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Abstract 

Brain damage due to stroke often leaves survivors with lateral functional motor deficits. Bimanual rehabilitation of the 
paretic arm is an active field of research aimed at restoring normal functionality by making use of the complex neural 
bindings that exist between the arms. In search of an effective rehabilitation method, we introduced a group of post-
stroke rehabilitation patients to a set of bimanual motion tasks with inter-manual coupling and phasing. The surface 
EMG profiles of the patients were compared in order to understand the effect of the motion conditions. The paretic 
arms of the patients were more strongly affected by the task conditions compared with the non-paretic arms. These 
results suggest that in-phase motion may activate neural circuits that trigger recovery. Coupling also had an effect on 
behavior, but the response of patients was divided between those whom coupling helped or hindered.
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Introduction
Stroke survivors are often left with functional impair-
ment of the arm contralateral to the brain lesion. Accord-
ingly, in daily tasks that they previously performed using 
both hands, they tend to use only the arm that is less 
affected by stroke  [1]. Bimanual training has been pro-
posed as a therapy for rehabilitating the motor function 
of the paretic arm [2–4] with the aim of restoring normal 
quality of life. Constraint-induced motion therapy  [5], 
where the use of less-affected arm is restrained, has been 
clinically tested [6] and the effect has also been identified 
with brain imaging  [7, 8], but, nevertheless, the method 
suffers from the need to deploy a therapist, just like con-
ventional therapy. Also, isometric tasks with bimanual 
force-control models, sometimes combined with with 
brain stimulation, have been proposed  [9–11], how-
ever, the actual rehabilitation applications are yet to be 
introduced.

Recovery after stroke is connected to the reorganiza-
tion of surviving neural structures  [12, 13]. Bimanual 

training seeks to employ many forms of bilateral neural 
coupling mechanisms to enhance and harness the plas-
ticity of the central nervous system  [14, 15]. However, 
to date, few detailed analyses of bimanual motion train-
ing have been reported, even though the effectiveness of 
bimanual training for recovery from motor paralysis is 
widely recognized  [16, 17]. In order to develop therapy 
methods, the underlying mechanisms of bimanual mech-
anisms need to be investigated further [18, 19].

Current bimanual therapy relies heavily on specific 
training devices [20, 21]. These devices are based on pas-
sive mechanics, in which the system is driven by forces 
generated by the patient   [22–24] or by active robot-
ics  [25, 26] to provide symmetric repetitive motion pat-
terns for arm movement. These devices are, however, 
unsuitable for investigating the biological mechanisms 
underlying bimanual motion training because they can 
only provide simple bimanual motions [27].

Both computation and theoretical approaches are 
applied to deeper understanding on the mechanism of 
recovery and the role of bimanual motions. Cheung 
et. al. discussed the changes of muscle synergy after 
stroke comparing the muscle synergies on paretic and 
non-paretic arms [28, 29]. They showed that merging 
and fractionation of the spatial factors of the muscle 
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synergy occurred depending on the recovery stage after 
stroke. Kantak et. al., proposed a theory-guided tax-
onomy of bimanual actions for quantifying the coor-
dination of bimanual motion depending on the task in 
the real-world  [30]. Instead of these discussions, the 
changes of muscle activities during different types of 
bimanual motions are still unclear.

This study examines the dependence of patients’ 
muscle activities on the type of bimanual motion using 
a system that allows for several types of bimanual 
motion for hemiplegia patients. It is known that the 
motion phase between paretic and non-paretic arms 
and paretic motion support by the non-paretic arm are 
critical factors in bimanual training [31–35]. We used 
the dual-steering rehabilitation system (DsRS) to create 
several types of bimanual motions. The DsRS consists 
of two wheels and a mechanical linkage that can change 
the connection between the two wheels among three 
training states: in-phase coupling, anti-phase cou-
pling, and independent motion. When the wheels are 
mechanically coupled, the non-paretic arm motion can 
assist the motion of the paretic arm. The mechanism is 
described in detail below.

We can quantify differences between the influences 
of the bimanual motion types based on their associated 
muscle activities as measured by electromyography 
(EMG) signals. EMG signals are now frequently used as 
a key physiological marker for observing the features of 
motion paralysis in post-stroke patients [29, 36–38].

In this study, we will quantify the immediate 
changes of EMG signals depending on the difference 
of bimanual motion type. Post-stroke patients were 
asked to perform four types of bimanual motions 
across two phase and two coupling states using DsRS. 
Phase, which refers to the movement of the arms with 
respect to each other, is physiologically important. In-
phase movement occurs when homologous muscles 
work simultaneously in both limbs  [39]. Additionally, 
humans have a natural preference for in-phase move-
ments over anti-phase movements [31, 32]; as the fre-
quency of motion increases, humans tend to switch 
from anti-phase to in-phase motion. However, this 
preference is not exclusive because anti-phased motion 
patterns are a natural part of locomotion [33]. Mechan-
ical coupling of the arms is another common feature 
in many bimanual training devices  [34]. Mechanical 
coupling distributes the load between the arms, while 
loads would otherwise be divided between each arm 
independently. Furthermore, proprioceptive limita-
tions associated with the stroke-affected arm suppress 
its motor function [35]. Mechanical coupling [23] may 
increase the sensory information required to control 
the paretic arm [14].

The remainder of this paper is organized as follows. In 
“Experimental setup” section, we describe the details of 
the DsRS mechanism and the types of bimanual motion 
that the DsRS can provide. We then describe the state of 
the subjects who participated in the study. In “Experi-
mental protocol” section  , we introduce two indices 
to quantify differences in EMG data dependent on the 
bimanual motion type. In “Experimental results” section , 
we go on to discuss the experimental results, showing 
that EMG patterns of paretic arms depend on the type of 
the bimanual motion patterns, though the EMG patterns 
of non-paretic arms remain relatively uniform across 
those same tasks. Lastly, in “Discussion” section  we dis-
cuss the bimanual training model.

Experimental setup
In this section, we introduce the device used to create 
the aforementioned types of bimanual motions. We also 
characterize the state of the post-stroke patients who 
participated in the study.

Dual‑steering rehabilitation system designed to create 
various types of bimanual motions
Patients with hemiplegia were asked to perform vari-
ous types of bimanual motions using the dual-steering 
rehabilitation system (DsRS) shown in Fig.  1a. This 
device consists of two steering wheels and a mechanical 
clutch that can change the state of the mechanical con-
nection between the two wheels to one of three modes, 
in-phase, anti-phase, and independent modes, as shown 
in Fig.  1b. While in the in-phase mode, the two wheels 
are mechanically connected, and when one is rotated by 
hand, the other rotates in the same direction. In contrast, 
while in the anti-phase mode, the second wheel rotates in 
the opposite direction when the first wheel is rotated by 
hand. While in the independent mode, the two wheels are 
free to rotate independently. This mechanism is useful for 
creating different phases of bimanual motions that enable 
paretic motions to be supported by the non-paretic arm. 
The rotation of the wheels is measured by encoders.

Subjects
Eleven post-stroke rehabilitation inpatients (age, 
M  =  74.7, SD  =  9.3 years; sex, M  =  7, F  =  4) were 
recruited to volunteer for this study. All of the patients 
had been diagnosed with stroke (see details in Table 1). 
EMG recordings were made as the patients used the 
device over a mean of 76 days (SD  =  41) post-stroke. 
The inclusion criteria were the ability to grip and rotate 
a steering wheel 180◦ independently with each of their 
arms. The patients were assessed using the Stroke Impair-
ment Assessment Set (SIAS) [40] two times in total, once 
before and once after the experimental sessions. The 
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SIAS scores of patient motor function performance on 
a scale from 0 to 5 were scored separately for proximal 
and distal function, which are measured by their reaching 
ability and voluntary finger motion, respectively.

All experimental sessions were conducted at the 
National Center for Geriatrics and Gerontology (NCGG) 
in Aichi Prefecture, Japan. All experimental protocols 
were approved by the ethics committee of NCGG.

Experimental protocol
In this section, we introduce the experimental pro-
tocol for recording EMG data during DsRS training 
and introduce two indices to analyze the immediate 
changes in EMG among types of bimanual motion. 
One of the indices is used to compute the variance of 

EMG recordings among the different types of bimanual 
motions. The other is an index for computing similari-
ties between the different EMG sets.

Experimental protocol
Patients were asked to perform the four types of biman-
ual motions listed in Fig. 2a combining phase and cou-
pling states. The experimental sessions followed a block 
design. As described in Fig. 2b, each task block of 20 s 
was separated by 40 s of rest to avoid physical fatigue. 
Each session consisted of four tasks, which were 
repeated three times in a pseudo-randomized order. 
Prior to the experiments, subjects did light elbow flex-
ing exercises as a warm-up and some rotations on the 
wheels to familiarize themselves with the device.

In-phase

Anti-phase

Independent

ba

Fig. 1  a Dual-steering rehabilitation system, the wheels of which can be mechanically uncoupled or coupled. b The movement patterns performed 
in the experiments: in-phase, where hands move in opposite directions; and anti-phase, where hands move in the same direction

Table 1  All of the patients had paralysis contralateral to the side of the infarction-affected cerebral hemisphere

Side, affected hemisphere (left or right); SIAS Proximal and SIAS Distal, clinical assessments before and after all experiments, respectively

ID Sex Age (years) Side Lesion size (mm) SIAS proximal SIAS distal

P1 M 76 R n/a 4 → 5 3 → 5

P2 F 81 R 25.4× 7.0× 1.6 4 → 5 3 → 5

P3 M 90 R 8.7× 7.3× 1.6 4 → 4 4 → 4

P4 F 79 L 4.3× 5.7× 8.3 5 → 5 5 → 5

P5 M 78 R 7.4× 7.9× 1.6 5 → 4 4 → 4

P6 M 68 L n/a 5 → 4 4 → 4

P7 M 71 R n/a 5 → 4 4 → 5

P8 F 72 L 6.0× 2.9× 4.9 4 → 5 5 → 4

P9 M 52 R 7.0× 8.7× 3.2 3 → 4 1 → 4

P10 M 73 L n/a 4 → 4 4 → 5

P11 F 82 L 8.5× 6× 6.6 4 → 5 4 → 5
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Method for quantifying EMG differences among bimanual 
motions
EMG data recorded during the experiments were ana-
lyzed according to the following protocol:

1.	 Activities of the nine muscles in each side described 
in Fig.  3a were monitored in accordance with the 
guidelines of the Surface Electromyography for the 
Non-Invasive Assessment of Muscles Project [41].

2.	 The data that contributed less to creating the motions 
were removed [42].

3.	 The profiles were extracted for the selected muscles 
to represent the muscle activation in motion pat-
terns.

4.	 The variance of the EMG profiles among the different 
types of bimanual motion were computed from the 
data.

5.	 The similarity between paretic and non-paretic arm 
EMG data for lateral activation similarity (LAS) 
was computed, and muscle activation similari-
ties between different coupling states ( MASC ) and 
between the different phases ( MASP ) were also com-
puted.

In the experiments, we monitored the activity of 
nine muscles, as described in Fig.  3. Figure  3 shows 

an example of control muscle activities during DsRS 
use. In the case of this particular subject and task, the 
anterior deltoid was activated in response to DsRS 
control motion while the triceps was poorly activated. 
This result implies that the nine measured muscles are 
not always activated during DsRS use. In trials such as 
these, incorrect results can be derived from similar-
ity and variance calculations if we use the EMG data 
based on muscles that did not contribute to the assayed 
motions [42]. The muscles activated by this motion 
depend mainly on the individuals assessed in our 
experiments. Therefore, we removed data on muscle 
activation for individuals in the first process of analysis 
using the method proposed by Costa et al. [42]. A flow-
chart describing this method is provided in Fig. 4b. In 
this method, the contribution of each muscle is quanti-
fied using the EMG amplitude and frequency.

The extraction of the surface EMG profiles started 
with preprocessing using a high-pass filter (4th-order 
Butterworth at 20 Hz) to remove motion artifacts. The 
filtered signals were rectified by taking absolute val-
ues of each datapoint and smoothing the input with 
a low-pass filter (4th-order Butterworth at 5  Hz). We 
shifted the half phase of motion in anti-phase motions 
to align the data according to the same motions. The 
profiles were obtained by slicing the signals according 

IC AC IU AU

IU IC AU AC

Task Description

IC In-phase coupled

IU In-phase uncoupled

AC Anti-phase coupled

AU Anti-phase 

a b IU IU AC ACIC

Fig. 2  a The four task conditions defined as combinations of the phase and coupling conditions. For a given task, the same movement is repeated 
five times. b In the block design of the experiment, each of the four tasks was repeated five times in a pseudo-random order

biceps branchii (BC)

triceps branchii (TC)

pronator teres (PT)

anterior deltoid (AD)

brachioradialis (BR)

posterior deltoid (PD)

pectoralis major (PM)

infraspinatus (IS)

erector spinae (ES)

paretic non-paretic paretic non-paretic

Fig. 3  Placement of the EMG sensors and corresponding EMG signals during four cycles of in-phase motion. The EMG signal duration is 20 s and 
one tick in amplitude is 20 mV
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to changes in the direction of rotation. Slices belong-
ing to the same task within a session were averaged for 
each muscle.

Description of EMG data
After obtaining EMG profiles, we computed the vari-
ances and similarities among the four different types of 
bimanual motion patterns described in Fig. 2a. To com-
pute these values, we describe the EMG data in the fol-
lowing way:

Here, ∗M+ is the matrix of the data for the selected EMG 
signal. ∗ can be P or N, which indicate the paretic or non-
paretic arm data, respectively. + can be IC, IU, AC, or AU, 
which indcate the type of bimanual motions (See Fig. 2a). 
For example, PMIC represents the EMG data set for the 
paretic arm during in-phase coupled motion, and NMAU 
represents the EMG data set for the non-paretic arm 
during anti-phase uncoupled motion. ∗mi+ represents the 
vector of a selected EMG dataset (i.e., one of the meas-
ured nine muscle EMG signals). l represents the number 
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of selected muscles. ∗smij+ represents the elements of the 
vector. k represents the number of data points in the sam-
pling data. We use the same muscles on both arms that 
contribute to both paretic and non-paretic arm motions.

Quantification of muscle activity variability 
between the different types of motions
First, we analyzed the EMG data to assess the variability 
in muscle activation between the paretic and non-paretic 
arms during the four modes of bimanual motion tasks. 
Figure 5a describes a prominent example of the difference 
in muscle activation between the paretic and non-paretic 
arms. The anterior deltoid muscle of the non-paretic arm 
can be seen to be activated in almost the same way across 
the four different modes of bimanual tasks, while the 
muscle activation of the paretic arm differed among the 
four modes, especially between the in-phase and anti-
phase motions. This result suggests that the muscle activ-
ity pattern changes across different motions.

To quantify the variability of the muscle activities 
among the different types of bimanual motion, we used 
the following equations:

(2)

∗
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1
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k
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∗mijIU ,
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Dispersion

MASP

MASC 

LASSubject

EMG

Wheel 
Angle

Selection of 
Muscles

Extraction of 
Profiles

Active 
EMG

Active EMG 
Profiles

Analysis of 
Dispersion

Comparisons 
of Profiles

Dispersion

LASLAS

MASC MASC 

MASPMASP

a

b

Fig. 4  a Dataflow explaining how the measurements from subjects are characterized as analysis parameters. b Detailed explanation of muscle 
selection process
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where ∗ can be P or N, as described for the data matrix 
above.

Muscle activation similarity
Another index we use in this paper is activation similarity 
(AS). AS is used to compare the similarities between the 
two data matrixes represented by ∗M+ in (1). For exam-
ple, the similarity between the paretic and non-paretic 
arms for in-phase coupled motion can be quantified as 
follows:

where r(∗1, ∗2) is the Pearson’s coefficient of correla-
tion between the vectors ∗1 and ∗2 and PmIC  and NmIC  

(3)
σ 2

=
1

4

(
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+(∗mijAC − µ)2 + (∗mijAU − µ)2
)

(4)µ =
1

4

(

∗mijIC +
∗ mijIU +

∗ mijAC +
∗ mijAU

)

,

(5)AS(PMIC ,
N MIC) =

1

l

l
∑

j=1

(

r(PmjIC ,
N mjIC )

)

(6)r
(

PmjIC ,
N mjIC

)

=

∑k
i=1

(

PmijIC − PmIC

)(

NmijIC − NmIC

)

((

∑k
i=1

(

PmijIC − PmIC

)2
)(

∑k
i=1

(

NmijIC − NmIC

)2
))1/2

,

describe the averages of the elements of the vectors 
PmjIC and NmjIC , respectively.

The muscle activation similarity AS between the 
paretic and non-paretic arms under the same condi-
tion can be used to assess how much the motion of the 
non-paretic arm is controlled in a healthy way through-
out that motion. In contrast, AS for the paretic arm 
between the different conditions can quantify muscle 
activation differences among different conditions. In 
this research, we define AS between the paretic and 
non-paretic arms in the coupled condition as lateral 
activation similarity (LAS), while that between the dif-
ferent conditions is defined as muscle activation simi-
larity (MAS).

Experimental results
In this section, we analyze the experimental results with 
seven patients using the indices introduced in the pre-
vious section. We show that the variance of the EMG 
patterns for the paretic arm among the different types 
of bimanual motions are larger than those for the non-
paretic arm. Furthermore, EMG patterns during coupled 

in-phase bimanual motion exhibit higher similarity with 
the EMG pattern of the non-paretic arm.
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Fig. 5  a Example EMG profiles of the anterior deltoid muscles in different tasks during upwards motion. These profiles show that the anterior 
deltoid muscle of the non-paretic arm was activated in almost the same way across the four different types of bimanual motion, while the 
corresponding muscle of the paretic arm was activated in different ways depending on the type of bimanual motion. b Statistical analysis of the 
variability of muscle activities on the non-paretic and paretic arms across all patients’ trials. There was significantly higher dispersion for muscle 
activation of the paretic arms. The bars represent means, with whiskers representing ±SD
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EMG pattern variance
As described in Fig. 5a in the previous section, the mus-
cle activation patterns differed among the bimanual 
motion conditions. We quantify the variability in mus-
cle activation pattern using the index ∗D introduced in 
"Experimental protocol" section. Figure  5b summarizes 
the statistical analysis for variability of muscle activation. 
To compute the variability, we applied the mean of Eq. 2 
on the selected muscles that contributed to generating 
the motions, as discussed in the Experimental protocol 
section; the selected muscles for each patient are sum-
marized in Fig. 6. The variability in muscle activities for 
the paretic arm was significantly higher than that for the 
non-paretic arm, suggesting that muscle activation of 
the paretic arm differs considerably across the bimanual 
motion types.

Muscle activities of the paretic arm depend on the type 
of bimanual motion
Another research objective is to determine which biman-
ual motions create the most appropriate EMG patterns 
with respect to patterns distributed among the different 
types of bimanual motions. We assessed this objective 
using the index described by Eq. (5) to determine which 
bimanual motion type among the four is most suitable 
for bimanual training.

LAS can quantify the degree of similarity in muscle 
activations between the paretic and non-paretic arms 
during the tasks. Figure 7 shows LAS according to phase 
condition in the experiments. LAS takes significantly 
lower values when measured in anti-phase compared 
with those measured during in-phase motion. LAS, how-
ever, fails to characterize higher similarity in either cou-
pling condition, as illustrated in Fig. 8.

MAS is a unilateral comparison of muscle activations 
according to coupling condition. Figure 9 illustrates that 
the similarity of activations in the paretic arm is reduced 
under coupling. This result, together with the previous 
result Fig.  8, indicates that coupling affects the paretic 
side, but neither the coupled nor uncoupled condition 
does not systematically increase the similarity. Instead, 
there is variation between trials; for some trials, coupling 
hinders similarity, while for others it enhances the simi-
larity in the activation patterns.

Discussion
Bimanual training is a widely practiced method to pro-
mote recovery from post-stroke motion paralysis, but the 
mechanism of recovery remain poorly understood. To 
identify the mechanism behind motion recovery through 
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bimanual training, we introduced two indices to ana-
lyze EMG signals associated with four types of bimanual 
motion.

∗D in Eq.  (2) represents the dispersion of the EMG 
pattern among different types of bimanual motions. 
The experimental results described in Fig. 5 show that 
muscle activation patterns differed among the types of 
bimanual motion. This result implies that the muscle 
activation control is tuned automatically, even though 
the same motions were performed. This muscle activa-
tion tuning may be responsible for triggering recovery 
from motion paralysis.

The analysis using index AS in Eq. (5) suggests the 
preferential bimanual motion creates similar EMG pat-
terns between paretic and non-paretic arms. Figures 5 

and 7 suggest that for in-phase motions, muscle acti-
vations are closer between the paretic and non-paretic 
arms.

One of the important reasons why muscle activi-
ties of the paretic arm differ according to bimanual 
motion type could be the signal processing that occurs 
in biological control systems. This type of signal pro-
cessing can be modeled like the neuro-synergy sys-
tem described in Fig.  10 [43, 44], where information 
acquired from the environment is gradually symbolized 
to reduce its dimensions, while control signals are cre-
ated from this symbolized information to create behav-
iors. The notions of sensor synergy [45–47] and muscle 
synergy [48–52] represent the input and output pro-
cesses of the neuro-synergy system, respectively.
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We can consider that a stroke damages the middle of 
this signal processing flow, and the signal accordingly 
becomes stuck at some intermediate point, thereby 
causing motion paralysis. The results of this study sug-
gest that appropriate bimanual motion can stimulate 
improved muscle synergy by circumventing the dam-
aged or damage-affected circuitry.

These results also suggest the importance of care-
ful observation in creating a bimanual rehabilitation 
exercise menu best suited to each patient’s condition. 
Statistical analysis suggests that in-phase motion can 
enhance the appropriate muscle activity changes for the 
majority of patients. However, there were patients for 
which anti-phase motions better elicited the appropri-
ate muscle activities. Rehabilitation must be designed 
to meet each patient individually.

Conclusion
In this study, we developed a system that encourages four 
types of bimanual motions for post-stroke hemiplegia 
patients in order to clarify the mechanism behind effec-
tive recovery through bimanual motion training. We 
measured EMG signals and quantified the dispersion of 
EMG patterns among different bimanual motion patterns 
and similarities in EMG patterns between the paretic and 
non-paretic arms for the same motions.

The results described in Fig. 5 show that the different 
types of bimanual motions create different EMG patterns 
for the paretic arm, while almost the same EMG pat-
terns appear for the non-paretic arm. Furthermore, Fig. 7 
shows that in-phase coupled motion promotes the most 

appropriate EMG pattern for the majority of patients. 
However, the results also suggest that the bimanual 
motion pattern that promotes the most appropriate 
EMG pattern is patient-dependent, implying that the 
best training motion for each patient should be carefully 
determined.

These results stimulate our interests on the difference 
of muscle activities between bimanual and unilateral 
motions, although we focused on the muscle activities of 
bimanual motions during early rehabilitation stage. The 
role of unilateral motion may grow during later stages of 
rehabilitation when aiming for “motion separation”, inde-
pendence of motions between each arms.

For expanding the scope of rehabilitation, inclusion of 
patients with more sever hemiparesis is also important, 
e.g. by means of helping the paretic hand to grasp the 
device  [53]. The experimental results also encourage for 
further investigation on how bimanual motion could be 
applied to invigorate the creation of the muscle activities 
on a completely paralyzed arm.

The biological control model described in Fig.  10 is 
useful for understanding the state of post-stroke neural 
systems. We are now in discussions to create a rehabili-
tation system that uses this model to identify the most 
appropriate patient-specific bimanual training motions 
thereby encouraging recovery by properly monitoring 
EMG changes throughout bimanual motion training.
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