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Abstract
The limitations of capabilities of the existing mathematical weather prediction (in­
cluding forecasting for weather-sensitive individuals) cannot be duly realized now­
adays due to the fact that till now there is no proof of the existence and uniqueness 
of smooth solutions of the three-dimensional (3D) Navier-Stokes equation (in any 
finite period of time). 
We have obtained a new analytical solution of the Cauchy problem of this equation 
in an unbounded space, which has finite energy for any values of time. 
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due to instability of a deterministic 
continual dynamic system described 
by the NS equation. In this case, the 
problem of the appearance and de-
velopment of turbulence is linked to 
the problem of self-organization of 
coherent structures emerging from 
chaos and to the associated issues of 
nonrandom randomness in an in-
dividual life of a human and in life 
spans of living species treated in the 
context of the Sinai billiards [2].

However, till the present, an analyt-
ically smooth on the whole time axis 
nonstationary solution of the three-di-
mensional (3D) NS equation has not 
been found and even the corresponding 
theorem of the existence and unique-
ness of such solution has not yet been 
proven [1].

Actually, up to date in hydrodyna
mics only a few exact solutions are 
well known, but, however, none of 
them is nonstationary and at the same 
time is defined in an unbounded (or 
with periodic boundary conditions) 
space [1–4]. Only weak nonstation-
ary solutions describing, for exam-
ple, dynamics and interactions be-
tween singular vortex objects in the 
two-dimensional (2D) and three-di-
mensional (3D) ideal incompressible 
medium are known [3, 5, 6]. At the 
same time, for the 3D ideal medium 
flows there are some conceptual ideas 
on a possibility of the existence of 
nonstationary solutions of the Euler – 
Helmholtz (EH) equation only on an 
unbounded interval of time 0 ≤ t < t0 
(see [1, 3, 6, 7] and the references giv-
en therein). This time value for in-
compressible medium is determined 
exclusively by the 3D effect of vortex 
filament stretching, which may lead to 
an explosive unbounded growth of the 
enstrophy (the integral of the squared 

a lot of interesting results, but at the 
same time led to a new, still unsolved, 
problem of the closure in the descrip-
tion of different moments of the vor-
tex field, an approximated solution of 
which was proposed by Kolmogorov 
A.N., Geizenberg V. et al. [1].

In order to solve the problem of tur-
bulency, in its turn, it is required to 
properly understand the mechanism 
of the appearance of randomness 

Introduction
1. The proper understanding of many 

processes in nature and engineering 
systems is closely connected with the 
existence of the fundamental and ap-
plied problem of turbulence, which 
remains unsolved for more than a cen-
tury due to the absence of exact ana-
lytical nonstationary smooth vortex 
solutions of the Navier – Stokes (NS) 
equation. The development of the sta-
tistical approach to its solution gave 
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vorticity over space) in finite time t0 [1, 
3, 6, 7]. On the other hand, known are 
the exact stationary modes of flows 
of the viscous incompressible medi-
um in the form of the Burgers and 
Sullivan [3] vortices for which this, 
potentially dangerous with respect to 
appearance of singularity, effect of the 
vortex filament stretching is accurate-
ly compensated by the effect of the 
viscosity. For these solutions, how-
ever, a convergent integral of energy 
over the entire unbounded space does 
not exist.

2. As a result, for almost two hun-
dred years (since 1827–1845), open 
remains the issue on the existence of 
smooth nonstationary divergent and 
divergent-free solutions of the 3D NS 
equation in an unbounded (or with 
periodic boundary condition) space 
and on an unbounded interval of time 
[8–12]. And the significance of this 
problem is determined not only by 
mathematical, but also by practical in-
terest, owing to both the fundamental 
and applied problem of predictability 
in hydrometeorology and other relat-
ed fields that might be the case with 
the applications of the methods uti-
lized for the NS equation computa-
tional solution [9, 10].

Therefore, in 2000 the problem of the 
existence of a smooth nonstationary 
vortex solution of the 3D NS equation 
on an unbounded interval of time was 
included by Clay Mathematics Institute 
into the list of the seven fundamen-
tal Millennium Prize problems under 
number six [8, 9, 11, 12]. However, at 
the same time, in [8] it is proposed 
to consider this problem solution not 
for the full NS equation [4], but only 
for the equation, derived from it in 
assumption that the divergence of in-
compressible medium velocity field is 

equal to zero. Evidently, such a defi-
nition a priori assumes that for diver-
gent flows (having a nonzero velocity 
field divergence) the full NS equation 
obviously cannot have smooth solu-
tions on an unbounded time interval. 
Actually, in [12] written is the follow-
ing: “The Millennium Prize problem 
refers to incompressible flows, as it 
is known that the compressible ones 
behave disgustingly”. Thereupon, an 
example of appearance of the shock 
wave in compressible medium when 
an object moves therein with a veloc-
ity higher than the velocity of sound 
in this medium is given in [12]. How-
ever, it is clear that the viscosity forc-
es do not allow for real singularity 
for any flow characteristics, that, as a 
result, does not exclude a possibility 
of the existence of smooth divergent 
solutions of the full NS equation.

3. Up to date, as we know, a direct 
proof of impossibility of the exis-
tence of smooth divergent solutions 
of the full NS equation has not been 
obtained yet, and therefore the prob-
lem formulation in [8] allows in full 
a generalization for the case of diver-
gent compressible medium flows that 
is the matter under consideration in 
this paper.   

Actually, in the present paper on the 
basis of the theory [13] found is a new 
analytical nonstationary vortex solu-
tion of the full 3D NS equation which 
because just to the finiteness of the 
viscosity forces (which are modeled 
by adding of the velocity field of the 
random Gaussian delta correlated in 
time to the velocity field [10]) remains 
smooth for any arbitrary large peri-
ods of time. At the same time, the NS 
equation solution may be extended in 
Sobolev  space Нq(R3) for any q ≥ 1 and 
t ≥ t0, where t0 – is a minimum time of 

singularity (collapse) appearance for 
the corresponding exact solution of 
the EH and Riemann – Hopf (RH) 
equations in case of zero viscosity. 
The norm in Sobolev space Нq(R3) is 
determined in the form [14]:    

Let us note that in [14] formulated 
is a local theorem of the existence of 
a 3D EH equation solution of the di-
vergent-free ideal incompressible flu-
id flow. According to this theorem, a 
smooth EH equation solution exists if 
the initial velocity field 0u



 belongs to 
the Sobolev space Нq(R3) when q ≥ 3, 
and the very solution corresponds to 
the class

where the norm is determined in 
(В.1). At the same time, for the con-
sidered herein exact EH and RH equa-
tion solution in case of the divergent 
ideal compressible medium flow there 
exists the possibility for extension of 
this solution for times t* ≥ t0 only in 
Sobolev space Н0(R3). And there is no 
possibility for its extension in Sobolev 
space Н1(R3) by time t* ≥ t0, when q = 1 
is instead of the condition  q ≥ 3 of the 
theorem in [14].

The finite value of the velocity field 
divergence corresponds to the obtained 
NS equation analytical solution, that 
indicates an inconsistency of the above 
“quasi evident“ a priori assumption on 
the absence of smooth divergent 3D 
vortex solutions of the full NS equation.

The noted method for taking into ac-
count the viscosity is a particular ex-
ample of turbulence modeling, when 
instead of a random force a random 
velocity field is entered [15]. In [15], 
however, treated is only the spatially 
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inhomogeneous large-scale random 
velocity field and excluded is the drift 
part of this velocity which depends 
only on time. At the same time, just 
the averaging over the random ve-
locity field, which depends only on 
time, provides the proper modeling of 
the effective viscosity (in assumption 
that this velocity is Gaussian and del-
ta – correlated in time) in the present 
paper. Besides, it is important that this 
method for modeling the viscosity 
effect does not change the structure 
typical for viscosity force vF



, which 
is entered into the NS equation and, 
as an example, for the incompressible 
medium, having the form        

Actually, it is well known [15], that 
the existence of a NS equation solu-
tion is proven in case if to the con-
ventional viscosity force added is a 
member which is proportional to a 
higher derivative (of the velocity of 
flow u ) of the form  

(see [16,17]) and which is responsi-
ble for changes of the viscosity force 
structure typical for the initial NS 
equation. 
Besides, it is shown that an elimina-
tion of the singularity of the solutions 
of the EH, RH and NS equations takes 
place even in case of an introduction 
of a sufficiently great coefficient of 
external friction μ, satisfying the con-
dition (5.3) and corresponding to the 
substitution 

in the NS equation.    
The new solution of the 3D NS equa-

tion is found under the condition of 

vF uν= ∆


 [3].

the zero total balance of normal stress-
es caused by pressure and the viscosity 
of the compressible medium divergent 
flow that, as shown in paragraph 2 
hereof, corresponds to the sufficient 
condition of positive definiteness of 
the integral entropy growth rate. It 
allows reducing the NS equation solu-
tion to the solution of the 3D analog of 
the Burgers equation, and then to the 
solution of the 3D RH equation and 
its generalization for the case of taking 
into account the viscosity force (the 
external friction or the above effective 
friction related to the random velocity 
field).

Let us also note that in general case 
the vortex solutions of the 3D RH 
equations coincide with the 3D EH 
equation solutions for describing the 
ideal compressible medium vortex 
flows with the nonzero velocity field 
divergence [10, 13].

In fact, all real media are more or less 
compressible, and their flows should 
be described just by the divergent 
solutions of the full NS equation. On 
the other hand, the divergent flows 
for a conditionally incompressible 
medium may also correspond to the 
presence of distributed sources and 
drains, modeling of which is success-
fully used in relativistic and non-rela-
tivistic hydrodynamics [18–21].

4. Let us notice that in [22] obtained 
is also an exact solution of the 3D 
RH equation, which describes, how-
ever, only in terms of the Lagrangian 
variables, an explosive evolution with 
time for the matrix of the first deriv-
atives of the velocity field. It does not 
provide a possibility for obtaining on 
its basis an exact solution of the 3D 
EH equation for the vortex field, as 
it has been performed in [13] in the 
Eulerian representation of the solu-

5,
4

uα α∆ ≥


u uν µ∆ → −
 

tion. At the same time, the present 
paper shows that the obtained in [13] 
exact solution of the 3D RH equation 
for the velocity field (see formula 
(3.7) below) in the Lagrangian rep-
resentation gives for the evolution of 
the matrix of first derivatives of the 
velocity field an expression (3.14), 
which exactly coincides with the for-
mula given in [22] (see formula (30) 
in [22]).

Also found are new analytical solu-
tions for the evolution of vortex in-
tensities and helicity of the Lagrang-
ian fluid particle in the 1D and 3D 
cases. In [23] considered is the similar 
in structure form of the EH equation 
solution (see formula (23) in [23]) on 
the basis of an application of a combi-
nation of the Eulerian and Lagrang-
ian descriptions in the representation 
of the vortex lines. However, it does 
not permit to explicitly describe the 
peculiarities (including the enstrophy 
singularity) of the evolution with time 
for vorticity. The discovered herein 
description of the evolution vorticity 
in the Lagrangian representation for 
the 2D and 3D case (see (4.4) и (4.5)) 
may be considered as a concretization 
of the obtained in [23] form of the EH 
equation solution for the case of the 
inertial fluid particles motion.

Besides, herein specified is a new 
necessary and sufficient criterion for 
the realization of the explosive singu-
larity (collapse) in a finite time (see 
(3.11), (3.12)) for the nonviscous RH 
and EH equation solutions in the 1D, 
2D and 3D cases. At the same time, in 
[22] given is an integral criterion in 
the form of (3.13) (see formula (38) 
in [21]), which determines only the 
sufficient condition for the realiza-
tion of a solution collapse. Besides, 
for example, for the case of the ini-
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tial divergent-free velocity field, the 
collapse is possible only according to 
the necessary and sufficient criterion 
(3.12), but it cannot be established 
from the criterion (3.13). At the same 
time, from the completed in [22] con-
sideration of the explosive mode for 
the 3D RH equation solution made is 
a conclusion about impossibility of ex-
tension of this solution by an infinite 
time in the Sobolev space Н2(R3), that 
differs from the above mentioned re-
sult indicated herein.

In the 2D case we have an exact corre-
spondence between the criterion (3.11) 
and the similar criterion given in [24] 
(see formula (9) in [24]) in connection 
with the solution of the problem of 
flame front propagation (generated by 
self-sustained exothermic chemical re-
action) on the basis of a simplified ver-
sion of the Sivashinsky equation [25]:

In the equation (В.2), the function 

determines the flame front represen
ting the boundary between combus-
tion agent (x3 >  0  ) and combustion 
products (x3 <  0 ), where Us and γ0 
are constant positive values charac-
terizing the front propagation veloci­
ty and the combustion intensity, re-
spectively. With γ0 = 0 the equation 
(В.2) coincides with the Hamilton –
Jacobi equation for a free non-rela-
tivistic particle. The proposed herein 
exact RH equation solution (3.7) in 
the 2D case (to be more exact, in its 
modification, taking into account the 
external friction with the coefficient 
μ and the formal equality μ  =  – γ0) 
gives the exact equation solution 
(В.2). At the same time, the solution 

(3.7) describes the potential flow of 
the form   

5. An important result of the present 
paper is obtaining of the closed de-
scription of the with-time evolution of 
enstrophy and any higher vortex field 
moments, as well as the velocity field 
in the 2D and 3D cases. It is achieved 
on the basis of the corresponding an-
alytical solution of the EH, RH and 
NS equations both for the case of the 
zero viscosity and the case with tak-
ing into account the external friction 
or the effective viscosity. As a result, 
not approximately, as usual, but exact-
ly solved has been the problem of the 
closure in the theory of turbulence, 
which remained unsolved for a long 
time, despite multiple attempts for 
searching at least for its approximate 
solution [1]. Herein we have succeed-
ed in finding the solution due to es-
tablishing a relatively simple and clear 
dependence on the initial condition 
for the obtained exact EH and RH 
equation solution for the velocity field 
(3.7) and the vortex field ((4.1) and 
(4.2)), which is absent, for example, 
in the well known exact Burgers equa-
tion solution, obtained with the use of 
the nonlinear Cole – Hopf transfor-
mations.

In particular, due to this fact, based 
on the exact solution (4.2), obtained 
can be an estimation for the integrals 
of the vorticity field in the 3D case 
close to the moment of solution sin-
gularity: 
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when m = 1, 2, 3... . Thus, the following 
inequality is evident:

It demonstrates a strong intermittency 
of the vortex field in the vicinity of sin-
gularity.
Let us note, that usually the inequality 

actually, is regarded to be true under a 
strong vortex intermittency [15], but 
in the past it was impossible to derive 
it from the exact solution of the clo-
sure problem in the theory of turbu-
lence, as it was done, when obtaining 
the estimation (В.3).        

6. In conclusion hereof, based on an 
analysis of the exact closed  solution 
of the enstrophy balance equation 
(5.6) and the rate of integral  kinet-
ic energy change in (6.1)–(6.4), dis-
cussed is a possibility of the existence 
of not only divergent, but also smooth 
divergent-free NS equation solutions 
on an unbounded time interval. 

1. The Navier-Stokes (NS) and 
Euler-Helmholtz (EH)  
equations

The equation of the motion of the 
compressible medium may be writ-
ten as follows [4]:
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It follows from the form of the sec-
ond member in the right side (1.1) that 
for the viscous compressible divergent 
flow the normal stresses are deter-
mined not only by pressure, but also by 
the velocity field divergence. In (1.1.1), 
(1.2) ui – is a velocity of medium; in re-
peated indices implied is a summation 
from 1 to n (where n – is dimensionali-
ty of space, and later treated will be the 
cases, when n = 1, 2, 3), а р, ρ, η, ζ – is 
a pressure, a density, the constant coef-
ficient of the viscosity and the constant 
coefficient of the second viscosity of 
medium, respectively [4].

For the incompressible medium with 
a constant density ρ = ρ0 from equa-
tion (1.1), in the 3D case (when n = 3) 
after curl operation from left and right 
sides, the following Euler – Helmholtz 
(EH) equation is obtained:  

In (1.3) rotuω =
  , and ν = η∕ρ0 = const – 

is a coefficient of molecular kinetic 
viscosity.   

For the case of the compressible me-
dium, the equation (1.3) also takes 
place, but only if η∕ρ = const and the 
curl from the second member in the 
right side (1.1) is equal to zero. In par-
ticular, it occurs in the case if the sec-
ond member in the right side is equal 
to zero (1.1) that corresponds to the 
zero total balance of the normal stress-
es produced by pressure and viscosity 
of the divergent medium flow. 

In [13] obtained is an exact vortex 
solution of the 3D Riemann-Hopf 
(RH) equation (which coincides with 
(1.1) when vanishing the right side 
(1.1)) in case of arbitrary, smooth, 
vanishing at infinity, initial condi-

(1.3)

tions. It coincides with the exact EH 
equation solution (1.3) for the com-
pressible nonviscous medium (when 
in (1.3) the last member in the right 
side is equal to zero). At the same time, 
in [13], in particular, it is demonstrat-
ed that the obtained smooth solution 
may exist only on a bounded interval 
of time 0 ≤ t < t0, (where the value t0 
is determined further from equation 
(3.11)). 

Further (in paragraph 3 herein) it is 
demonstrated that for any arbitrarily 
small value of the effective viscosity 
(introduced instead of the last mem-
ber in the right side (1.3)) obtained 
can be an exact solution of the equa-
tions (1.1) – (1.3) which exists even 
on an unbounded time interval.

2. Energy and entropy balance 
equations

1. Usually, when considering the sys-
tem of four equations (1.1), (1.2) for 
five unknown functions, introduced 
is an additional condition of a relation 
(an equation of the medium state) be-
tween density and pressure in order to 
make equal the number of the equa-
tions and the number of the unknown 
functions. The representation of the 
equation of state for a nonequilibrium 
vortex flow needs to be specified. In-
stead of this, for the closure of the sys-
tem (1.1), (1.2) usually utilized is an 
approximation of the velocity zero di-
vergence for the incompressible medi-
um, that is reasonable, in particular, in 
case of relatively lower (if to compare 
with sound velocity) medium motion 
velocities.

Let us derive a similar equation, 
which closes the system (1.1), (1.2) 
for the compressible medium diver-
gent flow and which will substitute 
the condition of equality to zero of 

the velocity field divergence for the 
incompressible fluid flow. 

For this purpose, we obtain the en-
ergy and entropy balance equations 
which follow from (1.1), (1.2) as well 
as from the conventional thermo-
dynamic relations [26]. In case of a 
single-component medium, these re-
lations have the following form [26] 
(see (14.3), (15.6) and (15.7) in [26]):

In (2.1) – (2.3) Т – is a temperature, 
а ε, s, Ф – are internal energy, entropy 
and thermodynamic potential or the 
Gibbs free energy (units of medium 
mass), respectively [26]. At the same 
time, the equation (2.3) immediately 
follows from the equation (14.3) in 
[26], and it exactly coincides with the 
equation (2.1) and (2.2) (which co-
incides with the equation (15.7) and 
(15.6) in [26], respectively) at any Ф. 
For the considered single-component 
medium under condition of the con-
stant amount of the particles therein, 
we assume below that in (2.1) and 
(2.2) dФ = 0 или Ф = Ф0 = const. 

The equation (2.3) is further used 
in the following form (see also [4] on 
page 272):    

2. Based on the equations (1.1), (1.2), 
we may obtain the equation of the bal-
ance of the integral kinetic energy

(2.1)pTsε
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as follows:
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For the incompressible viscous me-
dium, the divergent-free flow formula 
(2.5) exactly coincides with the for-
mula (16.3) in [4], and it serves as its 
generalization for the case of the com-
pressible viscous medium flow. To de-
rive the equation (2.5) it is enough to 
scalarly multiply the equation (1.1) by 
the vector ρ ui, multiply the equation 
(1.2) by the scalar 2 2u , add the ob-
tained expression and integrate over 
the entire space.     

Let us notice, that in case of an ide-
al (nonviscous) medium, from (2.5) 
it follows that integral kinetic ener-
gy is an invariant only for the diver-
gent-free flows, and for the divergent 
flows as an invariant should be only 
the total integral energy

conservation of which is assumed to 
be for the viscous medium, too [4].

Let us derive an equation of the total 
energy balance for the viscous com-
pressible medium and the correspond-
ing equation of entropy balance, on 
the basis of the equations (1.1), (1.2), 
(2.1) and (2.4). As opposed to the 
derivation given in [4], let us imme-
diately use the equation (2.1) written 
taking into account the above equality 
Ф = Ф0 = const. As a result, consider-
ing (2.1), we have the following from 
(2.4):  

In the equation (2.6), the second 
member in the right side, taking into 
account (1.2), is convenient to repre-
sent in the form  

At the same time, from (1.1), (1.2) 
and (2.6) we obtain the following total 
energy balance equation:

2
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2
( )h
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As in [4], from (2.7), taking into ac-
count the requirement of equality to 
zero of the time-related derivative of 
the integral total energy 

we can write the following entropy 
balance equation:

where expression B is given in (2.7). 
The energy and entropy balance 

equations (2.7), (2.8) do not coincide 
with the equations given in [4] in the 
formula (49.3) and (49.4), respective-
ly. However, from the balance equa-
tion (2.7) we may obtain exactly these 
equations (49.3), (49.4) and the given 
in [4] integral entropy balance equa-
tion (49.6) as well. For this purpose, 
in (2.7) we should use instead of the 
equation (2.6) its equivalent repre-
sentation 

(applied in [4] without taking into ac-
count (2.1), but assuming the equal-
ity Ф = Ф0 = const). It is more sig-
nificant that, in addition thereto, to 
provide the coincidence of (2.7) with 
(49.3) in [4], the pressure gradient in 
(2.7), according to [4], should be ex-
pressed in the form of   

which follows from the thermody-
namic relation (2.3) (if to add member  
dp∕ρ). to the left and right side (2.3)).  
Such thermodynamic representation 
for the pressure gradient which enters 
into (2.7) (and in (1.1)), corresponds 
to the conventional representation of 
pressure, which completely describes 
normal stresses for the compressible 
and incompressible medium only in 
case of the zero viscosity. It does not 
correspond to that new representa-
tion of pressure, which appears just 
in case of description of the viscous 
compressible hydrodynamics in (1.1) 
due to appearance of additional nor-
mal stresses, proportional to the velo
city field divergence (see [4] page 275).

This statement on incompletely ade
quate representation of the pressure 
gradient (in formulas (2.7) and (1.1)) 
on the basis of the application of the 
thermodynamic relation (2.3) is fur-
ther confirmed by the obtained in next 
clause fundamental relation (2.10) be-
tween the rates of with-time change of 
the integral entropy and the integral 
kinetic energy. Actually, the relation 
(2.10) immediately follows from (2.5) 
and the integral entropy balance equa-
tion, written just in the form of (2.9) on 
the basis of (2.8). On the other hand, 
this relation (2.10) obviously cannot 
be obtained from (2.5) and the integral 
entropy balance equation in the form 
given in [4] (see (49.6) in [4]). 

4. From the entropy balance equa-
tion (2.8), the integral entropy balan
ce equation  

in the given below form follows (for 
simplicity’s sake, herein as well as in 
(2.7) and (2.8) we do not use mem-
bers, which describe flows generated 
by the temperature gradient):
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The balance equation (2.9), as already 
noted in the previous clause hereof, 
significantly differs from the integral 
entropy balance equation given in [4] 
(see formula (49.6) in [4]).

From (2.9) and (2.5), in case of con-
stant temperature T  =  T0 in (2.9), it 
immediately follows that the given 
fundamental relation is exactly satis-
fied:  

(it is also given in [4] page 422) be-
tween the rate of the mechanical en-
ergy change and the rate of the inte-
gral entropy growth.

The expression for the rate dE  ∕  dt, 
given in formula (79.1) in [4], is not 
derived immediately from (1.1), (1.2), 
as it is done for the equation (2.5), but 
entered only on the basis of the rela-
tion (2.10), resulting from the pre-
sented in [4] integral entropy balance 
equation (49.6). At the same time, it 
is clear, that it is just the formula (2.5) 
for value dE ∕ dt that provides a gener-
alization of the formula (16.3) in [4] 
for the case of the compressible me-
dium divergent flows, and it is not the 
formula (79.1), as stated in [4] without 
substantiation of derivation (79.1) on 
the basis of the Navier – Stokes equa-
tion (1.1) and the continuity equation 
(1.2).    

Thus, it is evident from (2.5) and 
(2.9), that the negative definiteness 
of the integral kinetic energy dissi-
pation rate and the corresponding 
positive definiteness of the integral 
entropy growth rate are possible in 
the compressible medium divergent 

flows only under condition of van-
ishing the second member in the 
right side (2.5) and (2.9), when the 
following relation is satisfied:

The equation (2.11) demonstrates that 
the rate of decrease in the divergent 
flows integral kinetic energy in (2.5) 
is determined by only viscous dissi-
pation, as it is the case with the di-
vergent-free flows (see (16.3) in [4]).

When satisfying the equation (2.11), 
the positively determined value of the 
rate of the integral entropy growth in 
(2.9) is found to be significantly less 
than the growth rate of the integral 
entropy given in formula (49.6) in [4]. 
Actually, in (49.6) there is a member 
present, which is proportional to the 
second viscosity coefficient, and in 
(2.9) such a member is absent under 
condition (2.11). The relative decrease 
in the kinetic energy dissipation rate 
in (2.5), if to compare with the ex-
pression (79.1) in [4], corresponds to 
the said entropy growth rate decrease 
in (2.9) under condition (2.11). At the 
same time, at least a similarity to the 
minimum entropy production by I. 
Prigogine (see in [10]) takes place. 

Thus, for the compressible medium 
divergent flows formulated is an ad-
ditional equation (2.11), which closes 
this system (1.1), (1.2), based on the re-
quirement of the positive definiteness of 
the integral entropy growth rate in (2.9) 
and the negative definiteness of the in-
tegral kinetic energy dissipation rate 
in (2.5). Therefore, the equation (2.11) 
for the compressible medium divergent 
flows must substitute the condition of 
the nondivergency, usually applied for 
the closure of the system (1.1), (1.2) in 
case of the incompressible medium ap-
proaching. 
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3. A new divergent solution of 
the NS equation 

1. The condition (2.11) defines an 
exact mutual compensation between 
the normal stresses of pressure and the 
normal viscous stresses of the com-
pressible divergent flow. As a result of 
such compensation, vanishing is the 
second member in the second side of 
equation (1.1). At the same time, the 
equation (1.1) exactly coincides with 
the n-dimensional generalization of 
the Burgers equation:

In this case, the system (1.2), (3.1) is 
already closed and describes the evo-
lution of the density and the medium 
inertial motion velocity field with de-
caying available, which should be at-
tributed only to the action of the shear-
ing viscous stresses, corresponding to 
the nonzero right side of the equation 
(3.1). 

If in (3.1) the viscosity coefficient 
is equal to zero, from (3.1) we obtain 
the n-dimensional RH equation, for 
which in [13] obtained is an exact 
vortex solution, considered further 
and generalized for the case of taking 
into account the external friction or 
the effective viscosity. Let us notice 
that, as opposed to the given here-
in and in [13] consideration of the 
vortex solutions, previously studied 
was only a vortex-free solution of the 
equation (3.1), which corresponds to 
the potential flow and which is ob-
tained when using the modification 
of the nonlinear Cole – Hopf trans-
formation [27, 28]. 

Suppose that in (3.1) carried out is the 
substitution ui → ui + Vi(t), where Vi(t) 
is a random Gaussian delta-correlated 
with-time velocity field, for which the 
following relations take place: 

(3.1)i i
j i

j

u uu u
t x

η
ρ

∂ ∂
+ = ∆

∂ ∂
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(3.3)

(3.2)

,      (3.4)

,  

      (3.5)

In (3.2) δij – is the Kronecker symbol, 
δ – is a delta function of Dirac – Heavi-
side, and the coefficient ν characteriz-
es the viscosity force effect. In general 
case, it may depend on time, describ-
ing the effective turbulent viscosity, 
but also it might coincide with the con-
stant coefficient of the kinematic mo-
lecular viscosity, when the considered 
random velocity field corresponds to 
molecular fluctuations. Let us consid-
er only the case, when the said coef-
ficient in (3.2) is constant, but at the 
same time remains sufficiently great 
in value, so that we have the following 
inequality which allows neglecting the 
member in the right side (3.1):

where min (ρ) – is an absolute mini-
mum of the medium density value in 
space and time.

The substitution in (3.1) with an 
introduction of the random velocity 
field, as already mentioned in Intro-
duction hereof, corresponds to the 
applied in [15] method for obtaining 
the stochastic NS equation not at the 
expense of the random force applica-
tion, but by adding the random veloc-
ity to the velocity of that field, which 
enters into the conventional deter-
ministic NS equation. Herein, as op-
posed to [15], considered is the case, 
when such random velocity field de-
pends only on time (in [15] such ve-
locity field is called a drift part of the 
large-scale inhomogeneous random 
field) and its accounting is equiva-
lent to an introduction of the volume 
viscosity force, which coincides in its 
structure with the conventional fric-
tion force in the NS equation.
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From the equation (3.1), upon aver-
aging with due consideration of (3.2), 
under condition (3.3), we write the 
following equation:

where the angle brackets correspond 
to the operation of averaging over the 
random Gaussian field Vi(t).

When deriving the equations (3.4) 
from (3.1), (3.2) except inequality (3.3) 
used is the following relation (which is 
a consequence of the Furutsu – No-
vikov formula [29-31]):

The equation (3.4), also without con-
dition (3.3), may correspond to the 
equation (3.1) as well, if together with 
(3.5) the following equalities hold

(see [31]) and if in (3.1) the substi-
tution

is carried out before. Such disconnect-
ing of the correlations is possible in 
case of an exact disintegration of the 
time scales related to the large-scale 
inertial motions and the motions with 
the typical scale of the viscous dissi-
pation [23].     

2. Instead of approximate solving (see 
[32]) the problem of closure when con-
sidering the equation (3.4) in order to 
find the average velocity field ‹ui›, let 
us use the initial equation, from which 
exactly evident is just the equation 
(3.4). This initial equation has the form 
of the RH n-dimensional equation 
[10, 13, 22]:

If to apply the curl operation to the 
left side of the equation (1.3.6), we 
obtain just the Helmholtz equation 
(1.3), where only the member ν Δ ωi 
should be deleted and where the sub-
stitution ( )u u V t→ +



   should be car- 
ried out.

The equation (3.6), as shown in [14], 
has the following exact solution for 
the case of an arbitrary dimensionali-
ty of the space (n = 1, 2, 3, etc.):

where 

det Â – are determinants of the matrix 
Â, and 0 ( )iu x  – is an arbitrary smooth 
initial velocity field. The solution (3.7) 
satisfies the equation (3.6) only at 
times for which with any spatial coor-
dinate values the value of the matrix Â 
determinant is positive, i.e.det  Â > 0. 
Therefore everywhere we shall take 
it into account, and, respectively, the 
modulus sign when writing det  Â , will 
not be used, unless otherwise specified.  

The solution (3.7) only in case of the 
initial velocity field potentiality is a 
potential vortex-free one and corre-
sponds to the zero vortex field for all 
subsequent time moments. On the 
contrary, it is the vortex one and deter-
mines the vortex field evolution in case 
of a nonzero initial vortex field (see 
the next paragraph herein). Further, 
let us discuss the vortex solutions only 
(3.7). Let us note, however, that in [24] 
obtained is just the potential solution 
of the 2D RH equation (3.6) (at B


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in (3.6)) in the Lagrangian representa-
tion, which exactly follows from (3.7) 
at n = 2, as already mentioned in In-
troduction hereof in connection with 
the possibility of description of the 
Sivashinsky equation (В.2) solution, 
using the potential solution (3.7). For 
the 1D case with n = 1 we have 

in (3.7), and the solution (3.7) exactly 
coincides with the solutions given in 
[33, 34]. The solution (3.7) is found 
if applied has been an integral repre-
sentation for the implicit solution of 
the equation (3.6) in the form of

with the use of the delta-function and 
the following identities [13]:

where А-1
km is the matrix inverse to 

the matrix Аkm.
After averaging over the random 

field Bi(t) (with Gaussian density of 
probabilities distribution) from (3.7) 
we can obtain the following exact 
solution of equation (3.4) (and the 
equation (1.1) under the condition 
(2.11)):

01

1

1ˆdet
duA t
dξ

= +

(3.8)

(3.11)

(3.9)

The averaged solution (3.10), as op-
posed to (3.7), is already arbitrarily 
smooth in any unbounded span of 
time change, and not only just under 
the condition of positivity of the ma-
trix Â determinant.

3. Without taking into account the vis- 
cosity forces, when in (3.7) ( ) 0B t =



,  
the smooth solution (3.7), as already 
noted, is determined only under the 
condition det Â > 0 [13]. It corresponds 
to the bounded interval of timewhere 
the value of the bounded minimum 
time of the existence of the solution t0 
is computed from the solution of the 
following algebraic equation of order n 
(and further minimization of the ob-
tained expression, which depends on 
spatial coordinates, by these coordi-
nates): 

where det Û0 – is the determinant of 
the 3D matrix U0nm = ∂u0n ∕ ∂xm, and

is the determinant of the similar ma-
trix in the 2D case for variables (x1, 
x2). At the same time det Û013, det Û023 
– are the determinants of the matrices 
in the 2D case for the variables (x1, x3) 
and (x2, x3), respectively.  

Let us notice, that in the 2D case 
(3.11) exactly coincides with the col-
lapse condition, obtained in [24] in 
connection with the problem оf front 
flame propagation, studied on the ba-
sis of the Sivashinsky equation  (В.2). 
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For an exact coincidence it is neces-
sary to substitute

in (3.11).
In the 1D case at n = 1 from (3.11) we 

have the minimum time for singulari-
ty appearing 

In particular, at the initial distribu-
tion 

we obtain

for the value 

At the same time, the singularity 
realization itself may take place only 
with positive values of the coordinate 
x1 > 0, when the equation (3.11) has 
a positive solution for the time value. 

It means that the singularity (col-
lapse) of the smooth solution never 
occurs in case when the initial velocity 
field is other than zero only at negative 
values of the spatial coordinate x1 < 0.

The value of the wave breaking time 
t0 is computed similarly at n > 1, too.  
Thus, for (3.11) in the 2D case (with 
the initial velocity field under the zero 
divergence) for the initial function of 
the flow in the form   

the minimum value of the time of the 
existence of the smooth solution is 
equal to

(3.10)
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(3.13)

.

.

The indicated minimum time of the 
existence of the smooth solution in 
the treated example is realized for the 
spatial variable values corresponding 
to ellipse points

According to (3.11), the necessary 
condition of the singularity realization 
is the condition of the existence of the 
real positive solution of the quadratic 
(at n = 2) or cubic (at n = 3) equation 
in relation to time variable t. For ex-
ample, in case of the 2D flow with the 
zero initial divergence of velocity field 

0 0divu =
  the necessary and sufficient 

condition for the singularity (collapse) 
solution realization in finite time ac-
cording to (3.11) is the following: 

For the considered above example 
from (3.12), the inequality 

follows, in case when it is satisfied for 
n = 2 there is a real positive solution 
of the quadratic equation in (3.11), 
for which found is the given above 
minimum value of the collapse time 

On the contrary, if the initial veloc-
ity field is defined in the form of the 
finite function with a carrier in the 
domain 

the inequality (3.12) breaks down, 
and appearance of the singularity in a 
finite time becomes impossible, and 
the solution remains smooth for an 
unbounded time even without taking 
into account the viscosity effect.   
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The condition of the existence of the 
real positive solution of the equation 
(3.11) (see, for example, (3.12)) is 
necessary and sufficient for the reali-
zation of singularity (collapse) of the 
solution as opposed to the sufficient, 
but not necessary integral criterion, 
proposed in [22] (see formula (38) 
in [22]) and written in the following 
form:     

Actually, according to this criterion, 
proposed in [22], the solution collapse 
is impossible for the case when the ini-
tial velocity field is divergent-free, i.e. 

0 0divu =
 . At the same time, however, 

violation of the criterion (3.13) does 
not exclude a possibility of the solution 
collapse by virtue of the fact that cri-
terion (3.13) does not determine the 
necessary condition for the collapse 
realization. Indeed, in the considered 
above example (when determining the 
minimum time of the collapse realiza-
tion   

for the 2D compressible flow, the ini-
tial condition corresponds just to the 
initial velocity field with 0 0divu =

  in 
(3.11) at n = 2.

4. On the basis of the solution (3.7) 
it is possible, with the application of 
(3.8) and the Lagrangian variable a  
(where 

to present the expression for the ma-
trix of the first derivatives of the ve-
locity field Ûim = ∂ui  ∕ ∂xm in the fol-
lowing form:

At the same time, the expression 
(3.14) precisely coincides with the 
given in [21] formula (30) for the La-
grangian with-time evolution of the 
matrix of the first derivatives of ve-
locity that satisfies the 3D RH equa-
tion (3.6) (in [22] the equation (3.6) is 
considered only at ( ) 0B t =



). In par-
ticular, in the 1D case at n = 1 from 
(3.7) and (3.8) we obtain the follow-
ing particular case of formula (3.14) 
in the Lagrangian representation: 

where а – is the coordinate of a fluid 
particle at the initial moment of time  
t = 0.

The solution (3.15) also coincides 
with the formula (14) in [22] and de-
scribes a catastrophic process of the 
collapse of a simple wave in a finite 
time t0, the estimation of which is giv-
en herein above on the basis of the 
equation (3.11) solution when apply-
ing the Euler variables.   

4. An exact solution of the EH 
and Riemann-Hopf (RH) 
equations

1. The velocity field (3.7) is in con-
formance with the exact solution for 
the vortex field having the form [13] 
in the 2D and 3D cases as follows: 

where 0 0rotuω =
   in (4.2) and ω0 is 

the initial distribution of vorticity 
in the 2D case in (4.1). The solution 
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(4.2), (3.7) corresponds to the follow-
ing exact expression for helicity:

The representations for the 3D vor-
tex (4.2) and velocity (3.7) fields ex-
actly satisfy the 3D Helmholtz equa-
tion (1.3), where, as mentioned above, 
it is necessary to remove the last mem-
ber in the right side (1.3) and enter 
the random velocity field ( )V t



 for de-
scribing the viscosity forces. It may be 
verified by the direct substitution of 
the solution (4.2) and (3.7) into (1.3). 
For this purpose, when considering 
the nonlinear members, it is necessary 
to use the equality 

 

and the following identities: (3.8), (3.9) 
and 

After averaging in (4.1) and (4.3) 
over the random Gaussian field ( )B t



 
taking into account (3.2), we obtain 
expressions where under integral sign 
in (4.1)–(4.3) the delta-function is 
substituted by an exponent with the 
normalizing multiplier as it is the case 
with (3.10). Only after the said aver-
aging provided is the existence of not 
only the averaged vortex and helicity 
field values, but also the correspond-
ing highest derivatives and higher 
moments in any time span. In partic-
ular, it takes place when for the enstro-
phy value (the integral of the vortici-

,

.

(4.4)

(4.5)

ty square over the entire space) and 
higher moments of the vortex field, 
for which the explicit analytical ex-
pressions are obtained in an elementa-
ry way in the next paragraph without 
solving any closure problem. 

2. In the Lagrangian variables, the 
expressions, which correspond to the 
Eulerian vortex (4.1), (4.2) and he-
licity (4.3) fields, may be presented 
in the following form (in case when 

( )B t


 = 0: 

where 

From (4.4) – (4.6) it follows that for 
the Lagrangian fluid particle the vor-
tex value singularity in the 2D and 3D 
cases, as well as the helicity singularity, 
take place at t → t0, when ˆdet ( , ) 0A a t →

   
and the finite time value of the exis-
tence of the corresponding smooth 
fields is determined by the Lagrangian 
analog of the condition (3.11). At the 
same time, it follows from (4.5) и (4.6) 
that the 3D effect of vortex filaments 
stretching leads to only not an explo-
sive, but a weaker power-raise-relat-
ed increase in the vortex and helicity 
values as opposed to the catastrophic 
process of the vortex wave collapse in 
a finite time t0 just for the divergent 
flow of the compressible medium.   

Let us notice that in [23] (see formula 
(23) in [23]) obtained is the representa-
tion of the EH equation solution (1.3) 
(at zero viscosity) in the following form:

In (4.7) J = det (∂xn  ∕ ∂am) is the Jaco-
bian transformation to the Lagrangian 
variables  a . At the same time, 0 ( )aω   
is a new Cauchy invariant (coincid-
ing with the initial vorticity) which is 
characterized by the zero divergence

where nV


 is the velocity component 
being normal to the vorticity vector 
so that for the component we have 

0ndivV ≠


 [22].
As opposed to (4.1) and (4.2), the ex-

pression (4.7) does not give an explicit 
representation for the EH equation 
solution, since in (4.7) no definite re-
lation for the Jacobian J and the vector 
R


 is provided. At the same time, there 
exists a structural correspondence be-
tween (4.7) and (4.1), (4.2), and for 
case of the Lagrangian fluid particles 
motion due to inertia, at least, for the 
Jacobian in (4.7) may be used the ex-
plicit representation J = det Â, where 
det Â is determined from (3.11).  

5. Equation of enstrophy  
balance and due consideration 
of external friction

1. Disregarding the viscosity force 
(i.e. without averaging in (4.1) and 
(4.2) over the random field ( )B t



) from 
(4.1), (4.2) it follows that the enstrophy 
values conforming with them in the 2D 
and 3D cases allow for an exact closed 
description and take on the form [14]:
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[13].

To write the expressions indicated 
in (5.1) and (5.2) above, there has 
been no necessity to solve the clo-
sure problem which usually exists in 
the theory of turbulence. In our case, 
we succeed in avoiding this problem 
due to a comparatively simple repre-
sentation of the exact solution of the 
Helmholtz nonlinear equation uti-
lized for the description of the vortex 
flow of an ideal compressible medi-
um.   

The expressions (5.1) and (5.2) tend 
to approach infinity in a finite time t0, 
determined from the solution of the 
algebraic equation (3.11) and subse-
quent minimization of this solution 
with the use of the space coordinates. 

Using the exact solution of the EH 
equation in the form of (4.1) and (4.2), 
we can obtain a closed description of 
the with-time evolution not only for 
enstrophy, as it was the case with (5.1) 
and (5.2), but also for any other higher 
moments of a vortex field. 

For example, in the 2D case, from 
(4.1), taking into account (3.8), we will 
obtain:

In Introduction hereof, presented has 
been the estimation (В.3) for a relation 
of different moments in the 3D vortex 
field that was obtained on the basis 
of the expressions of the similar type 
from (4.2) and (3.8).

To obtain (В.3), utilized is also the 
estimation 0

ˆdet ( )A O t t≅ − , which is 
realized in the limit t → t0. The quan-
tity of the collapse minimum time t0 
is computed in this case on the basis 
of (3.11).

2. Let’s take into account the exter-
nal friction now. For this purpose, in 
the equation (1.3) we should replace 

i iν ω µω∆ → − . In doing so, from the 
expressions (3.7),(4.1) and (4.2) we 
can obtain an exact solution, which is 
found from (3.7), (4.1) and (4.2) by car-
rying-out the substitution of the time 
variable t for a new variable 

Changes of the new time variable τ 
take place now within the finite rang-
es from τ = 0 (for t = 0) to τ = 1 ∕ μ 
(at t  →  ∞). It leads to the fact that 
in case, when under the given initial 
conditions the following inequality     

holds, then the value det Â > 0 in the 
denominator (5.1) and (5.2) cannot go 
to zero at any moment of time, since 
the necessary and sufficient condi-
tion for realization of the singularity is 
no longer met for any instant of time 
(3.11), where the substitution t → τ(t) 
should be made.   

Subject to the condition (5.3), the  
solution of the 3D EH equation is 
smooth in an unbounded span of time 
t. The corresponding analytical di-
vergent vortex solution of the 3D NS 
equation (where the relation (2.11) for 
pressure should be taken into account 
and where carried out should be the 
substitution of the first term in the 
right side (1.1)

also remains smooth at any t ≥ 0 sub-
ject to the condition (5.3). We should 
also notice that when the values of pa-
rameters are formally coinciding μ = – γ0 
(see the Sivashinsky equation (В.2)),  
the equality τ(t)  =  b(t) takes place 
subject to the condition that the sin-
gularity has been realized (3.11) with 
n  =  2 and in accordance with the 
solution of the Sivashinsky equation 
in [24].   

3. It should be noted that for flows 
of the nonviscous (ideal) incompres
sible fluid with the zero divergence of 
the velocity field an explosive growth 
of enstrophy is characteristic of the 
3D flows only, and enstrophy for the 
2D flows should be viewed as an in-
variant. A different situation arises 
with the divergent flows of the com-
pressible medium under considera
tion herein.

Actually, for the divergent flows of 
the nonviscous medium, the equa-
tions of enstrophy balance in the 2D 
and 3D cases, which follow from the 
EH equation (1.3) (at ν = 0 in (1.3)), 
hold true as given below:

It can be seen from (5.4) that in the 
3D case the evolution of enstrophy Ω3 
with time is determined not only by 
the effect of stretching of vortex fila-
ments (by the first term to the right), 
but also by the second term as well, 
determined by the finiteness of the 
value of the velocity field divergence. 
As to the 2D flow, the with-time evo-
lution of enstrophy Ω2 occurs only, if 
the flow velocity field divergence is 
other than zero.         
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In order to solve (3.7), the value of 
the divergence of the velocity field is 
of the form [13]:

An integral over the entire unbound-
ed space from the right side (5.5) is 
equal to zero by virtue of the fact that 
the identities (3.9) hold and subject to 
the condition of becoming zero at in-
finity for the initial velocity field. As 
a result, for the solution in question, 
the equality 0nd xdivu =∫

  takes place, 
which is responsible for the fulfillment 
of the law of conservation of full mass 
of fluid and an exact mutual integral 
compensation of intensities of the dis-
tributed sources and drains.

For the 3D case in (5.4), based on 
(3.7), (3.8), (3.9), (4.2) and (5.5), we 
can formulate exact expressions for 
the first term and the second one in 
the right side (5.4), which describe the 
contribution to a growth rate of en-
strophy due to the effect of stretching 
of vortex filaments and due to the non-
zero divergence of the velocity field, 
accordingly. It is not difficult to see 
that the same expressions for the above 
two terms can be also obtained by di-
rect differentiation of the expression 
for enstrophy in (5.2) that results in 
formulation of an equality as follows:

In (5.6) the first and the second 
terms in the right side are exactly in 
conformance with the corresponding 
first and second terms in the right 
side (5.4). From (5.6) it follows that 

(5.5)

(5.6)

.

for the non-viscous case both of 
these terms tend to approach infin-
ity at t → t0, when det Â → 0 according 
to (3.11). The first term in the right 
side (5.6) corresponds to the effect of 
stretching of the vortex filaments. Its 
expression under integral sign is pro-
portional to the value O (1 ∕ det Â). It is 
evident that it makes a relatively lesser 
contribution to the rate of an explo-
sive growth of enstrophy as against the 
second term in (5.6), the expression of 
which under the integral sign is pro-
portional to the value O (1 ∕ det2 Â) and 
which exists only for the case with the 
divergent flows with a nonzero diver-
gence of the velocity field.    

Since, as noted above, taking into 
account the viscosity (in particular, 
under due consideration of the ex-
ternal friction, when the condition 
(5.3) is met) leads to a regularization 
even of divergent solutions of the NS 
equation, it might be expected that it 
is also possible for solutions with the 
zero-divergence. As for them, a sim-
ilar regularization, probably, would 
be possible because of a comparative-
ly weaker (in the above mentioned 
sense) effect of stretching of the vor-
tex lines as against the process of a 
wave collapse in the divergent flow. 
This issue will be also treated in the 
next paragraph herein.               

4. From (2.11) and (5.5), upon av-
eraging the Gaussian probability dis-
tribution for random field Bk(t) we 
obtain with due account of (3.2) the 
following representation for pressure    

An expression for the density con-
forming with the equations (1.2) and 
(3.6) takes the form [12]:

Upon averaging in (5.8) with due 
consideration of (3.2) we can write 
an expression which is smooth at any 
times for the medium density as fol-
lows

By replacing ρ → ω, ρ0 → ω0 in (5.9) 
we obtain an expression for the 2D 
vortex field, since the expressions 
(5.8) and (4.1) have the same struc-
ture.

6. On the existence of divergent- 
free solutions of the NS  
equation

The found smooth divergent solution 
of the NS equation (1.1) in the form 
(3.10), (5.7), as stated above, by virtue 
of the fact that there is its analytical 
representation for arbitrary smooth 
initial conditions is just the proof that 
the solution of the NS equation really 
is existent and unique. It is of impor-
tance that in order to model the vis-
cosity effect, it is precisely the random 
Gaussian delta-correlated with-time 
velocity field that has been introduced 
for that purpose, that leads to an ef-
fective viscosity force, which is struc-
turally exactly in conformance with 
the viscosity force in the NS equation, 
as distinct from the derivatives treated 
in [16, 17], which are higher than the 
Laplacian, in computation of the vis-
cosity force in the NS equation.       

Let us perform a comparative analy-
sis of integral values for the divergent 
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(6.1)

(6.2)

and divergent-free flows which char-
acterize the evolution of the integral 
kinetic energy with time, the finiteness 
of which in [8] is the major criterion 
supporting the evidence of the exis-
tence of a solution of the NS equation.   

For this purpose, let us consider the 
equation of the balance of the integral 
kinetic energy (2.5) on the condition 
(2.11) that has replaced the assump-
tion of the zero divergence of the ve-
locity field and that has provides the 
closure of the system of the equations 
(1.1), (1.2) for the case of the diver-
gent flows of the compressible me-
dium. In doing so, from (2.5) we can 
write an expression as given below 

 

The equation of the balance (6.1) 
in its form is exactly coincides with 
the equation of the balance of the 
integral kinetic energy for the diver-
gent-free flow of incompressible fluid, 
as indicated in [4] (please, see formu-
la (16.3)). Unlike the formula (16.3) 
from [4], there is in the formula (6.1) 
just the divergent velocity field, which 
has the nonzero divergence and which 
describes the motion of the compress-
ible medium. In this case, for the di-
vergent flow, the functional F in (6.1) 
is connected with enstrophy

by the following relationship:

As this takes place, for the divergent 
solution of the NS equation, the right 
side (6.2), with other conditions be-
ing equal, obviously exceeds the val-
ue of the functional F = F0 = Ω3 for 

the solution with the zero divergence 
of the velocity field.   

For the obtained exact solution, the 
expression for enstrophy Ω3 вin the 
right side (6.2) takes the form (5.2), 
and for the integral of the square of 
the divergence from (5.5) and (3.8) we 
arrive at an expression as given below:      

From comparison of (6.3) and (5.2) 
it follows that in the vicinity if the sin-
gularity of the solution at t →  t0 (see 
(3.11)) the values of the first and the 
second terms in the right side (6.2) 
are of the same order of magnitude.  

Besides, for functional F in (6.1) let 
us make upper estimate with the use 
of the Koshi-Bunyakovsky inequality 
as follows:

According to (6.2) – (6.4), the diver-
gent flows, with other conditions being 
equal, demonstrate obviously a higher 
value of functional F as against the di-
vergent-free flows, for which the ad-
dend in the square brackets in the right 
side is absent (6.4).

From the preceding, it is clear that 
a conclusion must be made that the 
smooth divergent-free solutions of 
the NS equation are existent because 
of the fact of the proven existence of 
the divergent smooth solutions of the 
NS equation on an unbounded time 
interval with due consideration of the 
effective viscosity or external friction 
subject to the condition (5.3).

Conclusions
Therefore, in (3.10), (5.7) and (5.9) 

represented is the analytical solu-

tion of the NS equation (1.1) and the 
equation of continuity (1.2) for the 
divergent flows which have a non-
zero divergence of the velocity field 
(5.5). From (3.10), boundedeness of 
the energy integral in the 3D case

obviously follows, too, that meets 
the main requirement, when formu-
lating the problem of the existence 
of a solution of the NS equation 
[8]. Besides, satisfied is the require-
ment specified in [8] for unbounded 
smoothness of solutions for any time 
intervals, when describing velocity 
and pressure fields.

We should notice that for the found 
solution of the equation (3.7) even 
without averaging (for example, in 
the case ( )B t



 = 0) the energy integral  

remains finite for any finite moment 
of time, while at the limit t → ∞ ener-
gy also tends to approach infinity in 
a power-raise manner as O(t3) (refer 
to (3.11)). In this case, the solution 
(3.7), (4.2) can be extended by any fi-
nite time t* ≥ t0 in the Sobolev space 
H0(R3). It means that for the case with 
the ideal (nonviscous) medium the 
flow energy meets the requirement 
specified in [8] to prove the existence 
of the solution of the NS equation.

At the same time, however, the integral 
of enstrophy in (5.2) demonstrates an 
explosive unbounded growth (in a finite 
time t0, determined from (3.11)), when   

in case with the unique positive real 
root of the equation (3.11). By this is 
meant that the obtained exact solu-
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tion of the EH equation in the form 
(3.7) and (4.2) cannot be further ex-
tended in the Sobolev space  H1(R3) by 
a time t* ≥ t0, i.e. even at q = 1 when 
defining the norm (В.1). Only con-
sidering the viscosity makes possible 
to avoid the said singular behavior of 
enstrophy and higher moments of a 
vortex field which is to say that there 
is a possibility of extending the solu-
tions of the EH and NS equations for 
any t* ≥ t0 in Sobolev space H q(R3) even 
at any q ≥ 1.          

In [7], under formulating the prob-
lem of the existence of a solution of 
the 3D NS equation, it has been of-
fered to impose restrictions to consid-
ering only cases of solutions with the 
zero divergence of the velocity field. 
Therewith in [7] noted is importance 
of treatment of those particular 3D 
flows, for which the effect of stretch-
ing of vortex filaments in a finite time 
may lead to a limitation on the exis-
tence of solutions of the NS equation 
in the small (im Kleinen) only.

The reached conclusion that there 
are smooth divergent solutions of the 
3D NS equation at the expense of con-
sidering even small viscosity bears wit-
ness to an admissibility of a positive 
solution of the problem of the existence 
of smooth divergent-free solutions on 
an unbounded interval of time as well. 
Really, as it has been established in 
(5.6), the effect of stretching of vortex 
filaments makes a considerably lesser 
contribution to the realization of the 
singularity of the solution than the 
effect of collapse of a vortex wave in 
the divergent compressible flow. This 
possibility is suggested by the in-
equality (6.4) as well as the equality 
(6.2), which determine the value of 
rate of change in the integral kinetic 
energy.

It should be also stressed that the ex-
act solution of the EH and RH equa-
tions found in [13] gives a closed de-
scription of the with-time evolution 
for enstrophy and any higher mo-
ments of the vortex, velocity, pressure 
and density fields. The possibility of a 
closed statistic description for modes 
of turbulence without pressure (mod-
eled with the linear 3D RH equation 
(3.6)) was mentioned first in 1991 in 
[13]. We should note that the paper by 
A.M.Polyakov [35] published in 1995 
develops for the 3D RH equation 
with a random white-noise type force 
(Delta-correlated with time) a general 
theoretical field approach to the theo-
ry of turbulence and establishes a re-
lationship between the breakdown of 
the Galilean invariance and intermit-
tency. With this, however, only for 1D 
case found was a concrete solution of 
the problem of the closure in the form 
(refer to formula (41) in [35]) of an 
explicit expression for distribution of 
probability w (x, y) of the value of ve-
locity difference u  at points being at a 
distance y from each other.

This paper offers a fresh approach 
capable of considering also exactly 
pressure on the basis of which an ana-
lytical solution of the full NS equation 
for a flow of the viscous compressible 
fluid has been found. In doing so, ac-
tually, the main problem of the theory 
of turbulence has been resolved [1], 
when the precise representation for a 
joint characteristic functional of the 
velocity and density fields (the pres-
sure field in this case is uniquely de-
fined from (2.11)) is provided. In the 
past, it was generally accepted that the 
main problem of the theory of turbu-
lence in case with the compressible 
fluid could not be solved, and in [1] in 
this connection it was stated: ”Unfor-

tunately, this general problem is too 
difficult, and at present an approach to 
finding a full solution thereof cannot 
be seen.“ (please, refer to [1] P.177).    

Utilizing the proposed exact solu-
tions of the EH, RH and NS equa-
tions, modeling of turbulent modes 
can be provided, including modeling 
performed on the basis of the method 
of randomization of integrated prob-
lems of hydrodynamics offered by 
Е.А. Novikov [36] and developed in 
[10]. For this purpose, we must intro-
duce a probability measure on ensem-
ble of realization of the initial condi-
tions, which should be treated in this 
case as random functions. 

The possibility established herein 
that a solution of the NS equation is 
existent is based on the fresh nonsta-
tionary analytical solution of the said 
equation that was said in the past to be 
unreachable [9, 13]. Following this way, 
it has been discovered that for the exis-
tence of the solution in an unbounded 
span of time it is just the viscosity that 
is required to be taken into account for 
this purpose. On the other hand, the 
issue on stability of the obtained solu-
tion should be treated on the basis of 
the available results which bear witness 
to a possibility of some destabilizing 
effects of the viscosity which may lead 
to a dissipative instability [37–40].

By this means, detected has been the 
mechanism of the appearance of the 
limitation in predictability and fore-
casting of a wind velocity field and im-
purity fields (affecting human health 
under the variable climatic factors of 
the environment) that can be realized, 
for example, with the numerical solu-
tion of the NS equation (for the diver-
gent flows of compressible medium).   

This mechanism is connected the 
truncation λ, typical for the high wave 
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numbers or small scales that corre-
sponds to entering of the external 
friction with the coefficient 

In this case, from the condition (5.3) it 
follows that only with selection of a suf-
ficiently small scale of the truncation 

(where the value t0 is computed in 
(3.11)) it is possible to avoid the ex-
plosive loss of the smoothness of the 
solution and the loss of predictability 
in a finite time t0 even at the exactly 
defined initial data of the numerical 
forecasting based on the solution of the 
NS equation for compressible medium.

At the same time, actually the initial 
data are defined not accurately, but with 
a certain inevitable error. This may lead 
to breaking down the condition λ < λth 
and loss of predictability in a finite 
time. In this regard, fascinating and in-
triguing is the relationship, as noted in 
[2], between the nonrandom random-
ness of the Sinai billiards, the problem 
of predictability based on the NS equa-
tion solution and another problem of 
relative longevity of biological species 
closely related by their initial physical 
and physiological parameters (raven 
and crow etc.) that has been known 
since the Sir Francis Bacon’s time.   

Conflict of interest
None declared.

Author contributions
The authors read the ICMJE criteria 
for authorship and approved the final 
manuscript.

Acknowledgment
We would like to give due recognition to 
E.A. Novikov for his kind interest herein 
and highly appreciated suggestions here-

to, to E.A. Kuznetsov for his attentive atti-
tude, useful discussions and information 
about the relevant reference papers [15, 
22–24] and to Mr.N.A.Inogamov and V.V. 
Lebedev for their constructive criticism.

References
1. Monin AS, Yaglom AM. Statistical hyd- 
romechanics. St. P: GMI; 1992. [in Russian]
2. Chefranov GV. Are we mortal or 
not? Problems of cosmology and geron-
tology. Taganrog. 173p. [in Russian]
3. Batchelor J. Introduction to fluid dy-
namics. Moscow: Mir; 1973. [in Russian]
4. Landau LD, Lifshits EM. Hydrody-
namics. Moscow; 1986. [in Russian]
5. Novikov EA. JETP. 1975;68:1863. [in 
Russian]
6. Chefranov SG. JETP. 1989;95:547. [in 
Russian]
7. Agafontsev DS, Kuznetsov EA, Maily-
baev AA. Asymptotic solution for high 
vorticity regions in incompressible 3D 
Euler equations. arXiv: 1609.07782v3 
[physics.flu-dyn]. 21 Dec 2016.
8. Fefferman ChL. Existence and Smooth-
ness of the Navier-Stokes Equation. The 
millennium prize problems. Clay Math. 
Inst., Cambridge, MA, 57–67, 2006.
9. Ladyzhenskaya OM. Uspehi Matema
ticheskikh Nauk. 2003;58:45. [in Russian]
10. Chefranov SG. Predictability and 
structure of vortex fields and admix-
tures in turbulent flow. Doctoral the-
sis. SRI of the RAS, 1992. [in Russian]
11. Li D, Sinai Ya. J. Math. Soc. 2008; 10:267. 
12. Stewart I. The Great Mathemati-
cal Problems. Profile Boobs, J E, 2013. 
13. Chefranov SG. Doklady Akademii 
Nauk SSSR. 1991;317:1080. [in Russian]
14. Kato T. J. Funct. Anal. 1972;9:296. 
15. Zybin KP, Sirota VA. Physics-Us-
pehi. 2015;185:593. [in Russian]
16. Lions JL. Quelques Methodes de 
Resolution des Problemes aux Limites 
non Linearires. Paris, Dunod, 1969.

17. Mattingly JC, Sinai YaG. Commun. 
Contemp. Math. 1999;1:497. 
18. Novikov EA. Phys. Fluids. 2003; 
15:L65. arXiv: nlin/06080050.
19. Chefranov SG, Novikov EA. JETP. 
2010;111:731. [in Russian]
20. Novikov EA, Chefranov SG. J. Cos
mol. 2011;16:6884. 
21. Novikov EA. Mod. Phys. Lett. 2016; 
A31:1650092. 
22. Kuznetsov EA. PhysicaD. 2003;266. 
23. Kuznetsov EA. Letters to JETP. 2002; 
76:406. [in Russian]
24. Kuznetsov EA, Minaev SS. Phys. 
Lett. A. 1996;221:187. 
25. Sivashinsky GI. Ann. Rev. Fluid 
Mech. 1983;15:179. 
26. Landau LD, Lifshits EM. Statisti
cal physics. Moscow:N, 1964. [in Russian]
27. Kardar M. Phys.Rev.Lett. 1986;56:889.
28. Bouchaud JP, Mezard M. Phys. 1996;5116. 
29. Furutsu K. J. Res. Nat. Bur. Stan-
dards. 1963;67:303. 
30. Novikov EA. JETP. 1964;47:1919. 
[in Russian]
31. Malakhov AI, Saichev AI. Izv. Vu-
zov. Radioph. 1971;17(5):699. [in Russian]
32. Gurbatov SN, Saichev AI, Yakushkin 
IG. Physics-Uspehi. 1983;141:221. [in Russian]
33. Pelinovsky YN. Izvestiya Vuzov.  
Radiophysics. 1976;19(3):373. [in Russian]
34. Chefranov SG. JETP. 1989;96:171. 
[in Russian]
35. Polyakov AM. Turbulence without 
pressure. Phys.Rev.E. 1995;52:6183. 
arXiv: hep-th/9506189v1, 28 Jun 1995.
36. Novikov EA. Izv. AN SSSR. 1976; 
12(7). [in Russian]
37. Chefranov SG. Letters to JETP. 
2001;73:312. [in Russian]
38. Chefranov SG. Phys.Rev.Lett. 2004; 
93:254804. 
39. Chefranov S G, Chefranov AG. 
Doklady Physics. 2015;60:327. [in Russian]
40. Chefranov SG, Chefranov AG. JETP. 
2016;122:925. [in Russian]

2

νµ
λ

= .

0th tλ λ ν< =


