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 Aims This paper describes a novel approach to the analysis of electrocardiographic data 

based on the consideration of the repetitive P, Q, R, S, T sequences as cyclic codes. In 

Part I we introduce a principle similar to the syndrome decoding using the control 

numbers, which allows correcting the noise combinations. 

 

 Materials and 

methods 

We propose to apply the burst-error-correcting algorithms for automatic detection of 

the ECG artifacts and the functional abnormalities, including those compared to the 

reference model. Our approach is compared to the symbolic dynamics methods. 

During the automated search of the code components (i.e. point values and spectral 

ranges one-to-one corresponding to P, Q, R, S, T) considered in Part II, the authors 

apply the Lomb-Scargle periodogram method with the phase control which allows to 

determine the code components not only from the main harmonics, but also using the 

sidebands, avoiding the phase errors. 

 

 Results The results of the method testing on rats with the heart failure using a simplified 

telemetric recording from the implantable chips are given in Part III. A complete 

independence of the results of the determination of the code points (fingerprints) 

from the variables for which the calculation is performed is shown. We also prove the 
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robustness of the above approach with respect to the most types of the non-adaptive 
filtration. 

 Conclusion The above method can be useful not only for experimental medicine, but also for 
veterinary and clinical diagnostic practice. This method is adequately reproduced 
both on animals and human ECG, except for some constant values. 

 

 Keywords ECG • Cyclic codes • Error corrections • Syndrome decoding • Control numbers • 
Lomb-Scargle periodogram methods • Fingerprinting  

 

 Imprint Evgenie D. Adamoviс, Pavel L. Aleksandrov, Oleg V. Gradov, Leonid M. Mamalyga, 
Maksim L. Mamalyga. Correction of the recording artifacts and detection of the 
functional deviations in ECG by means of syndrome decoding with an automatic 
burst error correction of the cyclic codes using periodograms for determination 
of the code component spectral range. Part 1: Basic principles of the novel 
approach; Cardiometry; No.6; May 2015; p.65-76; doi: 10.12710/cardiometry.2015.6.6576 
Available from: www.cardiometry.net/no6-may-2015/functional-deviations-in-ecg 

 

 

 

Is it rational to use the cyclic codes in ECG interpretation? 

It is well known that a normal sinus rhythm is characterized by the periodicity and regularity of the 
P, Q, R, S, T components, while any deviations from the cycle (beat-to-beat interval) belong to HRV 
(Heart Rate Variability) and are usually considered as the cycle length variability, RR variability, 
heart period variability, etc. Thus, any method based on the detection of the cyclicity, iteration 
interval or the period of the signal (including a single component shifted one) can be successfully 
applied for the periodicity analysis and diagnostics of the functional abnormalities (especially for 
arrhythmias) using ECG, as well as for the detection and correction of the artifacts of the 
electrocardiographic data computer identification associated with the improper fixation of the 
electrodes on the patient's body leading to the changes in the waveform or periodicity of the cardiac 
cycle components. In particular, this recognition process with the parallel correction is very useful 
both for telemetric electrocardigraphic analysis in experimental veterinary medicine and for Holter 
monitoring on the active patient, since the dynamics of the monitored organism inevitably affects the 
ECG waveform and periodicity [1,2].  

The automatic decomposition of the ECG signal into the principal P, Q, R, S, T components makes it 
possible to establish one-to-one correspondence between them and the computer font symbols 
which allow to perform fingerprinting of the functional states and organic disorders changing the 
heart rhythm. A similar approach can be implemented within symbolic dynamics where the 
electrophysiological activity of the heart is considered as a dynamic system with the points of the 
phase space represented by the sequential set (a so-called alphabet, e.g. P-Q-R-S-T), and the certain 
disruptions in the heart rhythm can be considered as the sequential shift [3]. In this context we 
deliberately define the PQRST-alphabet in terms of the digital sequential logic, since it considers the 
operation background of the systems modeled in a discrete form, which is important for diagnostics 
and researches with the check experiments. From the mathematical standpoint it would be more 
accurate to define it using the Bernoulli automorphism, invariant closed subsets and invariant 
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measures, but it is almost useless for the purposes of this methodical paper, while the application of 
the classical analytical tools – the asymptotic methods and the perturbation theory series, does not 
satisfy this task from the metrological positions.  

The first application of symbolic logic to the cardiographic data analysis dates back to the late 1970s 
– early 1980s [4,5] and becomes methodologically complete during the period from 1982 to 1986 
which resulted in the development of the symbolic logic notation (language and "alphabet") 
describing the sinoatrial node activity and its rhythm as a regulator of the contractile frequency [6], 
symbolic systems of analysis and visualization for electrical mapping of the heart with the predicate 
elements being the symbols of the spatiotemporal mapping [7] and for automatic interpretation of 
the myocardial scintigrams [8] based on the mathematical logic predicates of the Horn clause in the 
logic programming  language PROLOG.  

This laid a physico-technical basis for the spatio-temporal, and hence, morphophysiological 
interpretation of the cardiological data within symbolic logic and at the same time resulted in the 
publication of several papers combining morphological measurements with the computer-assisted 
symbolic logic analysis (e.g., see a well known paper on the myocardial vascular microangiopathy 
[9]). However, being directly related to the progress and spread of the computer technology, a full 
introduction of symbolic diagnostics to the routine medical practice became possible only in the 
1990-th, particularly due to the required transition from symbolic logic to symbolic dynamics 
necessary for identification of the transient cardiac syndromes associated with the nonlinear 
phenomena determined from the ECG.  

The very first complex application of symbolic dynamics in cardiology for the above purpose dates 
back to the middle 1990-th [10], while nonlinear, chaotic and noise phenomena in HRV have been 
quantitatively studied earlier [11]. To date the application of symbolic dynamics in HRV analysis has 
already become a routine procedure [12]. A significant advantage of symbolic dynamics is the 
simplicity of its mathematical algorithms involved in detection of the correlations between the 
cardiac and respiratory syndromes and factors [13], as well as in the determination of the cardio-
neurological correlations and cause-and-effect relationships (in the framework of the predicate 
logic) including significantly nonlinear HRV measurements [14,15]. To date it does not make any 
difficulties, since the parameters causing nonlinearity of the HRV curves are well studied [16] and 
the regimes corresponding to the transient phenomena and rhythmic (amplitude-frequency) 
distorsions can be easily expressed in terms of symbolic dynamics [17]. It is also essential that 
application of symbolic dynamics allows to detect and analyze the natural modulations of the cardiac 
activity independently of their source and origin [18,19]. One of the most clinically relevant 
applications of the above approach is a long-term monitoring of the cardiac rhythm change in the age 
physiology and pathology [20,21], starting from the fetal stage of development [22,23].  

The possibility of the multi-scale analysis of the cardiac activity and HRV using symbolic dynamic 
techniques [24,25] provides broad prospects for diagnostics. Thus, the application of symbolic 
dynamics to the classification of electrocardiographic signals [26] allows to diagnose various 
diseases, including those difficult to be identified at the early stages due to the lack of a clear clinical 
picture, such as dilated cardiomyopathy [27]. As for the mathematical foundations of the above 
classification, one should consider different existing approaches to HRV analysis in symbolic 
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dynamics [28]. This diversity results from the difference of variables, boundary conditions and 
confidence intervals of the accurate parameter detection and quantization determining the so-called 
"pathological" values. Of special interest is the correlation adjustment of the data typical for 
cardiorespiratory comparative (i.e. comparison of the syndromes) and correlation studies. For 
example, the known relationship between the cardiac and respiratory cycles expressed in terms of 
symbolic dynamics [29] provides an automatic detection (without any external models [30]) of the 
deviations from the above function indicating the presence of either functional disorders or organic 
pathologies. This method (with the known cardiorespiratory interactions expressed in the symbolic 
dynamics notation [31]) allows to detect a number of diseases, such as hypoxia / ischemia effects 
[32], obstructive sleep apnea [33], interactions between the cardiac and respiratory oscillators 
associated with the stages of sleep in healthy children [34], etc. It is noteworthy that in such cases a 
similar respiration pattern variability analysis is also performed and the corresponding optimized 
symbolic dynamics approaches for the pattern analysis and calibration are also developed [35,36]. 

All the above methods are based on the monitoring of the deviations from the beat-to-beat interval 
and HRV – cycle length variability, RR interval variability and heart period variability, e.g. symbolic 
dynamic analysis of beat-to-beat interactions of heart rate and systolic blood pressure [37], 
assessment of the RR versus QT relation by the symbolic dynamics method [38], and the classical 
concepts about the heart rhythm are quite sufficient for analysis at this level [39]. Another positive 
aspect of the electrocardiographic PQRST-sequence analysis using symbolic dynamics methods is the 
possibility of the casuality analysis within the cycle and in its relevant repeats [40] despite the fact 
that in the framework of symbolic dynamics hidden Markov models are also developed without any 
dependence of the current parameter value from the previous state of the system [41], which seem 
to be regarded as the Bayesian belief networks. In this regard one can conclude that symbolic 
dynamics in cardiology operates both at the state-space of a periodic PQRST-oscillator / pacemaker 
[42] with a high determinism inherent to the healthy heart [43] and at a noisy case [44] with an 
indeterminism caused by a number of states with a various degree of proximity of the real PQRST to 
the model one according to the Hamming theory [45]. However, it is important to find out which 
symbolic dynamics can operate in presence of the intermediate or "parasitic" (considered as 
artifacts) states?  

Many authors and users try to minimize the bit depth of the data under processing reducing the point 
phase space of symbolic dynamics to the binary trigger simulation: methods for analysis of the binary 
sequences are adapted to the cardiac activity analysis [46], the information entropy of such 
sequences is also calculated and fitted [47] and the special systems based on the above binary 
approach for HRV pattern biomedical classification at the autonomic modulation are also developed 
[48]. However, this approach reduces both the diagnostic accuracy at the registration stage and the 
robustness of the signal processing. 

At the same time for dynamical systems which can be attributed to symbolic dynamics mapping is 
defined as a sequence shift by a single symbol which is described by either Markov or Bernoulli shift 
conditions, so the shift in a reduced phase space (with a reduced symbol alphabet) decreases the 
quality of the mapping compared to those of the standard full alphabet (P, Q, R, S, T). Thus, we do not 
claim that the above cited works are not correct, but we postulate the need for an alternative method 
/ approach which, on the one hand, will take into account the cyclic nature, regularity and periodicity 
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of the ECG, and, at the other hand, will be able to detect the arrhythmia and the recording artifacts 
(i.e. the delay and “outrunning” in a readback mode). 

A biomathematical approach proposed 

We propose to solve the above problems by using a mathematical apparatus of the cyclic codes' 
decoding [49]. A regular iteration of the PQRST-sequence (P−wave, QRS−complex, T−wave) in the 
Einthoven's triangle suggests that the above cyclic dynamics can be described by cyclic codes. In 
general, a cyclic code at the ECG is a linear block ( , )n k  − code which being shifted by a single step to 

the left produces a code word which belongs to the same code, and the manifold of the code words is 
a set of polynomials degree 1n−  and less, dividing by the generator polynomial ( )g x  degree r n k= − , 

which is a factor of the binomial 1nx + , and the code words in this code are represented as 

polynomials: 
1 2 1

1 2 1 0( ) n n o
n nv x v x v x v x v x− −

− −= + + + +K , where n − is the code length; iv  − coefficients 

from the field ( )GF q . If we interpret the heart rhythm as a stable code (due to the automatism of the 

heart muscle and autonomous regulation) with the errors indicating physiological abnormalities, one 

can represent a PQRST sequence as a “code over a field ( )GF PQRST ” analogous to the binary code 

being a code over a field (2)GF . From the technical positions, the code shift either to the left or to 
the right will determine the cyclic window, but this will not be included in a statistical analysis. This 
is consistent with the symbolic dynamics theory in a shift context [50].  

An error detection with respect to the reference code range with the normal rhythm, pulse interval, 
force and tension, and the absence of the rhythm failures can be achieved using an error polynomial 

( )e x and a syndrome polynomial ( )S x . An error polynomial can be determined from the equation: 

( ) ( ) ( )e x v x v x•= + , where ( )v x•
 and ( )v x  are polynomials representing an accepted (with an error) 

and transmitted code words, respectively, with non-zero coefficient positions in ( )e x  corresponding 
to the errors. An essential feature of some cyclic codes is the ability to correct burst errors. In the 
case of the cardiac activity this function is performed due to the bioelectric heart automatism and 
compensatory homeostatic effects. 

A syndrome polynomial used in cyclic code decoding is given by a remainder of the division of the 

code word by the generator polynomial: ( )( ) ( )j g xS x R v x•=  or 

( ) ( )
( ) ( ) ( ) ( )j g x j jg x

S x R v x e x R e x•   = + =    , i.e. directly depends on the error polynomial ( )e x , and 

hence, can be applied to the generation of a syndrome table which is used in the decoding process 
and contains a list of the error polynomials as well as the list of syndromes determined from the 

expression ( )( ) ( )j g x jS x R e x =   . Automatic correction of the recording artifacts can be performed by 

means of a table search of the polynomial ( )e x , which after summation with the code word gives a 

new corrected code word: ( ) ( ) ( )j j jv x v x e x•= +   

From the standpoint of the algebraic block code theory, the code cyclicity imposes serious 
restrictions on the code word set, which simplifies the decoding procedure in electrocardiography, 
since both Bose-Chaudhuri-Hocquenghem (BCH) codes capable of correcting several independent 
errors and Golay codes which correct single, double and triple errors are sufficient enough in this 
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case, as nothing more is required. The length of a primitive cyclic code, when 1mn q= −  over 

( )GF PQRST  may be quite sufficient for interference-free data interpretation. The proximity of 

interpretation and pointedness of the mathematical apparatus (formalism) allows to use the cyclic 
code decoding methods in the same manner as the symbolic dynamics methods with the ECG 
sequences recognition as algebraic curves [51]. This is facilitated by the presence of several systolic 
architectures for cyclic code decoding [52] which allows to perform the coding even in the extremely 
simplified case – within the classical binary sequences' analysis discussed above [46].  

Moreover, there is a number of quasi-cyclic codes [53,54] which include in the framework of this 
approach the ECG codes over the field ( )GF PQRST . This is promoted by the existence of the 

quaternary quasi-cyclic codes [55]: if we consider one of the wave components as a “punctuation 
mark” in the structural numeration of the ECG components [56] (which corresponds to the 
consideration of the heart automatism as the analog "sequential machine" [57] but is not applicable 
to any other non-systematic irregular electrophysiological sequences [58]), so codes over the field 

( )GF PQRST  will appear to be ternary ones with a fixed point. This requires an automatic 

determination of the heart rate as a cyclic code rate [59] and beating [60] with automatic positioning 
(fingerprinting) of the “punctuation point”. For this purpose computer analysis of cyclic codes applies 
the weight spectra [61] which may be successfully used in cardiography where symbolic dynamics 
analysis is often combined with the spectral analysis [62], especially for the search of distortions [63].  

The feasibility of introduction of the above approach to the clinical practice at the current stage can 
be proved by the already accomplished (within the US and the EU) implementation of the combined 
spectral frequency, pulse-time and symbolic dynamic methods of the heart rhythm variability in 
hepatology [64], gender fingerprinting using combined spectral and symbolic dynamic techniques 
both in the prevention and clinical examination [65], combination of the morphometric, 
ultrastructural, optical microscopic and symbolic-logical analysis in cardioendocrinology at 
myocardial microangiopathy and experimental diabetes [66]. In the areas where spectral analysis is 
traditionally used, such as the analysis and detection of ventricular tachycardia [67], symbolic 
dynamics approaches are implemented to perform the same functions [68]. One of the current trends 
is combined multiparameter analysis using wavelet-based symbolic representations [69] which does 
not allow to make a clear distinction between the spectral and symbolic approaches. In this regard, 
we propose a novel approach where the elements of symbolic dynamics are determined by the 
computer rather than by a physician / operator, automatically performing "fingerprinting" of the ECG 
signal with the subsequent comparison to the statistically relevant recognizable spectral components 
(and the related harmonics) in the indicator dynamics (e.g. in the form of cumulative spectral decay), 
indicating their belonging to the certain components of the cyclic code over a field ( )GF PQRST . The 

statistical deviation values [70] in this case will indicate the heart rate variability in symbolic 
dynamics [71], and the presence of nonlinear phenomena after detection and detrending of the 
fluctuations will indicate certain biophysical mechanisms rather than the recording artifacts [72]. 
From the standpoint of the cyclic code mathematics substituting symbolic dynamics, detection of the 
ectopic pulses in nonlinear dynamics of the heart rhythm [73], will be an essential part of the code 
error detection procedure [74].  
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Thus, the main aim of this paper was to demonstrate the possibilities and the prospects of the concept 
proposed (i.e. spectrally-mediated determination and fluctuating code range specification during 
ECG interpretation). For this purpose it is also necessary to demonstrate the stability of the frequency 
components' determination (fingerprinting) and the independence of their values from the 
discrimination and filtration types, as well as from the variables used. These problems will be 
considered in the next part of this work. 
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