℘(σβd ,σαd ) + ℘(σαd ,σαd+1 )

]}

+ ℘(σβd+1 ,σβd ).

Taking d → +∞, we have ε ≤ 
(ε), which is again a contradiction to our assumption

(t) < t for t > 0. Hence,

℘(σα ,σβ ) < ε.

Similarly, we can prove for j 	= 0. This proves that {σβ} is a Cauchy sequence, and conse-
quently

⋂k
i=1 CB(Ai) 	= ∅.

Now, it is easy to prove the existence of fixed points along similar lines to Theo-
rem 1. �

Assuming M (σ ,	 ) = ℘(σ ,	 ) and δ(σ ,	 ) = ℘(σ ,	 ) in Theorem 2, we have the fol-
lowing result.
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Corollary 4 Let {Ai}k
i=1 be nonempty closed subsets of a complete metric space (�,℘). Sup-

pose that O :
⋃k

i=1 Ai → ⋃k
i=1 CB(Ai) satisfies the conditions as follows:

(i) O(Ai) ⊆Ai+1 for 1 ≤ i ≤ k; (where Ak+1 = A1);
(ii) ℘(Oσ ,O	 ) ≤ 
(℘(σ ,	 )) for all σ ∈Ai, 	 ∈Ai+1 for 1 ≤ i ≤ k, where


 : R+ → [0, +∞) is upper semi-continuous from the right and satisfies 0 ≤ 
(t) < t
for t > 0.

Then O has at least a fixed point in ∩iCB(Ai).

Example 2 Let � = {–1, 0, 1}, A1 = {–1, 0}, A2 = {0, 1} such that � = ∪2
i=1Ai with usual

metric ℘ . Assume that

O(x) =

⎧
⎨

⎩
{0}, x = 0,

{–x}, x ∈ �\{0}.

Here OA1 ⊆A2 and OA2 ⊆A1. Consider ψ(t) =
{ 0, t = 0,

t, t > 0.

Here all the hypotheses of Theorem 2 are satisfied and 0 is a fixed point.

Example 3 Let � = {– 1
2 , – 1

22 , . . . , – 1
2n , . . .} ∪ {0} ∪ { 1

2 , 1
22 , . . . , 1

2n , . . .}, A1 = {–1
2 , –1

22 , . . .} ∪ {0},
A2 = { 1

2 , 1
22 , . . .} ∪ {0} such that � = ∪2

i=1Ai with usual metric ℘ . Assume that

O(x) =

⎧
⎪⎪⎨

⎪⎪⎩

{0}, x = 0,

{ 1
22n+1 }, x = – 1

2n , n ≥ 1,

{– 1
22n+1 }, x = 1

2n , n ≥ 1.

Here OA1 ⊆A2 and OA2 ⊆A1. Consider ψ(t) =
{ t

2 , t > 0,
0, t = 0.

Here all the hypotheses of Theorem 2 are satisfied and O has a fixed point.

Theorem 3 Let {Ai}k
i=1 be nonempty closed subsets of a complete metric space (�,℘). Sup-

pose that 
i : Ai → R is lower semi-continuous and bounded below for i = 1, 2, . . . , k and
O :

⋃k
i=1 Ai → ⋃k

i=1 CB(Ai) satisfies the following conditions:
(i) O(Ai) ⊆Ai+1 for 1 ≤ i ≤ k, (where Ak+1 = A1);

(ii) δ(σ ,Oσ ) ≤ 
i(σ ) – 
i+1(O(σ )) for all σ ∈Ai, 1 ≤ i ≤ k.
Then O has at least a fixed point in

⋂k
i=1 CB(Ai).

Proof Let σ1 ∈A1 and σβ ∈Oβ–1(σ1). From condition (ii), we get


1(σ1) ≥ δ(σ1,Oσ1) + 
2(Oσ1) ≥ ℘(σ1,σ2) + 
2(σ2) ≥ 
2(σ2),

that is, 
1(σ1) ≥ 
2(σ2). Iterating in the same way, we get


1(σ1) ≥ 
2(σ2) ≥ · · · ≥ 
β (σβ ) ≥ · · · , β = 1, 2, . . . ,

where 
i = 
j if i ≡ j( mod k).
Therefore limi→+∞ 
i(σi) = γ .
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Now we fix σβ ∈Aβ , and α > β . Consider

℘(σβ ,σα) ≤ ℘(σβ ,σβ+1) + ℘(σβ+1,σβ+2) + · · · + ℘(σα–1,σα)

≤ δ(σβ ,Oσβ) + δ(Oσβ ,Oσβ+1) + · · · + δ(Oσα–2,Oσα–1)

= δ(σβ ,Oσβ) + δ(Oσβ ,OOσβ ) + · · · + δ(Oσα–2,OOσα–2)

≤ [

β (σβ ) – 
β+1(Oσβ)

]
+

[

β+1(Oσβ) – 
β+2(Oσβ+1)

]

+ · · · +
[

α–1(Oσα–2) – 
α(Oσα–1)

]

= 
β (σβ ) – 
α(Oσα–1)

= 
β (σβ ) – 
α(σα).

Therefore, {σβ} is a Cauchy sequence, and in turn
⋂k

i=1 CB(Ai) 	= ∅.
Now, we have a particular situation when O : Ai →Ai and

δ(σ ,Oσ ) ≤ min
1≤i≤k

[

i(σ ) – 
i+1(Oσ )

]
,

for all σ ∈Ai. Thus,

kδ(σ ,Oσ ) ≤ 
1(σ ) – 
2(Oσ ) + 
2(σ ) – 
3(Oσ ) + · · · + 
k(σ ) – 
1(Oσ )

=
k∑

i=1

[

i(σ ) – 
i(Oσ )

]
.

Now define � : A → R by �(σ ) = k–1 ∑k
i=1 
i(σ ), σ ∈ A, where � is lower semi-

continuous and bounded below and, moreover,

δ(σ ,Oσ ) ≤ �(σ ) – �(Oσ ),

for each σ ∈ Ai.
Following the similar methodology as in the Caristi type result [9], the proof of the re-

maining part of the theorem is obvious. �

Remark 1 (i) In this paper, we have not assumed the continuity of � in any sense.
(ii) The concept of δ-distance is different from other distances in metric spaces. Many

generalized contractions and cyclic contractions are used to obtain fixed point results with
the help of multivalued mappings.

(iii) Existence and uniqueness of fixed point with this kind of multivalued cyclic δ-Meir–
Keeler type contractions may be one of the challenging issues.
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