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 Abstract In the suggested here linear theory of hydrodynamic instability of the Hagen - 

Poiseuille flow it is counted the possibility of quasi periodic longitudinal variations, 

when there is no separation of the longitudinal and radial variables in the description 

of the disturbances field. It is proposed to use the energetic method and the Galerkin 

approximation method that takes into account existence of different values of 

longitudinal variability periods for different radial modes corresponding to the 

equation of evolution of extremely small axially symmetric velocity field tangential 

component disturbances and boundary condition on the tube surface and axis. We 

found that even for two linearly interacting radial modes the HP flow may have linear 

instability, when )(ReRe p
th

> and the value )(Re pth  very sensitively depends on 

the ratio p of two longitudinal periods each of which describes longitudinal variability 

for its own radial mode only. Obtained from energetic method for the HP flow linear 

instability realization minimal value 704minRe ≈th  (for N=600 radial modes) and 

from Galerkin approximation 448Re min ≈th  (for N=2 modes with p=1.516) which 

quantitatively agrees with the Tolmin-Shlihting waves in the boundary layer arising, 

where also the threshold value 420Re =th  is obtained. We state also the agreement 

of the phase velocity values of the considered in our theory vortex disturbances with 

the experimental data on the fore and rear fronts of the turbulent “puffs” spreading 

along the pipe axis.  
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Introduction 

Fundamental and applied problem of defining of the turbulence arising mechanism for the Hagen-

Poiseuille (HP)1 flow more than century is left mysterious because of the linear stability paradox of 

the flow with respect to extremely small by amplitude disturbances for any Reynolds number value 

ν
RVmaxRe =  (where RV ,,max ν   are the maximal HP flow near axis velocity, kinematic viscosity 

coefficient, and pipe radius respectively) [1-4]. Obvious contradiction with experiments 

corresponding to the paradox now is used to be coped with based on an assumption of permissibility 

of the HP flow instability with respect to disturbances having sufficiently large finite amplitude strict 

non-linear mechanism only [5-10]. The basis for such the assumption (see [3, 4]) gives one side 

interpretation of experiments [11] in which many-fold increase of the threshold Reynolds number 

value thRe  up to 100000 is achieved due to the increase of the level of smoothness of the streamlined 

pipe surface. In this interpretation, only correlation between the surface smoothness increase and 

resultant decrease of the average amplitude of the original disturbances is taken into account. At the 

same time, noted even by O. Reynolds [1] extremely high sensitivity of the value of thRe  to the initial 

disturbance does not exclude possibility of impact on thRe  of not only amplitude but also space-time 

characteristics of the disturbances also caused by non-ideal smoothness of the streamlined surface. 

Actually, for example in the experiment [12], it is found that under the fixed amplitude of artificially 

excited disturbances, instability of the HP flow emerges only in some definite narrow range of the 

disturbances’ frequencies. 

In the present work, we show that possibility of linear absolute (i.e., non-convective [4]) instability 

of the HP flow is defined by the value of complementary to the Reynolds number Re control 

parameter p , which characterizes frequency-wave features of the disturbances and determines the 

value of the threshold Reynolds number )(Re pth independently from the amplitude of the initial 

disturbances. Such complementary parameters are easily introduced in all known HP flow 

modifications – in the cases of the flow in the pipe with the existence of near-axis cylinder [13], in the 

pipe with   elliptic cross section [14], in the rotating pipe [15, 16], and even for a flow transferring 

particles of finite size in a pipe [17]. In all these examples, there already exists complementary to the 

Reynolds number control parameter p   and the linear stability theory paradox is absent. This 

examples show that “circumvention” (see [5]) of the HP flow linear stability paradox due to the 

consideration of strict finite amplitude only mechanism of instability of the flow “hardly can satisfy 

anybody” [18]. 

Introduction of such a complementary parameter p for the HP flow is already not as obvious as 

for the HP flow modifications in [13–17]. It however is performed below on the base of pointed by O. 

Reynolds  [1] (and then by W. Heisenberg also for the flat Poiseuille flow, see in [4, 6]) concept of 

dissipative instability mechanism2  of the HP flow related with the action of molecular viscosity ν  

near the very solid boundary. According to [1], the mechanism manifests itself in the form of 

                                                        
1 HP flow is by definition a laminar stationary flow of the uniform viscous fluid along the static straight linear and unbounded 
in length pipe with round same along the whole pipe axis cross section 
2 Such a mechanism is naturally realized in the systems having disturbances with negative energy [19-22], for example, for 
threshold emergence of vortexes (rotons) in the flow of super-fluid helium in a capillary [19]. 
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spontaneous one-step emergence for  thReRe >  of vortexes having character size νL , «..that is 

already not growing as it was expected with the growth of the velocity amplitude [1]». That is why, 

the value νL  must significantly differ also from the length scale max/Vl νν =  that leads to the Reynolds 

number defining as νlR /Re =  and explicitly depending on the stream velocity maximal amplitude 

value. Such scale νL  seemingly related also with the level of the streamlined pipe surface smoothness, 

may together with the of radius R define not amplitude only but also frequency-wave initial 

disturbance parameters, for example, their longitudinal along the pipe axis (axis z) spatial periods. 

The ratio of the periods 
R

L
p ν=  as it is shown below is a new complementary parameter defining 

the HP flow linear instability threshold with respect to extremely small by amplitude vortex 

disturbances. Note that for any Reynolds number value, p can vary in vast range from p<<1 to p>>1. 

It is suggested here to use disturbance structure representation in the form of two radial modes 

each of which having its own period of longitudinal variability differing from that of the other mode. 

Such representation corresponds to the observed conditionally periodic Tolmin - Shlihting (TS) 

waves emergence of which (caused also by near-boundary action of the molecular viscosity) 

precedes blow-like emergence of the turbulence in the near-boundary layer [23-25]. Besides that, 

even in [2, 26], it is noted that usually considered in the linear stability theory “normal” periodic by 

z   disturbances fields obviously don’t correspond to the structures observed in the experiments, for 

which different longitudinal periods for different radial modes are characteristic. 

In the present work, it is shown that leaving off the assumption of separation of the longitudinal 

and radial variables defining spatial disturbance variability leads now to the finite value of the 

minimal threshold Reynolds number 448Re ≈th  ( ..53.1≈p ). Close to it threshold Reynolds number 

value is characteristic also for the observed threshold for the transition from the laminar resistance 

law to another one [2, 27] and for the conditions of excitation of TS waves in a boundary layer [25]. 

We have conducted comparison of the considered theory with the experimental data for the flow in 

the pipe [28-30] and also with the conclusions of the stability theory (Tolmin-Shlihting and Lin) and 

experimental data on the stability of laminar near-boundary layer [31]. We obtained correspondence 

not only of the quantitative values of the critical Reynolds number for linear exponential instability 

for the HP flow and for TS waves excitation (where also 420Re =th ), but also similar shapes of 

instability regions (bounded by the curves of neutral stability). This also confirms expected above 

similarity of their viscous dissipative realization mechanisms. 
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Materials and methods 

1. The statement of the problem 

Let us consider known (see [4]) representation of the HP flow in the cylindrical reference frame 

),,( ϕrz : )
2

2
1(max0,000 R

rVzVVrV −=== ϕ , where 
z

pRV ∂
∂

= 0
4

2
max ρν , the fluid density const=ρ , 

z
p
∂

∂ 0   

is the constant value of the pressure gradient 0p  along the axis of the pipe of radius R , and ν  is the 

coefficient of kinematic fluid viscosity. 

The linear stability of this flow is considered for the more simple case, when there exist only 

extremely small disturbances of tangential component of velocity and the stability to the “normal” 

pure periodic longitudinal disturbances is easy to determine at all Reynolds numbers. We 

demonstrate here that, when instead of this “normal” form, it is taken into consideration quasi 

periodic longitudinal variability of disturbances, it is possible for HP flow to be linear unstable for 

the finite Reynolds numbers larger than some threshold value.   

In the axially symmetric case (i.e. for extremely small disturbances not depending on the angular 

coordinate ϕ ) linear instability of the HP flow can be defined by the tangential velocity component 

ϕV  only, which meets the following equation in dimensionless form (when y=r/R, x=z/R, 

νντ /Re;/ max
2 RVRt ==  ) and corresponding boundary condition on the rigid surface of the tube at 

y=1 and at the axis of the tube at y=0: 
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where the value ϕV in (1) is also dimensionless ( normalized on maxV ).  

When other components of velocity disturbances are absent in this axially symmetric case the 

equation and boundary conditions (1) are also useful to describe evolution of finite amplitude 

disturbances, not only extremely small ones. The solution of equation (1) must be found with 

boundary condition 0=ϕV  at y=0 because the angular velocity of rotation on the axis of the tube must 

be finite. It is useful to represent the solution of  equation (1) satisfying boundary condition of (1) as 

follows: 
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In (2), 1J - is the Bessel function of the first order and the value N must be considered as infinite  

for obtaining the exact solution of (1) with mentioned in (1) and (2) boundary conditions on y and x. 
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Thus, instead of the traditional “normal” periodic form (which coincides with (2), when in (2) 

constTTn == for all n) we introduce in (2) the new definition of individual periodic boundary 

condition along the infinite tube for each radial mode with number n=1,2,..,N. 

The statement of the problem (1), (2) for the longitudinal quasi periodic disturbances n=1, 2,. ..,N, is 

different from previously used in linear theory of hydrodynamic stability, where the pure periodic 

conditions along the tube are considered. In the experimental data [2, 26], from the other side, only 

quasi periodic variations take place and (2) is better complying to them than traditional “normal” 

periodic form of disturbances. 

2. Energy consideration 

Let us consider, on the base of (1), (2), evolution of the average energy (on the unit of mass): 
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For example, in (3), we may take 1,1max /1 jT = . 

From (1), it is possible to obtain the following equation for the exponential index 1λ of energy 

growth (for 01 >λ ) or fall (if 01 <λ ) in time: 

   

,02
1

)(

);()(2

)),0()0()()()((
1

,))0()0()()((
1)(

)1(

)()(;Re2

1
2

2

2

2
2
,1

0max
,1

2
22

,11,11
3

1

0

maxmax,1
1

2
2

max
11

11maxmax
1 1max

2
1

2222101

max

>







−−=

==

−=

−−=
∂

∂−−=

−∆+−∆−=−=

∑ ∫

∫

∑

∑∑

=

∗
∗

∗

∗∗

=

∗∗

= =

∗

∗
∗∗

N

n
nnnnn

T

n

mnmnnm

nnnnn

N

n

mnmn

N

n

N

m
nm

dx

Ad
A

dx

Ad
AAAjdx

T
jJI

yjJyjJydyqq

AATATAjJ
T

I

IAATATAq
Tx

VV
yI

y

V
VV

y

V
VVIIIIλ

  (4)                   

where 2J is the Bessel function of the second order. 

Let’s consider a special case, when in (2)–(4), )22exp()( 0 nnnn ixiAxA πβπα += , and, from (4), we 

have: 
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where 1/αα nnp = ( 1331221 /;/;1 αααα =≡== pppp  and so on). For the convergence of sums in 

(5), (6) in the limit of ∞→N , the following inequality for amplitudes shall hold: 0,/1 1
,10 >< + kjA k
nn .                                       

For k
nn jAA += 1

,100 /  when k>0 and constn == ββ  for all n, from (5), (6), we can obtain the 

following criterion of the HP flow linear instability (only for the cases with c>0 in (7)): 
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Minimization of );...;;;(Re 31 NEth pppα in (7), (8) on 1α gives the following criterion of the HP flow 

linear instability (when ba /min11 == αα ): 
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In (9), for the limit of ∞→N , if 1,1,11 // jjp nnn == αα , n=3,4,…, there is only one free continuous 

parameter p on which )(Re
min11

min pEth
αα =

can be minimized. It allows determining of the threshold Reynolds 

number absolute minimum 704Re min =thabs  when p=0.481 and k=0.7 (minimization was made over  p 

and k). Dependence of the right hand side of (9) on p is presented in Fig.1d for N=600, k=0.7. 

Thus, only when 0≠ν  in (1), it is possible to expect realization of the HP flow viscous dissipative 

instability for some above threshold Reynolds numbers, thRе Re> . Actually, when 0=ν , the right-

hand side of (1) also turns to zero (if considering (1) in its original dimensional form). In that case, 

only convective disturbance transfer without change of its form and amplitude in time takes place. 

From (4), it follows that instability of the HP flow obviously is not realizable also in the case of the 

pure periodic variability of ϕV  along the pipe (see also (24.7) in [2]) when 01 =I and 01 <λ in (4). If 

to refuse from that, so called “normal”, periodic form for the disturbance field in (1), as we do in (2), 

it is possible to obtain another result from (4) allowing to realize the conditions, when in (6)-(8), the 

value of 1I is positive, 01 >I , and, under condition (9), exponential growth of the disturbance energy 

with 01 >λ takes place.  

Let’s also note that due to the consideration in (1) of only velocity field tangential component 

disturbances, conservation of the mass stream through the cross section of the pipe for the 

superposition of the main flow and disturbance field is provided identically. Natural emergence of 

such disturbances in an axially symmetrical stream really may be hindered although it can’t be fully 

excluded due to the possibility of presence of corresponding randomly-non-uniform smoothness of 
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the streamlined pipe surface. In the laboratory simulation of the HP flow such disturbances can be 

easily artificially created (see [12]). Let’s note also that combination of the main stream and 

considered disturbance field has non zero value of integral helicity.  

For the disturbance representation in the form (2), on the boundary at y=1, only vortex field 

radial component 
x

V
y ∂

∂
−= ϕω  shall turn to zero. The value of the longitudinal vortex field component 

y

yV

yx ∂
∂

=
)(1 ϕω  on the boundary at y=1 has already non zero value that corresponds to the character 

of forming of the vortex disturbances due to interaction of the stream with the solid pipe wall caused 

by viscosity forces. 

In the considered energy theory, we have used for amplitudes nA , characterizing different 

radial modes, only restrictions related with the necessity of convergence of the sum 2I  in (5). 

3. The Galerkin–Kantorovich and Bubnov-Galerkin methods 

On the base of using the Galerkin–Kantorovich method, for the coefficients nA , characterizing 

amplitudes of the linearly interacting disturbance field radial modes, from (1), (2), we get the 

following system of equations in dimensionless form: 
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where m=1, 2, 3, … . In (10), constant coefficients nmP have the form 
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where J 2  are the Bessel functions of the second order and the linear with respect to y  term 

under the integral sign yields in nmP  the contribution in the form of unity matrix 






≠
==

mn
mn

nm ,0
,1δ . For 

1=N in (10), the last term can be excluded by Galileo transformation and hence for 1=N , there is 

no opportunity of the global absolute instability of the HP flow. In that relation, we shall consider 

(10) in the simplest non-trivial case 2=N , that allows already to resolve the HP flow linear stability 

paradox and leads to the conclusions quantitatively agreeing with the experimental data [29, 31]. 

As it was already noted, observed in the experiments field structures do not correspond to 

strictly periodic along the pipe axis disturbances changes (see above and [2, 26]). More over, in [26], 

it is noted that different radial modes (defining dependence of the disturbances on the radial 

coordinate) have corresponding differing each from the other variability periods along the pipe axis. 

This behavior of the observed disturbances change can be modeled with the help of the use in the 

representation of the system (10) solution an assumption on the difference of the longitudinal 

periods along the pipe axis for radial modes with different values of index m. Such a requirement 

corresponds to the introduction for each of these modes of its own, independent from the other 
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modes, periodical boundary condition on x. In the result, there emerges necessity in the use of the 

adequate to the pointed boundary conditions Galerkin’s approximation of the system (10) solution. 

Let in (10), for 2=N , amplitudes 1A and 2A have the form of the running waves with different 

periods along the pipe axis: 

nixe
M

n
n

AA παλτ 2

1
101

+
∑
=

= , 
nixe

M

n
n

AA πβλτ 2

1
202

+
∑
=

= ,                       (12) 

where 10nA and 20nA  are the constant values. Meanwhile, complementary to the Reynolds 

number Re  control parameter can be defined as β
α=p  for any α  and β . Using (12), from (10) when 

N=2, we get on the base of using of Bubnov-Galerkin weighed differences method the following 

system for 2M unknown constant coefficients appearing in (12) under the symbols of summation: 
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For simplicity, let’s consider the case M=1 in system (12) (i.e., farther, we shall use 

2012010110 ; AAAA ≡≡  ).   

In the result, the system (13) is transformed into a uniform system with constant coefficients for 

the unknown values 10A and 20A . From the condition of solvability of this system for the non zero 

10A and 20A , we define the value of the  exponent  21 λλλ i+=  depending on dimensionless 

parameters Re , p  and β  (see (A.1) and (A.2) in Appendix). 

It is interesting also to consider more general cases with N>2 and M>1. Here we note only 

permissibility of the very fact of existence of linear exponential (not algebraic, with the power law of 

growth with time) instability of the HP flow stated in the present work. Let’s note that even if in the 

system (10), to turn the kinematic viscosity coefficient to zero, then this does not exclude as for (1) 

possibility of the HP flow linear instability realization. It is related with the fact that already the very 
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inference of (10) from (1) and (2) for N>1 is based on the finiteness of the kinematic viscosity 

coefficient in (1). 

The condition of existence of linear exponential instability has the form (A.3). For 1Re >> , (A.3) 

may be reduced to (A.4). Meanwhile, the value β , defined in (A.5), minimizes the expression for th
Re  

in (A.4) and defines the following condition of the HP flow linear instability condition (giving the 

estimate from below of the exact value th
Re , defined from (A.3)): 
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because for any p , inequality 02 >A  holds. 

In the condition (14), providing realization of the HP flow linear instability realization Reynolds 

number threshold value can tend to infinity ∞→
th

Re only for such p , for which the denominator 

in (14) turns to zero.  It takes place for 0=S , when the value of the ratio of longitudinal periods is 

equal to one of the following irrational numbers 
kk

ppk
k

pp
1

/1
, ==== , or equals to one of the 

irrational numbers defined by the following equality 
2

42)1(1 −+±+
==

kk

k
pp  for any integer 

k ( ,..2,1=k ). For p , related to the intervals of variability p  between any two neighboring values 

k
p

k
p

k
p ,

/1
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th
Re  in (14) is a function of p , having one local minimum on each of the 

mentioned intervals (see Fig. 1,b). And the value of the absolute minimum 442mineR
~ ≈

th
 in (14) is 

reached for ..53.1≈p , close to the value of the “golden” ratio ..618.1
2

51 ≈+=
g

p  (i.e., the limit of 

the infinite sequence of the ratios of two neighboring Fibonacci numbers each of which is equal to 

the sum of two previous numbers: 1, 2, 3, 5, 8, 13, 21, etc.). For the same p , from the exact condition 

(A.3), we get close value of the absolute minimum 448mineR
~ ≈

th
 (see also Table in the Appendix 

where conclusions on the base of (A.3) and (14) are compared). 
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Results and Discussion 

The comparison with experimental data and results of TWs (travelling waves) numerical simulation 

1. Found value 448mineR
~ ≈

th
corresponds to the interval of values 500300Re ÷∈ , noted in 

experimental observation of the threshold transition of the laminar resistance law (for a flow in the 

pipe) to another already non laminar (but yet not obviously turbulent) resistance mode [2, 27] and 

for Tolmin-Shlihting (TS) waves in the near wall region of the boundary layer [25]. Observed in [1] 

and other experiments (see references in [29, 30]) unusual sensitivity of the value 
th

Re to the initial 

disturbances, actually, corresponds to the obtained in (14) dependency of 
th

Re  on p , when, for 

example, 
th

Re  in (14) changes nearly 600 times only when p changes from the value 0,12 to the 

value 0,11. Neighboring local minima of 
th

Re  in (14) also may significantly differ each from the other. 

For example, for the value 23.2≈p , we have in (14) 1982Re ≈
th , and for the value 86.3≈p , already 

we get 84634Re ≈
th . In the scaled form, fragments of the neutral curve, corresponding to the 

condition (14) (see Fig. 1b), are given on Fig. 1a) in the form of dependency of the value 1/2p on Re. 

They are plotted on the taken from the paper [31] Fig.12, on which theoretical (of Lin and Shlihting) 

neutral curves and respective experimental data, related with the determining instability emergence 

threshold in a boundary layer, are given. Obvious correspondence of the results following from Fig. 

1a) allows us making the conclusion also about similarity of the linear dissipative instability 

mechanisms realized for the HP flow (when meeting the condition (14) or (A.3)), as well as for 

Tolmin-Shlihting waves excitation in a boundary layer.   

2. Conditionally periodic with respect to x structure of the initial disturbances field ϕV  in the 

representation of the solution (1) in the form (2), (12) agrees with the observed ( in [29] ) wave 

velocity field tangential component disturbances changes along the pipe axis. It is especially obvious 

near very turbulence dying threshold for 1750Re ≈ , when on Fig. 5d in [29], it is possible to recognize 

pairs of characteristic longitudinal variability periods ratios of which are close to the values 
5

8≈p

=1.6 and 
8

13≈p = 1.625 which are close to the value of the “golden” value of the periods ratio  
g

p

=1.618... .  

3. On the Fig. 2a) (where  Fig. 4 from [30] is used as a basic), dependency on Re  of the turbulent 

spot rear front constant velocity observed for the flow in a pipe is given as well as respective 

experimental data from [28], scaled by the average flow velocity. There, data are given from [28], 

corresponding to the turbulent spot rear front velocity description (blue triangles), as well as that of 

the fore front (light triangles). Also, there, results are given following from the TW in the pipe non-
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linear theory [8], and also conclusions of the present work for the phase velocity 
Re2

max2
πβ

λ
β

V
V −=

(scaled by the HP flow average velocity: 
2

max
V

av
V = ). The value of the phase velocity is defined in 

(A.6) from 
2

λ  in (A.2) for the neutral curve (i.e. under condition 0
1

=λ ).  In the present theory, the 

estimates V=1.4 and V=0.8 for the velocities of the fore (leaving the average stream behind) and rear 

(remaining behind the average stream) fronts of the vortex disturbance in the units of the HP flow 

average velocity. Experimental data [28, 30] give respective values V = 1.2 and V= 0.75, and numerical 

calculations on the base of the non-linear theory [8] yield the possibility of the change of V from 1.55 

to 0.95. In the result, conclusions of the present linear theory lead to the better agreeing with the 

experimental data compared with those of the non-linear theory [8], especially in the estimate of the 

rear front velocity which for the present work is 0.2 avV , for the experiment is 0.25 avV , and for the 

non-linear theory is 0.05 avV . 

Thus, conducted comparison of the suggested theory with the observation data and results of the 

non-linear theory shows that the data and the conclusions of the present HP flow linear instability 

theory satisfactory quantitatively and qualitatively agree. 

Conclusions 

The obtained in the present work new conclusion on possibility of the proof of existence of linear 

instability for the HP flow is based on the analysis of the system (10) inferred from the initial equation 

(1) for the evolution of the velocity field tangential component disturbances under condition that the 

right hand side of (1) is non-zero due to the finiteness of the kinematic viscosity coefficient. 

Otherwise, when the coefficient is equal to zero, from (1), in principle,  it is not possible to get 

evolution equations for linearly interacting each with the other radial modes and come to the 

conclusion of the HP flow linear instability. That is why, the mechanism of the found out HP flow 

linear instability can be called dissipative, and the very instability to consider as the dissipative 

instability. 

Earlier, such hydrodynamic instability dissipative mechanism was considered in the works of L. 

Prandtl (1921-22) when investigating laminar boundary layer stability, and also of W. Heisenberg 

(1924) and Lin C. C. (1944-45) when establishing flat Poiseuille flow linear instability (see also [23] 

and references therein). Qualitative explanation of the physical sense and possibility of appearance 

of dissipative instability in the problems of hydrodynamic stability are discussed in [18] on the base 

of elementary accounting of the delay effects on example of an oscillator with the friction linear with 

respect to velocity. Substantial understanding of the phenomenon of the dissipative instability for HP 

and other flows near solid boundary surface may also be obtained using a method similar to the one 

suggested by L.D. Landau in [19] for estimation of the critical velocity of motion of the super-fluid 

liquid in a capillary. In [19], from the condition of negativity of the energy of an elementary vortex 

disturbance when for the velocities exceeding that critical value due to the viscous interaction of the 
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stream with the capillary wall, there emerges a vortex disturbance (roton) destroying the laminar 

super-fluid state of the liquid motion. For the HP flow, for example, also it is interesting to conduct 

similar to [19 – 22] research aiming defining conditions for realization of the dissipative instability 

related with the threshold character of the emerging vortex disturbance energy becoming negative 

valued (in an appropriate inertial reference frame) when exceeding some definite critical Reynolds 

number. 

Let us note, however, that in the present work, to get for the HP flow the conclusion on linear 

instability, accounting of finiteness of the viscosity is important only on the stage of getting, from the 

equation (1), the system (10) that defines evolution with time and along the pipe axis, for N>1, of the 

linearly interacting radial disturbance modes. Already in (10) it is possible to consider the limit of 

infinitely large values of Re, corresponding to the ideal liquid with zero viscosity. Meanwhile, it is 

important only to preserve the suggested above consideration of the linear hydrodynamic stability 

problem for the very case of the boundary conditions individually defined for each of the both 

considered (for N=2) radial disturbance modes. Only in that case, it is preserved the obtained 

conclusion about possibility of the HP flow exponential instability but now instead of two control 

parameters, (Re, p), defining the instability region (depending on the wave number β ), in the limit 

of zero viscosity, there will be left only the parameter p. In the present work, such a limit of zero 

viscosity for the system (10) was not considered. Such an investigation on the base of the linear 

system of interacting radial modes (10) for N=2  may be interesting in relation with available works 

on simulation of the processes of instability formation in the flow in a pipe based on the use of the 

concept of ideal (non-viscous) disturbances describing non-linear pair-wise interacting TWs with 

small but finite amplitude [32-34]. At the same time, we show in the present work that for the finite 

value of the kinematic viscosity coefficient, consideration of the limit Re>>1, yielding the formula (14) 

for estimation of the minimal threshold Reynolds number gives not large difference in the value of 

the estimate (since it was obtained the value 442Re =th ) from the exact formula (A.3), where 

448Re =th .     

Let us note that the considered double vortex-wave structure of the spatial disturbance field 

variability is in the qualitative agreement with the data of laboratory [35] and numeric [36, 37] 

experiments in the pipe. This is witnessed also by the conducted in the previous paragraph 

comparison of the conclusions of the present theory with the experimental data and results of 

numerical modeling of instability development for the flow in the pipe. And in [36], for example, there 

were obtained estimates of the turbulent spot phase velocity V=0.9 and V=1.1 (in the units of the flow 

in the pipe average velocity), similar to the presented above.  

The radial modes have differing each from the other longitudinal variability periods that 

corresponds to the use of representation (12) for them. And according to (14), linear exponential 

instability is found to be possible not only for almost all irrational values of ratios of such longitudinal 

periods p, but also for the rational values of p , not coinciding with kpp = =k or k
p

/1 =1/k for integer 

k ( k=1, 2, 3..). An exemption from all possible irrational values p constitute only defined from (14) 
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irrational numbers 
2

4)1(1 2 −+±+
==

kk

k
pp , ,..2,1=k , for which, vice versa, ∞→

th
Re in (14) 

and the HP flow linear instability can’t be realized. 

For p not equal to the noted above values 
k

p  , such an integral helicity can exponentially grow 

with time when realizing HP flow linear instability for thReRe > , where the threshold Reynolds 

number value thRe  is defined in (14) and (A.3).        

The conclusions of the present work allow filling the well-known gap in the non-linear theory [7, 

8], when instead of the linear exponential instability up to now it was necessary to consider the stage 

of the seed algebraic instability (where small initial disturbances can only locally in time grow 

tending to zero for ∞→t ).  

Let us note also that it is reasonable to revise also the mentioned above problems on linear 

stability for the flat Couette flow and the flat Poisuille flow on the base of accounting of the obtained 

in the present work conclusion about possibility of the HP flow linear exponential instability due to 

the consideration of differing from the “normal” longitudinal quasi-periodic disturbances. 

Meanwhile, longitudinal disturbances quasi-periodicity is not by itself important but formation of it 

due to the longitudinal periods distinctions for different basic (in that case, radial) modes existing 

only for the non zero fluid viscosity. 

Appendix 

1. From (10) and (13) for 2=N  and M=1 in (12) we get for 21 λλλ i+= : 

                         )
21

12
1

1
(

2
122242

1,11
Dapj ±−−−= βπλ   ,                        (A.1) 

                         )
21

22
1

2
(

2
1Re

11
2

2
DapP ±−−= πβλ  ,                           (A.2) 

where ldD +=
21

01  ,       ldD −=
21

02  , 2
1

Re
1

42
2

2
1

caal +−=  

       )21(2242
1,1

2
2,11

pjja −+−= βπ ,       )
1122

Re(2
2

pPPa −= πβ , 

       
2)1(

22
1221

2Re2
1

Re
p

pPP

−
=

β
 ,  2)

1
2
1

Re2
21

(42
0

daald −+= , Sd 4
1

−= , 

)
1

(4
1 p

pSctgс +−= π , and S is defined in (14). 
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  The condition 01 >λ leads to the inequality  

                                  
2

2

Re
)Re(

d
cba +>+                                        (A.3) 

where       
2)1(

22
1221

4

p

SpPP
a

−
=

β
  , 

1
)

1122
( apPPb −= πβ , )2242

2,1
)(22242

1,1
(2

3
βπβπ ++= jpjad  , 

)21(2242
1,1

2
2,13

pjja +++= βπ , )
2)1(

)
1

(2
2112

42)
1122

(2(22
3 p

p
pSctgpPP

pPPaс

−

+
−−=

π
πβ . 

2. In the limit 1Re >> , inequality (A.3) with 0>с  is reduced to the inequality 

a
S

S
bc

th
||

)(ReRe
⋅−

=> β      (A.4) 

In (A.4), the function )(Re β
th takes minimal value (given in (14)) for  

                  

2
1

)21()21(

)2
1,1

2
2,1

()2
1,1

2
2,1
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2

1
0


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













−++

−++
==

pBpA

jjBjjA

π
ββ   ,                  (A.5) 

where A  and B  are defined in the main text (see (14)) for 02 >A . 

3. On the neutral curve with 0
1

=λ  (i.e. when equality ),(ReRe pth β=  in (A.4) holds), the phase 

velocity cpVV /β has the form 

2,1
)

Re22
(/

2/1
2

2211 βββ πβ =±+=
D

PpPVV cp     (A.6) 

where )(Re,2,1 pββ = corresponds to replacing of inequality in (A.4) by equality. For such a 

replacement in (A.4), we get a quadratic equation with respect to β . Its solution is  

1
2

22

2,1 2

ReReRe

δπ
ββ th−±

==      (A.7) 

for thReRe ≥ , where thRe  from (14), when 02,1 ββ = for thReRe = , and 

2112
2

2
1

1
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1 ||

)1(||
)
||

)1(41)1((
PPpS
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Sb
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−−−−+= δπδ , )
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(
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2

1
22
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PPp
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−
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δ . 

4. 
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Figure 1. a) Family of the six curves of neutral stability (with 0
1

=λ ), according to (14) and (A.5); 

the instability regions bounded by lines 2 and 3, respectively, correspond to 463.00 =β  (at p=1.527) 

and 099.10 =β  (at p=2.239). b) Curves 1-3 from panel a) in a magnified scale together with Fig.12 

from [31] under the condition of the coincidence of the dimensionless parameters  1/2p=
*αδ , 

where  α  is the wavenumber of the disturbance, and 
*δ is the shift of the boundary layer in the 

flow around the thin plate [31]. The points and dashed curves correspond to the experiment 

reported in [31], and thin solid curves I and II are Shlihting and Lin theories, respectively. c) For 

N=2, Galerkin approximation (blue, labeled by 1) and enegy theory (black, labeled by 2), integer 

values of p are excluded from calculations; d) Energy theory for N=2, 10, 100, 600  

(numbered 1 to 4 respectively for one set of curves). 
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5. Table of values thRe  and 0β , obtained by (A.3) and (14) for p , corresponding to the local minima 

thRe  in the approximate formula (14) 

p  
0β  (from (A.3)) thRe  (from (A.3)) 0β  (from (A.5)) thRe  (from (14)) 

1,527 0,471 448,455 0,463 442,278 

0,674 1,124 680,307 1,101 678,482 

0,447 1,368 1095,455 1,358 1093,824 

2,239 1,100 1983,171 1,099 1981,838 

2,791 0,220 13095,398 0,219 13095,285 

0,359 1,114 23816,499 1,114 23816,488 

 

 

Figure 2. a) Results of the experiment [28] (for the velocity of the rear edge of a turbulent spot, 

blue rectangles, and for the velocity of the fore edge, light triangles) and [30] (rectangles and 

circles, for the velocity of the rear edge). The phase velocity of the wave solutions [8] (numbers 1-5 

denote the level of azimuthal symmetry of the corresponding travelling wave). The velocities are 

normalized by the stream in the pipe volumetric/average velocity. Also the result of calculations of 

the phase velocity according to (A.6) is given. The top “straight” line corresponds to sign plus in 

(A.6), and the bottom one to sign minus for 53.1≈p , β  =0,471 (that corresponds to the absolute 

minimum thRe =448.5 according to (A.3). b) Zoomed representation of the bottom “straight” line 

from Fig.2,а according to (A.6) (the upper brunch on Fig.2,b corresponds to sign plus in (A.7), and 

the lower to sign minus). 
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